Способ финишной обработки поверхностей прецизионных деталей

Изобретение относится к технологии машиностроения и может быть использовано при финишной обработке поверхностей прецизионных деталей. Способ включает предварительную обработку заготовки с обеспечением макрогеометрии ее поверхности и последующее формирование на ней маслоудерживающего рельефа, который формируют на станке с ЧПУ путем нанесения сферической фрезой взаимно перпендикулярных канавок с параметрами, обеспечивающими получение толщины смазочной пленки не менее 5 мкм, приходящейся на единицу площади обрабатываемой поверхности. Обеспечивается получение оптимальной равномерной маслоудерживающей поверхности на всей плоскости детали.

 

Изобретение относится к технологии машиностроения, а именно к финишной обработке поверхности прецизионных деталей, включающей нанесение макрорельефа на ее поверхность на последнем этапе обработки.

В качестве финишной операции для этой цели в отдельных случаях используется шабрение - прецизионное выравнивание поверхности специальным ручным инструментом - шабером. Это - крайне трудоемкая и низко производительная операция, требующая:

- высокую квалификацию рабочих;

- большие затраты времени на подготовку.

Существуют специальные способы обработки деталей, в результате которых образуется поверхность с регулярным микрорельефом.

Известен способ формирования регулярных микрорельефов, который заключается в поверхностно-пластической деформации поверхности инструментом с радиусом при вершине (шарик, индентор и т.п.) с заданным шагом и усилием (Шнейдер Ю.Г. Эксплуатационные свойства деталей с регулярным микрорельефом. Л.: Машиностроение. 1982 - с. 84).

Однако профиль, полученный этим способом, имеет участки с минимальной кривизной между канавками, испытывающие более высокие контактные нагрузки по сравнению с впадинами, и потому наиболее уязвимы при эксплуатации, быстрее изнашиваются и разрушаются из-за неравномерности по высоте и шагу шероховатости.

Известен способ формирования микрорельефа на поверхности детали (RU 2297314, В24В 39/00, 07.06.2005 г.), включающий вращение детали, ее подачу и формирование на ее поверхности двухуровневого регулярного микрорельефа, комбинированного по высоте путем вибронакатывания канавок шаром и индентором, при этом канавки, накатанные индентором, располагают между канавками, накатанными шаром, отличающийся тем, что канавки создают синусоидальными путем вибронакатывания шаром радиусом Rш=1,5-2,0 мм с усилием Рш=160-500 Н и индентором радиусом Rинд=0,5-0,8 мм с усилием Ринд=80-250 Н, причем канавки, накатанные индентором, формируют с меньшим шагом и меньшей высотой, чем канавки, накатанные шаром.

Недостаток указанного способа заключается в следующем.

При вибронакатывании канавок на поверхности детали возникают контактные напряжения. В случае вибронакатывания микрорельефа на поверхности дисков малой толщины эти напряжения могут послужить причиной возникновения остаточных деформаций и увеличения неплоскостности поверхности.

Также известен способ формирования плосковершинного регулярного микрорельефа выглаживанием (RU 2401731, В24В 39/00, 10.01.2010 г.), отличающийся тем, что обработку поверхности заготовки производят в два этапа, на первом этапе создают регулярный рельеф канавок инструментом для выглаживания с рабочей формой, соответствующей профилю канавки, а на втором этапе формируют плосковершинный профиль выглаживателем, формирующим плосковершинный профиль.

Недостатком данного способа является неоднородность маслоудерживающей поверхности и, следовательно, неравномерный ее износ.

Наиболее близким по технической сущности является «Способ формирования смазочных карманов на поверхности детали» (RU 2458776, В24В 39/00, 27.08.2010 г.), включающий предварительную механическую обработку заготовки с обеспечением макрогеометрии ее поверхности и последующее нанесение на ее поверхности маслоудерживающего регулярного микрорельефа, отличающийся тем, что нанесение маслоудерживающего регулярного микрорельефа осуществляют путем выглаживания поверхности заготовки со скоростью более 120 м/мин, обеспечивающей совершение выглаживателем автоколебательных движений с частотой более 1000 с-1 с нанесением им ударов по поверхности заготовки.

Недостатком данного способа является: недопустимость ударного воздействия на поверхность прецизионных деталей гидропередач. При ударе инструмента о поверхность детали имеют место высокие контактные динамические напряжения, которые могут привести к росту дефектов кристаллической решетки и продвижению внутри нее дислокаций. В результате этого могут возникнуть нежелательные остаточные деформации или образоваться микротрещины, снижающие усталостную прочность детали.

Техническим результатом заявляемого способа является создание оптимальной равномерной маслоудерживающей поверхности на всей плоскости детали, обеспечивающей получение толщины смазочной пленки не менее 5 мкм.

Заявляемый способ финишной обработки поверхностей прецизионных деталей, включающий предварительную обработку заготовки с обеспечением макрогеометрии и последующее формирование на ней маслоудерживающего рельефа, отличается тем, что маслоудерживающий рельеф формируют на станке с ЧПУ путем нанесения сферической фрезой взаимно перпендикулярных канавок с параметрами, обеспечивающими получение толщины смазочной пленки не менее 5 мкм, приходящейся на единицу площади обрабатываемой поверхности, и выбранными из условия:

где

а - длина канавки;

b - ширина канавки;

R - радиус сферической фрезы;

h - глубина канавки;

F0 - единичная площадь;

n - количество канавок, приходящихся на единицу площади.

Сравнение заявляемого способа с другими техническими решениями показывает, что применение данного способа позволяет:

1) получить высокую точность формы детали по неплоскостности за счет предварительной обработки;

2) обеспечить оптимальные условия смазки за счет равномерного однородного микрорельефа;

3) повысить усталостную прочность деталей за счет снижения контактных динамических напряжений при формировании микрорельефа.

В качестве примера рассмотрим способ финишной обработки поверхности распределительных дисков гидравлических передач.

По предлагаемому способу обрабатывали распределительный диск гидравлических передач диаметром 180 мм, толщиной 8 мм. На плоскодоводочном станке производили операцию плоской доводки диска. В качестве инструмента использовали абразивный круг со связанным абразивом (алмаз). Плоскостность диска после доводки составила 1,5 мкм по всей поверхности. Далее, для формирования маслоудерживающего микрорельефа осуществляли фрезерную операцию на станке с ЧПУ. Экспериментально было установлено, что с использованием сферической фрезы диаметром ⌀ (10…12) мм на поверхности диска были нанесены взаимно перпендикулярные штрихи глубиной h=(0,008…0,012) мм, длиной а=(3…4) мм с расстоянием между штрихами не менее 1 мм, что в результате обеспечило:

1) разбивку единичной поверхности (квадрат со стороной 25 мм) на 25 частей;

2) толщину смазочной пленки на поверхности детали не менее 5 мкм.

Экспериментально полученные зависимости позволили получить заданную толщину смазочной пленки.

Ширина канавки зависит от диаметра фрезы и глубины фрезерования.

Введем обозначения:

а - длина канавки;

b - ширина канавки;

R - радиус сферической фрезы;

h - высота канавки (глубина фрезерования).

Ширину канавки можно выразить через ее высоту и радиус фрезы:

Объем смазочной канавки складывается из объемов сферической и цилиндрической частей:

Объем сферической части канавки:

Объем цилиндрической части канавки:

Толщина смазочной пленки:

где n - количество смазочных канавок, приходящихся на единицу площади (квадрат со стороной 25 мм)

F0 - единичная площадь.

Установлено, что для получения оптимальной толщины смазочной пленки, равной 5 мкм, на поверхности распределительных дисков гидравлических передач необходимо сформировать смазочные канавки со следующими параметрами:

R~5 мм; а~3 мм; h~0.01 мм; n~50.

Таким образом, предлагаемый способ финишной обработки поверхностей прецизионных деталей по сравнению с существующими позволяет получить:

- высокую точность формы поверхности за счет предварительной плоской доводки и безударного нанесения микрорельефа;

- повышенную усталостную прочность за счет отсутствия динамических остаточных контактных напряжений во время формирования микрорельефа;

- благоприятные условия смазки поверхностей за счет создания однородного микрорельефа на поверхности детали.

Способ финишной обработки поверхностей прецизионных деталей, включающий предварительную обработку заготовки с обеспечением макрогеометрии ее поверхности и последующее формирование на ней маслоудерживающего рельефа, отличающийся тем, что маслоудерживающий микрорельеф на поверхности детали формируют на станке с ЧПУ путем нанесения сферической фрезой взаимно перпендикулярных канавок с параметрами, обеспечивающими получение толщины смазочной пленки (∆) не менее 5 мкм, приходящейся на единицу площади обрабатываемой поверхности, и выбранными из условия:

где
n - количество канавок;
F0 - единичная площадь;
Vк - объем смазочной канавки, определяемой по формуле:

где
Vсф - объем сферической части канавки;
Vцил - объем цилиндрической части канавки;
а - длина канавки;
b - ширина канавки;
R - радиус сферической фрезы;
h - глубина канавки.



 

Похожие патенты:

Изобретение относится к отделочно-упрочняющей обработке цилиндрических поверхностей деталей выглаживанием. Осуществляют вращательное движение детали и продольное перемещение алмазного выглаживающего инструмента.

Изобретение относится к машиностроению и может быть использовано при обработке щеточными машинами. Последняя содержит вращающийся от привода держатель щетки, кольцевую щетку, имеющую фланец с направленной наружу щетиной, и стопорное устройство, погруженное во вращающийся фланец со щетиной.

Изобретение относится к устройствам для пластического деформирования кромок двутавров. Устройство содержит обминающие ролики, имеющие галтель для пластического деформирования каждой кромки двутавра и выполненные из материала с твердостью выше, чем материал заготовки двутавра.

Изобретение относится к машиностроению и может быть использовано для ультразвукового упрочнения деталей типа тел вращения на станках с ЧПУ. Устройство содержит корпус, акустическую систему, состоящую из преобразователя, соединенного с волноводом, на торцевой части которого закреплен излучатель ультразвука.

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании маложестких заготовок с криволинейными поверхностями.

Изобретение относится к упрочнению металлических деталей машин поверхностным пластическим деформированием. Осуществляют зажатие детали снизу и сверху по ее краям посредством установленных в раме вращающихся прижимных валов.

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании цилиндрических и торцовых поверхностей. Осуществляют обработку вращающейся заготовки сферическим деформирующим элементом более высокой твердости по сравнению с твердостью материала обрабатываемой заготовки.

Изобретение относится к отделочно-упрочняющей обработке деталей методами поверхностного пластического деформирования. Осуществляют внедрение деформирующего элемента в обрабатываемую поверхность и его перемещение по обрабатываемой поверхности.

Изобретение относится к ультразвуковым инструментам для деформационной обработки. Инструмент содержит корпус с ручкой и направляющими скольжения, в которых установлен с возможностью осевого возвратно-поступательного движения стакан с фланцем и насадкой.
Изобретение относится к области машиностроения и может быть использовано для формирования плосковершинного микрорельефа деталей трибосопряжений со смазочными микровпадинами.

Изобретение относится к машиностроению и может быть использовано для чистовой обработки резанием поверхности катания головки рельса. Устройство содержит раму, установленную с возможностью перемещения вдоль головки рельса, и обрабатывающие инструменты, установленные с обеих сторон рамы с возможностью вращения в противоположных направлениях и фронтального подвода к поверхности катания головки рельса.

Изобретение относится к машиностроению и может быть использовано при обработке глубоких отверстий в трубных заготовках. Обработку осуществляют устройством, содержащим борштангу с режущим инструментом, расположенную на эксцентричных подшипниках в пиноли с режущими и дорнующими зубьями, которую базируют перед подачей рабочей среды в исходном положении во входном люнете.

Способ включает использование рабочих параметров процесса резания и геометрических параметров инструмента. Для повышения точности определения параметра шероховатости предварительно осуществляют пробный проход сборным многолезвийным твердосплавным инструментом по детали, измеряют термоЭДС каждой режущей кромки, вычисляют среднеарифметическое значение термоЭДС сборного многолезвийного твердосплавного инструмента, а параметр шероховатости Ra определяют с использованием вычисленного среднеарифметического значения термоЭДС, геометрических параметров сборного многолезвийного твердосплавного инструмента и обрабатываемой детали по приведенной формуле.

Изобретение относится к машиностроению и может быть использовано при фрезеровании плоских поверхностей. Способ включает использование торцовой фрезы, которую доводят до касания с торцем обрабатываемой поверхности.

Изобретение относится к обрабатывающей головке для металлообрабатывающих машин, предпочтительно зуборезных или зубошлифовальных станков согласно ограничительной части пункта 1 формулы изобретения.

Изобретение относится к машиностроениию и может быть использовано для обработки сложнопрофильных деталей с выпуклой поверхностью, например рабочих поверхностей штампов.

Изобретение относится к машиностроению и может быть использовано для устранения локальных неровностей продольного и поперечного профиля рельса. .

Изобретение относится к машиностроению и может быть использовано при изготовлении деталей посредством фрезерного инструмента. .

Изобретение относится к оборудованию для обработки профилей и может быть использовано для устранения локальных неровностей продольного и поперечного профиля рельса, в том числе в зоне сварных стыков рельсовых плетей методом профильного фрезерования.

Изобретение относится к станкостроению и может быть использовано при изготовлении фрезерованием корпусных деталей малой жесткости вафельной конструкции, например топливных баков с ячеистым фоном.

Группа изобретений относится к машиностроению и может быть использована при изготовлении анодных пластин для электролиза на специальном оборудовании. Установка для обработки анодных пластин включает поперечный транспортер, устройство выравнивания плоскостности и измерения толщины пластины, устройство фрезеровки нижней стороны ушка пластины, расположенное по одну сторону поперечного транспортера по ходу после устройства выравнивания плоскостности и измерения толщины, и устройство фрезеровки боковой стороны ушка, расположенное по другую сторону поперечного транспортера по ходу после устройства выравнивания плоскостности и измерения толщины. Обработка анодных пластин с использованием заявленного способа установки для его осуществления повышает качество обработки. Увеличивается коэффициент использования материала и энергоэффективность изготовления анодных пластин. 2 н. и 8 з.п. ф-лы, 2 ил.
Наверх