Волоконно-оптический датчик давления

Изобретение относится к области измерительной техники, в частности к области волоконно-оптических средств измерений давления, и применимо в нефтяной и газовой промышленности, медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления. Датчик давления включает корпус с закрепленной в нем упругой мембраной, оптический канал, содержащий фиксируемый и подвижный световоды. Подвижный световод соединен через штангу с мембраной. Подвижный и фиксируемый световоды установлены с возможностью поперечного перемещения относительно своих осей, причем фиксируемый световод установлен с возможностью перемещения и фиксации в корпусе с помощью винта и гайки. По торцам входа и выхода световодов расположен сальник. Технический результат - расширение диапазона применения датчика во взрывоопасных средах при сохранении его малых габаритов. 2 ил.

 

Изобретение относится к области измерительной техники, в частности к области волоконно-оптических средств измерений давления, и применимо в нефтяной и газовой промышленности, медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления.

Известен волоконно-оптический датчик давления, в корпусе которого закреплена мембрана с жестким центром и утолщенной периферийной частью и два волоконно-оптических преобразователя, выполненных в виде световодов с источником света и фотоприемниками. Торцы световодов установлены соответственно напротив центральной и периферийной частей мембраны. Между отражающими поверхностями мембраны и торцами световодов выполнена светозащитная перегородка, имеющая конфигурацию, аналогичную конфигурации периферийной части мембраны (патент РФ №92004980, МПК G01L 11/00, опубл. 1995.07.09).

Недостатками известного датчика являются его габариты из-за наличия большого количества элементов, входящих в состав датчика, и его повышенная взрывоопасность из-за наличия в корпусе фотоприемников. Таким образом, свет преобразовывается в электрический сигнал прямо в датчике.

Наиболее близким техническим решением к предлагаемому является волоконно-оптический датчик давления, содержащий корпус, в котором закреплены световод и фотоприемник, связанные между собой с помощью оптического канала, а также мембрана. В оптическом канале дополнительно размещены по ходу движения луча рассеивающая линза, рамка со световой щелью и соединенная через коромысло с упругой мембраной подвижная светонепроницаемая перегородка, установленная с возможностью перемещения, обеспечивающего линейную зависимость площади световой щели от перемещения упругой мембраны. Световая щель рамки выполнена в виде прямоугольника, вписанного в рабочее поле фотоприемника [патент РФ №2269755, кл. G01L 11/00, опубл. 10.02.2006]. Данное устройство принято за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения, - корпус с закрепленной в нем упругой мембраной; оптический канал, содержащий фиксируемый световод.

Недостатком известного датчика, принятого за прототип, является наличие тока в фотоприемнике. При работе во взрывоопасных средах возникает необходимость пожаробезопасного исполнения датчика, которое приводит к увеличению его габаритов.

Известна в работе [Основы физики и техники использования оптического волокна: лабораторная работа по курсу радиофизики, сост.: В.А. Астапенко, В.А. Баган, С.А. Никитов. - М: МФТИ, 2010. - 51 с.] зависимость оптических потерь при поперечном смещении оптических волокон (фиг. 2). Из фиг. 2 видно, что с увеличением поперечного смещения оптические потери возрастают, что приводит к пропорциональному уменьшению интенсивности света. Однако в этой работе не предложена конструкция, обеспечивающая контролируемое перемещение оптоволокон, регулировку датчика.

Задачей, на решение которой направлено заявляемое изобретение, является расширение диапазона применения датчика во взрывоопасных средах при сохранении его малых габаритов.

Поставленная задача была решена за счет того, что известный волоконно-оптический датчик давления, включающий корпус с закрепленной в нем упругой мембраной, оптический канал, содержащий фиксируемый световод, согласно изобретению снабжен сальником, а оптический канал дополнительно содержит подвижный световод, соединенный через штангу с мембраной, при этом подвижный и фиксируемый световоды установлены с возможностью поперечного перемещения относительно своих осей, причем фиксируемый световод установлен с возможностью перемещения и фиксации в корпусе с помощью винта и гайки, а сальник расположен по торцам входа и выхода световодов.

Признаки заявляемого технического решения, отличительные от признаков решения по прототипу, - наличие в оптическом канале подвижного световода, соединенного через штангу с мембраной; установка подвижного и фиксируемого световодов с возможностью поперечного перемещения относительно своих осей; установка фиксируемого световода с возможностью перемещения и фиксации в корпусе с помощью винта и гайки; наличие сальника, расположенного по торцам входа и выхода световодов.

Наличие в оптическом канале фиксируемого световода и соединенного через штангу с мембраной подвижного световода, установленных с возможностью поперечного перемещения относительно своих осей, позволяет измерять интенсивность света, тем самым давление, без применения электрических компонентов, следовательно, расширяет диапазон применения датчика во взрывоопасных средах при сохранении его малых габаритов.

Установка фиксируемого световода с возможностью перемещения и фиксации в корпусе с помощью винта и гайки позволяет настраивать датчик непосредственно в процессе его эксплуатации, следовательно, расширяет диапазон применения датчика.

Наличие сальника, расположенного по торцам входа и выхода световодов, приводит к уменьшению внутренних потерь в световоде при его изгибе, следовательно, расширяет диапазон применения датчика.

На фиг. 1 представлена схема предлагаемого устройства.

На фиг. 2 показана зависимость оптических потерь при поперечном смещении оптических волокон.

Волоконно-оптический датчик давления включает корпус 1 с закрепленной в нем упругой мембраной 2, оптический канал, содержащий фиксируемый 3 и подвижный 4 световоды. Фиксируемый 3 и подвижный 4 световоды закреплены в оптическом канале через хомут фиксации 5 оптического световода и перемычки хомутов 6. Подвижный световод 4 соединен через штангу 7 с мембраной 2. Подвижный 4 и фиксируемый 3 световоды установлены с возможностью поперечного перемещения в направляющем пазу 8 относительно своих осей. Направляющие пазы 8 выполнены в корпусе 1 датчика. Фиксируемый световод 3 способен перемещаться в оптическом канале только во время настройки оператором. Для настройки фиксируемого световода 3 в корпусе 1 имеется гайка 9 и винт 10. Измеряемая среда по давлением p1 подается в корпус 1 через отверстие 11. Часть корпуса 1 по другую сторону от мембраны 2 сообщается через отверстие 12 с окружающей атмосферой, имеющей давление p0. Изолятором атмосферного давления с измеряемым служит сальник 13, расположенный по торцам входа и выхода световодов 3 и 4. Также сальник 13 приводит к уменьшению внутренних потерь в световоде при его изгибе.

Волоконно-оптический датчик давления работает следующим образом.

Измеряемое давление через отверстие 11 в корпусе 1 подается на упругую мембрану 2. Мембрана 2 жестко связана со штангой 7, которая перемещает хомут фиксации 5 оптического световода и вызывает поперечное перемещение подвижного световода 4 в направляющем пазу 8. При этом изменяется интенсивность света, выходящего из фиксированного световода 3 и попадающего в подвижный световод 4. Эта интенсивность максимальна, когда оси световодов совпадают, и уменьшается при поперечном смещении подвижного световода 4 относительно фиксируемого 3. Таким образом, интенсивность света на выходе подвижного световода 4 зависит от перемещения упругой мембраны 2.

Расширение диапазона применения датчика во взрывоопасных средах при сохранении его малых размеров обеспечивается отсутствием тока в корпусе датчика.

Технико-экономическая эффективность от использования волоконно-оптического датчика давления выражается, во-первых, в расширении диапазона применения датчика во взрывоопасных средах, во-вторых, в уменьшении габаритов датчика за счет вынесения источника излучения и измерительного прибора за его пределы.

Волоконно-оптический датчик давления, включающий корпус с закрепленной в нем упругой мембраной, оптический канал, содержащий фиксируемый световод, отличающийся тем, что он снабжен сальником, а оптический канал дополнительно содержит подвижный световод, соединенный через штангу с мембраной, при этом подвижный и фиксируемый световоды установлены с возможностью поперечного перемещения относительно своих осей, причем фиксируемый световод установлен с возможностью перемещения и фиксации в корпусе с помощью винта и гайки, а сальник расположен по торцам входа и выхода световодов.



 

Похожие патенты:

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления.

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления, работающих в широком диапазоне механических и тепловых воздействий и предназначенных для получения информации о разности давлений исследуемых жидких и газообразных сред.

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления. Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом заключается в том, что используют две идентичные мембраны с эпитаксиально выращенными на них резонаторами, разделенные вакуумированным промежутком.

Способ определения потерь нефти и нефтепродуктов применим как в процессе сбора, подготовки, транспортировки и хранения нефти на промыслах, так и при транспортировке нефти по магистральным нефтепроводам, а также может быть использован на предприятиях, занимающихся переработкой нефти, хранением, транспортировкой и распределением нефтепродуктов.

Изобретение относится к области измерительной техники. Устройство для измерения давления и скорости его изменения состоит из проточного пневматического канала 1, содержащего два анемочувствительных элемента 2, 3 измерения скорости изменения давления и сообщающего глухую камеру 4 с газодинамическим объектом, микронагнетателя 5 с электроприводом, измерительного 6 анемочувствительного элемента, компенсационного 7 анемочувствительного элемента, первого 8 и второго 9 формирующих сопел, канала 10 измерения давления, канала 11 измерения скорости изменения давления, микроконтроллера 12 и средства 13 отображения информации.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкости и газов. Резонансный сенсор давления содержит измерительную мембрану с возбуждающим электродом и резонансной полостью, к краям которой с двух сторон жестко закреплен резонансный элемент в форме балки с прямоугольным сечением, в теле которого сформированы тензорезисторы, при этом размер сечения балки в ортогональном направлении к плоскости колебаний постоянен, а в направлении колебаний возрастает по линейному закону, достигая максимального значения по середине балки, причем отношение максимального размера сечения к минимальному в указанном направлении лежит в интервале от 1 до 6.

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды. Вибрационный датчик избыточного давления состоит из герметично перекрываемого корпуса, чувствительного элемента, датчика возбуждения колебаний, датчика съема колебаний, усилителя, преобразователя и регистратора.
Изобретение относится к акустической диагностике и может быть использовано в магистральных нефтегазопроводах. .

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений.

Изобретение относится к испытаниям металлических конструкций и может быть использовано в кабельной технике для оценки работоспособности муфт кабельных погружных электродвигателей. Стенд испытаний кабельных муфт содержит термокамеру с крышкой, в которой размещают испытываемую муфту. Термокамера разделена поршнем на верхнюю и нижнюю полости, к верхней полости подведен трубопровод для закачки соленого раствора, а к нижней полости и к внутренней полости испытываемой муфты подключены трубопроводы для подачи масла. Трубопровод для закачки соленого раствора и трубопровод для подачи масла, подключенный к внутренней полости испытываемой муфты, соединены через распределитель и оснащены индивидуальными манометрами и общим дифференциальным манометром. Кабельная муфта вмонтирована в пробку, закрепленную в крышке. Техническим результатом изобретения является возможность проведения испытания кабельных муфт на перепад давлений при высоких температурах и при наличии агрессивной среды. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано в датчиках давления. Устройство для измерения давления состоит из штока, первого, второго и третьего пьезоэлементов. Шток неподвижно соединен с первым и третьим пьезоэлементами, первой мостовой измерительной схемой, образованной дифференциальным емкостным преобразователем, состоящим из первого конденсатора C1 и второго конденсатора С2, а также резисторов R1 и R2, первого режекторного фильтра, первого усилителя заряда, второго режекторного фильтра, второго усилителя заряда, генератора высокой частоты, первого усилителя сигнала разбаланса мостовой измерительной цепи, выпрямителя, источника питания постоянного тока, образованной терморезисторами R3 и R4, а также резисторами R4 и R5, второго усилителя сигнала разбаланса мостовой измерительной цепи и микроконтроллера. Выходы первого и третьего пьезоэлементов соединены с первым входом A1 микроконтроллера через первый режекторный фильтр и первый усилитель заряда. Выходы второго пьезоэлемента соединены со вторым входом микроконтроллера А2 через второй режекторный фильтр и второй усилитель заряда. Выходы генератора высокой частоты соединены с третьим входом А3 микроконтроллера через первую мостовую измерительную цепь. первый усилитель сигнала разбаланса мостовой измерительной цепи и выпрямитель. Выходы источника постоянного тока соединены через вторую мостовую измерительную цепь с четвертым входом А4 микроконтроллера через второй усилитель разбаланса мостовой измерительной цепи. Технический результат заключается в повышении точности измерения, а также увеличении функциональных возможностей. 4 ил.

Изобретение относится к области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Заявленный амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, передающее излучение от внешнего источника и закрепленное на мембранном упругом элементе с возможностью перемещения только вместе с его жестким центром пропорционально измеряемому давлению, и один фотоприемник. При этом в заявленное устройство введены дополнительный фотоприемник, зеркало и две параллельные кремниевые пластины, расположенные перпендикулярно мембранному упругому элементу. Кроме того, оба фотоприемника включены по дифференциальной схеме и расположены на одной кремниевой пластине, а на другой пластине размещено зеркало, которое представляет собой плоскую отражающую поверхность кристаллографической ориентации типа (100) с углублениями пирамидальной формы, стенки углублений сходятся в одной точке, а кристаллографическая ориентация стенок типа (111). Технический результат - повышение чувствительности и снижение нелинейности преобразовательной характеристики. 1 ил.

Изобретение относится к области волоконной оптики и может быть использовано при разработке датчиков физических величин на основе кольцевого волоконно-оптического интерференционного чувствительного элемента. Заявленный гидроакустический волоконно-оптический датчик давления содержит каркас с воздушной полостью, образованной шпилькой, двумя фланцами и кольцевым многослойным волоконно-оптическим чувствительным элементом, при этом каждый предыдущий слой оптического волокна ЧЭ содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков до образования гладкой и жесткой цилиндрической поверхности, а каждый последующий слой оптического волокна со встречными направлениями витков также содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков. Технический результат заключается в разработке кольцевого чувствительного элемента, образованного путем многослойной намотки оптического волокна по спирали с возможностью склеивания витков и слоев волокна в единую колебательную систему, отличающуюся чувствительностью к звуковому давлению в диапазоне рабочих частот, а также низкими потерями оптической мощности при воздействии внешнего гидростатического давления, а также в обеспечении работоспособности гидроакустических кольцевых волоконно-оптических датчиков давления в составе гидроакустических антенн посредством создания многослойного кольца из оптического волокна, способного выдерживать без разрушения внешнее гидростатическое давление; создания колебательной механической системы в виде тонкостенного кольца, чувствительной к воздействию звукового давления в широкой полосе частот; снижения потерь оптической мощности в волоконно-оптическом кольце в условиях повышенных гидростатических давлений, что позволяет объединить датчики в многоэлементную антенну. 1 з.п. ф-лы, 2 ил.

Объектом изобретения является способ оценки давления (Pass) в вакуумном резервуаре (28) вакуумного сервотормоза (26) автотранспортного средства (10), при этом транспортное средство (10) содержит: тормозное устройство (16); сервотормоз (26); датчик (23) давления. При осуществлении способа на первом этапе (E1) циклически вычисляют давление (Pmc) торможения. На втором этапе (E2) вычисляют амплитуду (ΔPmc) снижения давления. В ходе второго этапа максимум (Pmc_max), а затем минимум (Pmc_min), достигаемые последовательно давлением торможения, сохраняют в памяти. Амплитуду (ΔPmc) снижения давления торможения вычисляют путем определения разности между максимумом (Pmc_max) и минимумом (Pmc_min). В ходе Третьего этапа (Е3), который начинается по завершении второго этапа (Е2), оценивают повышение (Conso) давления в вакуумном резервуаре (28) в зависимости от амплитуды (ΔPmc), вычисленной на втором этапе (Е2). Достигается быстрая и точная оценка давления в вакуумном резервуаре (28). 9 з.п. ф-лы, 7 ил.
Наверх