Способ разделения радионуклидов кадмия и серебра



Способ разделения радионуклидов кадмия и серебра
Способ разделения радионуклидов кадмия и серебра
Способ разделения радионуклидов кадмия и серебра
Способ разделения радионуклидов кадмия и серебра

 


Владельцы патента RU 2574274:

Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" (RU)

Изобретение относится к области радиохимии и может быть использовано в технологии получения радиоактивных изотопов и аналитической химии. Способ разделения радионуклидов кадмия и серебра включает растворение облученного серебра в азотной кислоте, упаривание раствора, растворение образовавшихся нитратов в аммиачном растворе, восстановление серебра до металла в аммиачной среде сернокислым гидроксиламином при рН более 6 и при мольном отношении сернокислого гидроксиламина к серебру более 1, отделение осадка металлического серебра от маточного раствора, содержащего кадмий-109 и осаждение из маточного раствора любого малорастворимого соединения кадмия. Изобретение обеспечивает эффективное разделение радионуклидов кадмия и серебра. 2 ил., 1 табл.

 

Изобретение относится к области радиохимии и может быть использовано в технологии получения радиоактивных изотопов и аналитической химии.

Радионуклид кадмий-109 применяется для изготовления эталонных источников ионизирующего излучения. 109Cd может быть получен путем облучения серебра нейтронами по реакциям

При облучении изотопнообогащенного 107Ag в течение полугода в высокопоточном реакторе выход кадмия составляет ~50% от массы облучаемого серебра. Помимо основного продукта реакции при облучении образуются значимые количества радионуклида 110mAg. Последующая химическая переработка облученного образца проводится с целью очистки 109Cd от 110mAg и получения требуемой химической формы препарата.

В соответствии с ТУ 7011-20553876-2012 ОКП 70 1682 1000 препарат Кадмий-109 представляет собой раствор хлорида кадмия в 0,1-1 моль/л соляной кислоте, отношение активности 110mAg к активности 109Cd не должно превышать 3*10-4%.

Известен способ экстракционного разделения радионуклидов серебра и кадмия [Левин В.И. Получение радиоактивных изотопов. - М.: Атомиздат, 1972, с. 182], заключающийся в приготовлении раствора кадмия и серебра в смеси роданида аммония и ацетата натрия, последующей экстракции кадмия смесью пиридина с хлороформом и реэкстракции кадмия азотной кислотой. Недостаток способа - неполное разделение компонентов.

Способ ионообменного разделения радионуклидов серебра и кадмия [Разбаш А.А., Севастьянов Ю.Г., Маклачков А.Г., Алексеева Л.Г., Радиохимия, 1981, т. 23, №3, с. 442] основан на сорбции Ag и Cd на сильнокислом катионите КРС-8п из смеси азотной и плавиковой кислот, элюировании кадмия раствором плавиковой кислоты, десорбции серебра раствором азотной кислоты. Недостатками данного способа являются неполное разделение компонентов и использование плавиковой кислоты, вызывающей коррозию защитного оборудования.

Наиболее близким аналогом, совпадающим с заявляемым изобретением по наибольшему количеству существенных признаков, является способ разделения радионуклидов серебра и кадмия [Патент RU №2230032 С2, 10.06.2004], заключающийся в осаждении металлического серебра из 0,1-2 моль/л HNO3 в присутствии нитрата гидразония и углеродного сорбента СКН. Далее кадмий осаждают из маточного раствора каким-либо известным способом и переводят в нужную химическую форму. При равной исходной активности 109Cd и 110mAg коэффициент очистки кадмия от серебра равен приблизительно 500-800.

Поскольку изотопнообогащенное 107Ag явлется дорогостоящим стартовым материалом, осажденное серебро подлежит регенерации для повторного использования. Для этого углеродный сорбент СКН с осажденным на нем металлическим серебром обрабатывают азотной кислотой, растворенное изотопнообащенное 107Ag регенерируют любым известным способом в металлическое серебро для повторного цикла облучения.

Недостатком прототипа является необходимость дополнительных операций по регенерации серебра: растворении осажденного на сорбенте СКН серебра и повторного осаждения металлического серебра.

Вышеуказанные недостатки устраняются в способе разделения радионуклидов кадмия и серебра, заключающимся в растворении мишени в азотной кислоте, упаривании раствора до солей, растворении солевого остатка в аммиачном растворе, восстановлении серебра до металла, отделении осадка металлического серебра от маточного раствора и осаждении из маточного раствора любого малорастворимого соединения кадмия, причем восстановление серебра до металла проводят в аммиачной среде сернокислым гидроксиламином (ГАС) при рН более 6 при мольном отношении сернокислого гидроксиламина к серебру более 1.

Гидроксиламин с кадмием при этом не реагирует.

Наличие операции контакта раствора с сернокислым гидроксиламином (ГАС) позволяет восстановить серебро до металла в аммиачной среде, осажденное металлическое серебро легко отделяется от маточного раствора и является готовым исходным продуктом для изготовления мишеней.

Граничные значения рН и мольного соотношения ГАС к серебру, необходимые для наиболее полного восстановления и, соответственно, осаждения металлического серебра, определялись экспериментально.

Для проведения экспериментов использовали нитраты серебра и кадмия, меченые радиоактивными изотопами 110mAg и 109Cd. Массовые концентрации серебра и кадмия определялись, соответственно, методом радиоактивных индикаторов. Полнота осаждения контролировалась по активности изотопа 110mAg в маточном растворе (Амат).

Влияние величины рН и мольного отношения ГАС/Ag на полноту осаждения серебра приведено на рисунках 1-2.

Как видно из рисунков 1-2, наилучшие результаты по восстановлению серебра получаются при мольном отношении ГАС/Ag более 1 и при рН более 6. В этих условиях остаточное содержание серебра в маточном растворе не превышает 0.014% от исходной активности.

Мишень облученного серебра массой 12,3 грамма растворили в 12 моль/л HNO3, упарили до солей, солевой остаток растворили в 0,3 л раствора, содержащего 0,5 моль/л NH4OH и 0,5 моль/л NH4NO3. Добавили при помешивании 12 г сернокислого гидроксиламина и выдержали 20 часов. Маточный раствор отфильтровали через фильтр «синяя лента» и промыли осадок металлического серебра двумя порциями дистиллированной воды по 100 мл. Промывки присоединили к маточному раствору.

К объединенному маточному раствору добавляли 2 моль/л раствор K2СО3 до концентрации 0.3 моль/л, выдерживали в течение суток, отделяли маточный раствор от осадка, промывали осадок 2 раза дистиллированной водой и растворяли осадок 50 мл 1 моль/л НСl. Результаты разделения приведены в таблице 1.

Как видно из данных таблицы 1, за одну операцию осаждения содержание 110mAg снижается в 107 раз, а конечное содержание 110mAg в препарате 109Cd равно 5*10-6%.

Способ разделения радионуклидов кадмия и серебра, включающий растворение облученного серебра в азотной кислоте, упаривание раствора, растворение образовавшихся нитратов в аммиачном растворе, восстановление серебра до металла, отделение осадка металлического серебра от маточного раствора, содержащего кадмий-109 и осаждение из маточного раствора любого малорастворимого соединения кадмия, отличающийся тем, что восстановление серебра до металла проводят в аммиачной среде сернокислым гидроксиламином при рН более 6 при мольном отношении сернокислого гидроксиламина к серебру более 1.



 

Похожие патенты:

Заявленное изобретение относится к устройству для элюирования радиоактивного материала. Заявленное устройство (100) для элюирования радиоактивного материала (160) может содержать элюционную колонку (105), предназначенную для размещения в ней радиоактивного материала, первый уплотнительный элемент (110), уплотняющий первый конец (111) элюционной колонки (105), второй уплотнительный элемент (120), уплотняющий второй конец (112) элюционной колонки (105), источник (20) подачи элюирующего вещества, соединенный с первым концом (111) элюционной колонки (105) при помощи первой иглы (22), устройство (40) сбора, соединенное со вторым концом (112) элюционной колонки (105) при помощи второй иглы (42), и фильтр (150), расположенный в элюционной колонке (105) и предназначенный для поддержания радиоактивного материала (160) и предотвращения контакта указанного материала (160) со второй иглой (42).

Изобретение относится к устройству для получения стронция-82. Заявленное устройство содержит нагреватель (9) и изолирующую камеру (4), заполняемую газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень (10), представляющую собой стальную оболочку, заполненную металлическим рубидием, держатель (1) облученной мишени (10) и химический реактор (23), с корпусом которого соединены трубопроводы подачи в химический реактор (23) расплавленного металлического рубидия (18), закиси азота (17), раствора азотной кислоты (19), а также трубопровод (15) выдачи из химического реактора (23) полученного раствора солей рубидия.
Изобретение относится к способу генерации радиоизотопов, которые используются в ядерной медицине для приготовления фармпрепаратов, вводимых в пациентов. Заявленный способ включает облучение мишени пучком тормозного излучения и извлечение из мишени образовавшихся радионуклидов методами радиохимии.

Изобретение относится к радиохимии, а именно к способу получения дитритийдифторбензола источника ядерно-химического генерирования неизвестных фторзамещенных фенил-катионов.
Изобретение относится к области получения радиоактивных материалов, в частности к обработке облученного сырья, которое может быть использовано для производства закрытых источников ионизирующих излучений для радиационно-химических гамма-установок.
Изобретение относится к области получения радиоактивных изотопов, а более конкретно к технологии получения радиоактивного изотопа никель-63, используемого в производстве бета-вольтаических источников тока.

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида 63Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте.

Изобретение относится к ядерной технике и может быть использовано при изготовлении источников ионизирующего излучения (ИИИ) медицинского назначения. Способ включает в себя заполнение капсулы источниками ионизирующего излучения.

Изобретение относится к ядерной технике и может быть использовано при изготовлении источников для медицинских целей. Источники ионизирующего излучения (ИИИ) в виде заготовок из кобальта диаметром 1 мм и длиной 1 мм, заранее складированные в открытом бункере, порционно транспортируются сепаратором через узел загрузки в капсулу.

Изобретение относится к средствам извлечения полученных в результате облучения целевых компонентов из мишени. В заявленном способе предусмотрено выполнение мишени (19) в виде цилиндра с центральным стержнем, позиционированным по центру цилиндра двумя пробками, герметизация мишени с двух сторон и заполненение кольцеобразного пространства целевыми компонентами.

Изобретение относится к средствам извлечения компонентов из облученной мишени. В заявленном способе мишень, выполненную в виде загерметизированного в оболочку плоского сепаратора, сначала подвергают поперечной разрезке путем отсечения конечных частей мишени, а затем производят двухстороннее вскрытие мишени по обеим её длинным сторонам.

Изобретение относится к способам и устройствам для производства изотопов внутри водных стержней ядерных топливных узлов. Способы включают выбор требуемой облучаемой мишени, основываясь на свойствах мишени, загрузку мишени в стержень-мишень, основываясь на свойствах облучаемых мишеней и топливного узла, экспонирование стержня-мишени потоку нейтронов и/или сбор произведенных изотопов из облучаемых мишеней из стержня-мишени.

Изобретение относится к источнику ионизирующего излучения. Заявленный источник излучения содержит вставку с радиоактивным веществом, расположенную в свинцовом корпусе (3).

Заявленное изобретение относится к приборам для генерации нейтронов при ядерном взаимодействии ускоренных дейтронов с мишенями, содержащими тяжелые изотопы водорода.

Изобретение может быть использовано в неорганической химии, биологии и медицине. Способ изготовления коллоидного раствора серебра включает пропускание импульсных электрических разрядов между серебряными электродами в жидкости и получение коллоидного раствора с заданной концентрацией наночастиц металла.

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине.

Изобретение может быть использовано в производстве средств санитарной обработки для применения в медицине, ветеринарии, пищевой промышленности и в быту. Фотохимический способ получения стабилизированных наночастиц серебра включает взаимодействие ионов серебра со стабилизирующим агентом в водном растворе при комнатной температуре под действием света видимого диапазона.

Изобретения могут быть использованы при бактерицидной обработке флюидов, таких как вода и промышленные жидкости. Продукт для очистки флюидов содержит, с одной стороны, пористое тело, имеющее наружную и внутреннюю удельную поверхность, и, с другой стороны, металлизированный слой нанометровой толщины, покрывающий, по меньшей мере, часть наружной и внутренней поверхности пористого тела.

Изобретение относится к области биотехнологии, биохимии и медицины. Предложен способ иммобилизации химотрипсина на наночастицах селена или серебра.
Наверх