Цилиндрический позиционно-чувствительный детектор

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов. Цилиндрический позиционно-чувствительный детектор содержит множество сцинтилляторов, разделенных отражающим материалом, помещенным между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотоприемником, при этом сцинтиллятор состоит из одного или нескольких цилиндрических наборов, составленных из сцинтиллирующих волокон, обеспечивающих регистрацию нейтронного или гамма-излучения, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы сцинтиллирующих волокон соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон. Технический результат - определение направления, под которым излучение приходит на детектор в плоскости, перпендикулярной оси корпуса прибора, т.е. обеспечение азимутального углового разрешения. 1 ил.

 

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано в скважинных устройствах, применяемых при каротаже нефтяных и газовых скважин для определения характера насыщения пластов (нефть, вода), их фильтрационно-емкостных свойств и коэффициента нефтенасыщенности.

В настоящее время для детальных геологических исследований, проводимых в скважинах, широко используются ядерно-физические методы. К ним относятся, в частности, методы нейтронного каротажа, основанные на применении в качестве источника зондирующего излучения нейтронных источников: ампульных или нейтронных генераторов, излучающих быстрые нейтроны. При этом нейтронные генераторы могут быть непрерывного действия или импульсными.

К наиболее информативным методам нейтронного каротажа относится метод импульсного нейтронного каротажа (ИНК), сущность которого заключается в следующем.

В скважину спускают нейтронный генератор, который периодически в течение коротких (несколько мкс) интервалов времени облучает породу вокруг скважины потоком быстрых нейтронов с энергией 14 МэВ. Эти нейтроны распространяются в исследуемой породе практически изотропно, претерпевая при этом упругие и неупругие рассеяния на атомных ядрах породы.

Распространяясь в породе, быстрые 14 МэВ нейтроны претерпевают упругие и неупругие рассеяния на атомных ядрах породы. В результате упругого рассеяния быстрые нейтроны генератора замедляются и постепенно приходят в тепловое равновесие с породой. Расстояние от мишени генератора, на котором наступает тепловое равновесие, зависит от свойств породы и, в значительной степени, от количества содержащихся в ней водородосодержащих веществ. Тепловые нейтроны диффундируют во все стороны и постепенно поглощаются атомами породы, излучая гамма-кванты радиационного захвата.

Неупругое рассеяние быстрых нейтронов приводит к образованию гамма-квантов неупругого рассеяния, излучаемых во время нейтронных импульсов. Энергия этих гамма-квантов характерна для каждого элемента. Так в результате неупругого рассеяния на ядрах углерода (С) образуется гамма-кванты с энергий 4,43 МэВ, на ядрах кислорода - 6,13 МэВ. Количество гамма-квантов, зарегистрированных в определенных энергетических областях, пропорционально концентрации элементов, испускающих данные гамма-кванты.

Регистрация тепловых и/или эпитепловых нейтронов, а также гамма-квантов неупругого рассеяния и радиационного захвата позволяет определить нейтронную пористость, плотность и состав породы. Эти характеристики используются для определения характера насыщения пластов (нефть, вода), их фильтрационно-емкостных свойств и коэффициента нефтенасыщенности.

Расстояние между мишенью нейтронного генератора и детектором (длина зонда) влияет на размер исследуемой области вокруг скважины (глубинность зондирования) и величину измеряемого эффекта, связанного с ядерно-физическими характеристиками породы.

Вследствие того, что по мере удаления от оси скважины порода вокруг скважины имеет переменный состав и плотность, для определения радиального распределения ее свойств необходимо применение нескольких зондов различной длины.

Часть каротажной аппаратуры, опускаемая в скважину, называется скважинным устройством. Существует большое разнообразие состава и конструкций скважинных устройств.

Так основными элементами типичного многофункционального скважинного устройства ИНК являются: нейтронный источник в виде нейтронного генератора 14 МэВ нейтронов, детектор для мониторирования нейтронного выхода генератора, нейтронные и гамма зонды, защитный экран, устанавливаемый между нейтронным генератором и детекторами гамма излучения, электронные устройства.

Длина нейтронных генераторов, применяемых при нейтронном каротаже, обычно составляет не менее 150 см. В то же время длина измерительных зондов обычно не превышает 50-70 см. Поэтому расположение детекторов нейтронного или гамма-излучения вдоль оси скважинного устройства за пределами нейтронного генератора существенно уменьшает интенсивность падающего на них гамма-излучения и увеличивает, таким образом, время проведения измерений, а также увеличивает длину скважинного устройства, что нежелательно для обеспечения свободной проводки скважинного устройства по скважине.

Длина детекторов, входящих в состав нейтронных или гамма-Σзондов, составляет порядка 10 см и определяет пространственное разрешение применяемых в настоящее время зондов.

Диаметр нейтронных генераторов, применяемых в скважинных устройствах, предназначенных для нейтронного каротажа, составляет не более 34 мм, а внутренний диаметр корпуса скважинного устройства обычно составляет не менее 80 мм, что позволяет разместить между корпусом скважинного устройства и корпусом нейтронного генератора детекторы диаметром до, примерно, 20 мм.

Из-за разности диаметров скважинного устройства и скважины между их стенками имеется полость, размер которой различен в различных азимутальных направлениях и меняется в процессе каротажа случайным образом. Это приводит к изменению счета детектора зонда, не связанному с характеристиками породы вокруг скважины. Для учета влияния полости используются зонды, содержащие несколько детекторов, расположенных равномерно по окружности вокруг оси скважинного устройства. При этом для каждого детектора зонда вычисляется параметр асимметрии с использованием следующего выражения (заявка на патент US 2013/0187035, МПК: G01V 5/08, G01V 5/10, 2013 г.):

где A(i) - параметр асимметрии i-го детектора зонда, N - число детекторов в зонде, С(i) - скорость счета i-го детектора зонда, ΣС(i) - сумма скоростей счета по всем N детекторам зонда.

Параметр асимметрии позволяет определить положение скважинного устройства относительно стенок скважины и произвести коррекцию счета детектора с учетом этого положения. Очевидно, что детекторы зонда на всей их длине должны быть расположены на одном расстоянии от оси скважинного устройства, т.е. параллельно оси скважинного устройства. Чем больше число детекторов в зонде N (чем меньше угловое расстояние между детекторами) и чем больше число зондов при условии, что зонды повернуты относительно друг друга так, что детекторы из всех зондов находятся при различных угловых положениях относительно оси скважинного устройства, тем точнее выполняется коррекция счета детекторов.

Проблемы нейтронного каротажа в настоящее время сводятся к необходимости создания детектора, обеспечивающего регистрацию нейтронного или гамма-излучений и обладающего не только осевым (однокоординатным), но и угловым (азимутальным) пространственным разрешением, конструкция которого дает возможность его размещения в зазоре между корпусом скважинного устройства и нейтронного генератора. Длина детектора должна быть порядка расстояния между обычно применяемыми зондами, состоящими из нескольких одинаковых детекторов, например пропорциональных счетчиков или сцинтилляционных детекторов. Это расстояние обычно составляет несколько десятков сантиметров.

Известен «Скважинный позиционно-чувствительный счетчик гамма-излучения», состоящий из корпуса-катода, по оси симметрии которого на опорных изоляторах размещен анод, выполненный в виде нити с жестко закрепленными на ней перегородками в виде стеклянных бусинок диаметром не менее 1 мм, которые разделяют анодную нить на участки-секции. Патент RU 2152105, МПК G01T 1/18, G01V 5/06. 2000 г. Аналог.

Недостатком аналога является невозможность определить направление, под которым излучение приходит на детектор в плоскости, перпендикулярной оси корпуса-катода (отсутствие азимутального углового разрешения).

Известен "Метод и аппаратура для нейтронного каротажа, использующая позиционно-чувствительный нейтронный детектор», который содержит сцинтиллятор с осью, параллельной оси корпуса прибора, и фотоумножители на противоположных концах сцинтиллятора, каждый фотоумножитель подключен к соответствующему амплитудному анализатору и через него к контроллеру, служащему для определения осевого положения зарегистрированного нейтрона по отношению амплитуд оптических сигналов, зарегистрированных фотоумножителями. Патент СА 2798070, МПК G01V 5/10. 2011 г. Аналог.

Недостатком аналога является невозможность определить направление, под которым излучение приходит на детектор в плоскости, перпендикулярной оси корпуса прибора, т.е. отсутствие азимутального углового разрешения.

Известны «Азимутально чувствительные гамма-детекторы», включающие сцинтиллятор, форма которого обеспечивает азимутальную чувствительность относительно оси скважины, или множество сцинтилляторов, разделенных отражающим материалом, помещенным между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотодетектором. Заявка Норвегии NO 20120033, МПК: G01V 5/10, 2012. Прототип.

Недостатком прототипа является низкое угловое разрешение при определении азимутального распределения гамма-излучения в плоскости, перпендикулярной оси корпуса прибора, обусловленное низким угловым разрешением функций отклика устройств, основанных на применении защитного экрана/коллиматора или сцинтиллятора нецилидрической формы.

Техническим результатом изобретения является повышение углового разрешения при определении азимутального распределения гамма-излучения в плоскости, перпендикулярной оси корпуса прибора.

Технический результат достигается тем, что в цилиндрическом позиционно-чувствительном детекторе, содержащем множество сцинтилляторов, разделенных отражающим материалом, помещенным между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотоприемником, сцинтиллятор состоит из одного или нескольких цилиндрических наборов, составленных из сцинтиллирующих волокон, обеспечивающих регистрацию нейтронного или гамма-излучения, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы сцинтиллирующих волокон соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон.

Устройство цилиндрического позиционно чувствительного детектора поясняется чертежом, где:

1 - цилиндрические наборы сцинтиллирующих волокон;

2 - волоконные световоды;

3 - матричные фотоприемники;

4 - оптические соединители;

5 - сцинтиллирующие волокна для регистрации нейтронного или гамма-излучения.

На чертеже схематично показано устройство цилиндрического позиционно-чувствительного детектора с двумя наборами 1 сцинтиллирующих волокон 5 круглого сечения для регистрации тепловых нейтронов или гамма-излучения.

Устройство содержит: один или несколько вложенных друг в друга цилиндрических наборов 1 сцинтиллирующих волокон 5; волоконные световоды 2, оптически соединенные посредством оптических соединителей 4 с сцинтиллирующими волокнами 5 в цилиндрических наборах 1, а с противоположной стороны также с двумя матричными фотоприемниками 3, каждый из которых состоит из набора фоточувствительных элементов (на чертеже не показаны).

В каждом цилиндрическом наборе 1 сцинтиллирующие волокна 5 располагаются параллельно оси устройства на одном расстоянии от нее и изготавливаются из материала, обеспечивающего регистрацию того или иного вида излучения: гамма-квантов или тепловых нейтронов, например из йодистого натрия или литиевого стекла.

Сцинтиллирующие волокна могут быть различного поперечного сечения: круглые, квадратные и прямоугольные. Размер поперечного сечения обычно не превышает нескольких миллиметров. Максимальная длина сцинтиллирующих волокон определяется длиной ослабления в них света, испускаемого во время сцинтилляционной вспышки, и может достигать нескольких метров.

Для улучшения светосбора и увеличения доли света, переносимого на торцы сцинтиллирующих волокон, их поверхность покрывают светоотражающим покрытием (одно- или двухслойным) с меньшим, чем у материала волокна, коэффициентом преломления, либо выращивают волокна с заданным радиальным градиентом состава (Н.В. Классен, В.Н. Курлов, С.Н. Россоленко, О.А. Кривко, А.Д. Орлов, С.З. Шмурак. Сцинтилляционные волокна и наносцинтилляторы для улучшения пространственного, спектрометрического и временного разрешения радиационных детекторов. Известия РАН. Серия Физическая, 2009, том 73, №10, с. 1451-1456; Патент РФ №2411543, MПK: G01T 1/20, 2008 г.).

Для предотвращения попадания света от сцинтилляционной вспышки, возникшей в сцинтиллирующем волокне, в соседние волокна его поверхность покрывают дополнительно светонепроницаемым тонким покрытием, например, из алюминия, двуокиси титана, окиси магния. Толщина покрытия, обеспечивающая полное поглощение света, составляет не более 1 мкм.

Торцы сцинтиллирующих волокон 5 соединены с помощью оптических соединителей 4 с двумя волоконными световодами 2 с оптическим контактом. Оптические соединители 4 обеспечивают механически оптическую связь торцов сцинтиллирующих волокон 5 с торцами волоконных световодов 2. Поперечное сечение волоконных световодов 2 обычно равно или больше поперечного сечения сцинтиллирующих волокон 5 для того, чтобы уменьшить потери света в месте сопряжения их торцов. Волоконные световоды 2 изготавливаются обычно из стекла или пластмассы со светоотражающими и светопоглощающими покрытиями, выполняющими ту же роль, что и в случае сцинтиллирующих волокон.

Противоположные торцы волоконных световодов 2 соединены с фоточувствительными элементами матричных фотоприемников 3 с оптическим контактом.

Фоточувствительными элементами матричных фотоприемников 3 могут быть, например, так называемые, кремниевые фотоумножители или двухкоординатные фотоумножители. Число фоточувствительных элементов в каждом из матричных фотоприемников 3 как минимум равно числу сцинтиллирующих волокон 5.

Устройство работает следующим образом.

На устройство падает регистрируемое излучение: тепловые нейтроны или гамма-излучение, выходящие из стенок скважины. Интенсивность этих излучений имеет осевое и азимутальное распределение. Осевое распределение связано со слоевой структурой породы, окружающей скважину. Азимутальное распределение вызвано в основном несимметричным положением скважинного устройства по отношению к оси скважины.

Излучение, попавшее в сцинтиллирующее волокно 5 одного из наборов 1, поглощается в нем, вызывая сцинтилляционную вспышку.

Фотоны сцинтилляционной вспышки, возникшей в сцинтиллирующем волокне 5, с помощью светоотражающей оболочки транспортируются к торцам волокна.

Светопоглощающее покрытие, нанесенное на сцинтиллирующее волокно 5, препятствует прохождению сцинтилляционных фотонов из него в соседние волокна, предотвращая связанное с этим прохождением ухудшение пространственного разрешения.

Фотоны, дошедшие до торцов сцинтиллирующего волокна 5, через оптические соединители 4, соединенные с оптическим контактом с волоконными световодами 2, переносятся по ним на фотоприемники 3, расположенные на противоположных концах устройства, где регистрируются, вызывая электрический сигнал в соответствующих фоточувствительных элементах матричных фотоприемников 3.

Фоточувствительные элементы матричных фотоприемников 3 заранее пронумерованы. Также заранее определено, к каким фоточувствительным элементам матричных фотоприемников 3 приходят фотоны от того или иного сцинтиллирующего волокна.

Электрические сигналы, поступившие с фоточувствительных элементов, соответствующих противоположным торцам определенного сцинтиллирующего волокна 5, измеряются с помощью амплитудных анализаторов (на чертеже не показаны), анализируются в контроллере (на чертеже не показан) и записываются в его память.

Азимутальное распределение регистрируемого излучения определяется по интенсивности сигналов, поступающих с сцинтиллирующих волокон, расположенных при различных азимутальных углах по отношению к оси скважинного устройства. Азимутальное распределение используется для определения положения скважинного устройства по отношению к скважине, а затем для коррекции интенсивности сигнала, поступившего с различных сцинтиллирующих волокон.

Угловое разрешение устройства определяется отношением поперечного сечения сцинтиллирующего волокна к радиусу окружности, на которой оно находится. В случае размещения устройства между корпусами скважинного устройства диаметром 80 мм и нейтронного генератора диаметром 34 мм средний радиус окружности может составлять около 28 мм. При поперечном сечении сцинтиллирующего волокна, составляющем 1 мм (диаметр обычно применяемых счетчиков или сцинтилляторов составляет не менее 1 см), и указанном радиусе окружности угловое разрешение устройства будет составлять 1/28 радиана или около 2°.

Цилиндрический позиционно-чувствительный детектор, содержащий множество сцинтилляторов, разделенных отражающим материалом, помещенным между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотоприемником, отличающийся тем, что сцинтиллятор состоит из одного или нескольких цилиндрических наборов, составленных из сцинтиллирующих волокон, обеспечивающих регистрацию нейтронного или гамма-излучения, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы сцинтиллирующих волокон соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон.



 

Похожие патенты:

Изобретение относится к ядерной геофизики и служит для оценки плотности цементного камня скважин подземных хранилищ газа (ПХГ) в процессе их эксплуатации без подъема насосно-компрессорных труб (НКТ).

Использование: для определения текущей нефтенасыщенности пластов-коллекторов, пересеченных скважиной. Сущность изобретения заключается в том, что согласно способу выполняют периодическое облучение горных пород импульсами генератора быстрых нейтронов, регистрацию гамма-излучения неупругого рассеяния (ГИНР) нейтронов и гамма-излучения радиационного захвата (ГИРЗ) тепловых нейтронов детектором гамма-излучения в реальном режиме времени при непрерывном перемещении скважинного прибора и заданном шаге квантования по глубине характеризуется тем, что перед процессом измерений дополнительно определяют оптимальную длительность импульса.

Использование: для определения плотности подземных пластов. Сущность изобретения заключается в том, что определение плотности подземного пласта, окружающего буровую скважину, производят на основании измерения гамма-излучения, возникающего в результате облучения пласта ядерным источником в корпусе прибора, расположенного в буровой скважине, и измерения потока гамма-излучения в корпусе прибора при двух различных расстояниях детекторов от источника, при этом способ содержит определение по существу прямолинейного соотношения между измерениями потоков гамма-излучения при каждом отличающемся расстоянии детекторов применительно к плотности пласта в случае отсутствия отклонения корпуса прибора; определение соотношения, устанавливающего девиацию плотности за счет отклонения прибора, определяемой на основании измерений измеряемого потока гамма-излучения при двух различных расстояниях детекторов, по плотности, вычисляемой на основании прямолинейных соотношений; и для данной пары измерений потока гамма-излучения при различных расстояниях детекторов определение пересечения соотношения, устанавливающего девиацию, с прямолинейным соотношением с тем, чтобы обозначить плотность пласта, окружающего буровую скважину; при этом источник представляет собой нейтронный источник, а гамма-излучение, измеряемое в корпусе прибора, представляет собой наведенное нейтронами гамма-излучение, являющееся результатом нейтронного облучения пласта.

Использование: для измерения пористости методом нейтронного каротажа. Сущность изобретения заключается в том, что представлены система, способ и прибор для определения значений пористости подземного пласта, скорректированных с учетом влияния скважины.

Использование: для определения состояния продуктивного пласта импульсным нейтронным методом. Сущность изобретения заключается в том, что перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ плотности потока тепловых нейтронов на каждом кванте глубины, на которые разбивается пласт, определяют значения фоновых декрементов спада плотности тепловых нейтронов, при этом закачивают в скважину под давлением раствор-реагент, содержащий соединения элементов с аномально высоким макросечением радиационного захвата нейтронов, вторично определяют значения декрементов спада плотности тепловых нейтронов, генерируют в скважине ультразвуковое излучение, воздействуют этим излучением на пласт, после чего снова определяют значения декрементов спада плотности тепловых нейтронов по выполнению соответствующей системы неравенств, содержащих значения декрементов, полученные на трех этапах измерений.

Использование: для измерения пористости. Сущность изобретения заключается в том, что нейтронный скважинный прибор для определения пористости включает источник нейтронов, устройство контроля нейтронов, детектор нейтронов и схему обработки данных.

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт.

Использование: для определения коэффициента нефтегазонасыщенности. Сущность: заключается в том, что выполняют измерения методом ИНК и расчет макроскопического сечения поглощения тепловых нейтронов горной породы, определяют по комплексу ГИС макрокомпонентный состав пород, включая пористость, при этом для расчета макроскопического сечения поглощения тепловых нейтронов пластовой водой и углеводородами используют их элементный состав и плотность, а сам расчет углеводородонасыщенности осуществляют по определенной зависимости, при этом для расчета макроскопических сечений поглощений тепловых нейтронов макрокомпонентами, образующими твердую фазу пород, дополнительно подготавливают коллекцию образцов керна из опорных скважин, на которой проводят измерения минерального, элементного состава образцов и потери веса образца при нагревании, формируют минерально-компонентную модель породы и рассчитывают макроскопические сечения поглощения тепловых нейтронов для каждой макрокомпоненты, образующей твердую фазу породы.

Использование: для каротажа скважины с помощью нейтронно-индуцируемого гамма-излучения. Сущность: заключается в том, что скважинный инструмент содержит источник нейтронов, сконфигурированный для излучения нейтронов согласно схеме формирования импульсов, причем схема формирования импульсов включает в себя задержку между двумя импульсами, причем задержка является достаточной, чтобы, по существу, все события захвата нейтронов, обусловленные излученными нейтронами, могли прекратиться, и причем задержка больше или равна приблизительно 1 с, детектор гамма-излучения, сконфигурированный для регистрации гамма-излучения активации, вырабатываемого, когда элементы, активированные излученными нейтронами, распадаются до нерадиоактивного состояния.

Использование: для определения абсолютных концентраций элементов из нейтронной гамма-спектроскопии. Сущность: заключается в том, что система для нейтронной гамма-спектроскопии содержит скважинный инструмент, содержащий источник нейтронов, сконфигурированный испускать нейтроны в подземную формацию, чтобы вызвать события неупругого рассеяния и события поглощения нейтронов; монитор нейтронов, сконфигурированный обнаруживать скорость счета испущенных нейтронов; и детектор гамма-излучения, сконфигурированный принимать спектр гамма-излучения, полученный, по меньшей мере, частично, из неупругого гамма-излучения, полученного вследствие событий неупругого рассеяния и гамма-излучения захвата нейтронов, полученных вследствие событий захвата нейтронов; и схему обработки данных, сконфигурированную определять относительные вклады элементов из спектра гамма-излучения и определять абсолютный вклад элементов на основании, по меньшей мере, частично, нормализации относительных вкладов элементов по скорости счета испущенных нейтронов.

Изобретение относится к устройствам для измерения нейтронного излучения с помощью сцинтилляционных детекторов. Детектор нейтронов содержит фотоприемник и пластины из прозрачного водородосодержащего пластика, которые чередуются со слоями материала, содержащего сцинтиллятор и конвертор тепловых нейтронов, при этом дополнительно содержит спектросмещающее волокно, намотанное в один слой на торцевую поверхность пластин, концы которого оптически соединены с фотоприемником.

Изобретение относится к устройствам для измерения нейтронного излучения с помощью сцинтилляционных детекторов. Детектор нейтронов содержит корпус, в котором размещены композиционный сцинтиллятор, спектросмещающие волокна, спектр поглощения которых находится в области спектра высвечивания композиционного сцинтиллятора и, по крайней мере, один фотоприемник, с которым оптически соединены торцы спектросмещающих волокон, при этом композиционный сцинтиллятор выполнен в виде отдельных гранул, которые расположены, по крайней мере, в один слой вокруг спектросмещающих волокон.

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO2, Li2CO3, MgO, Al2O3, AlF3, CeO2, а для подавления окисления ионов церия в стекло вводят добавку металлического кремния (Si) в количестве 0,001-10 мас.%.

Изобретение может быть использовано при изготовлении систем визуализации в компьютерных томографах. Сцинтилляционный материал содержит модифицированный оксисульфид гадолиния (GOS), в котором приблизительно от 25% до 75% гадолиния (Gd) замещено лантаном (La) или приблизительно не более 50% гадолиния (Gd) замещено лютецием (Lu).

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно, тепловых нейтронов, содержащему по меньшей мере одну первую секцию (102) с высокой способностью к поглощению нейтронов и по меньшей мере одну вторую секцию (101) с низкой способностью к поглощению нейтронов, причем вторая секция содержит гамма-лучевой сцинтиллятор, материал гамма-лучевого сцинтиллятора содержит неорганический материал с длиной ослабления менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-лучей для энергичных гамма-лучей во второй секции, где материал первой секции выбран из группы материалов, высвобождающих энергию, сообщаемую первой секции за счет захвата нейтрона, в основном, посредством гамма-излучения, и где вторая секция окружает первую секцию таким образом, что существенный участок первой секции покрыт второй секцией, устройство дополнительно содержит детектор света (103) 1, оптически соединенный со второй секцией для детектирования количества света во второй секции, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем это приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением второй секции, где оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная энергия гамма-кванта E (sum) выше 2,614 МэВ.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно тепловых нейтронов, содержащему гамма-лучевой сцинтиллятор, упомянутый сцинтиллятор содержит неорганический материал с длиной ослабления Lg менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-излучения для энергичных гамма-лучей в гамма-лучевом сцинтилляторе, причем гамма-лучевой сцинтиллятор дополнительно содержит компоненты, для которых умножение сечения захвата нейтрона на концентрацию дает длину поглощения Ln для тепловых нейтронов, которая больше 0,5 см, но меньше пятикратной длины ослабления Lg, предпочтительно, меньше двукратной длины ослабления Lg для гамма-лучей с энергией 5 МэВ в сцинтилляторе, причем нейтронпоглощающие компоненты гамма-лучевого сцинтиллятора высвобождают энергию, сообщенную возбужденным ядрам после захвата нейтрона, в основном посредством гамма-излучения, причем гамма-лучевой сцинтиллятор имеет диаметр или длину края по меньшей мере 50% Lg, предпочтительно, по меньшей мере Lg, для поглощения существенной части энергии гамма-лучей, выделяемой после захвата нейтрона в сцинтилляторе, устройство дополнительно содержит детектор света, оптически соединенный с гамма-лучевым сцинтиллятором для детектирования количества света в гамма-лучевом сцинтилляторе, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением в гамма-лучевом сцинтилляторе, причем оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная гамма-энергия Esum выше 2,614 МэВ.

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий.

Изобретение относится к области детекторов радиоактивного излучения сцинтилляционного типа для использования в скважинном каротажном инструменте. .

Изобретение относится к сцинтилляционным детекторам для регистрации ионизирующих излучений, обнаружения источников излучений, определения направления на них и их идентификации, для измерения спектра быстрых нейтронов.

Изобретение относится к области регистрации ионизирующих излучений. Сцинтилляционный детектор содержит сборку сцинтиллирующих волокон для регистрации гамма-излучения, тепловых и быстрых нейтронов в форме кольца, а также два фотоприемника, расположенные на противоположных торцах сборки сцинтиллирующих волокон в оптическом контакте с ними, при этом сборка сцинтиллирующих волокон выполнена в виде одного или нескольких лежащих друг на друге кольцевых слоев с общей осью, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, расположены по окружности, сцинтиллирующие волокна для регистрации разных видов излучений располагаются в разных кольцевых слоях, противоположные торцы сцинтиллирующих волокон соединены оптически с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон. Технический результат - обеспечение пространственного разрешения детектора. 1 ил.
Наверх