Датчик водорода в жидких и газовых средах



Датчик водорода в жидких и газовых средах
Датчик водорода в жидких и газовых средах

 


Владельцы патента RU 2574423:

Открытое акционерное общество "АКМЭ-инжиниринг" (RU)

Изобретение может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в жидких и газовых средах в широком интервале температур и давлений. Датчик водорода в жидких и газовых средах включает селективную мембрану и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого электролита, в полости которого размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента, гермоввод, расположенный герметично внутри корпуса над керамическим чувствительным элементом, потенциалосъемником, проходящим через центральное отверстие гермоввода, и нижней втулкой. Керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и днища, расположенного в нижней части цилиндрического элемента. Наружная цилиндрическая поверхность керамического чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса. Эталонный электрод расположен во внутренней полости керамического чувствительного элемента. Наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника выведен в объем эталонного электрода. Нижняя втулка, выполненная в виде трубки, соединенной с нижней частью корпуса со стороны керамического чувствительного элемента. Нижний конец нижней втулки имеет дно с центральным отверстием, к которому прикреплена селективная мембрана. Нижний свободный конец селективной мембраны герметично закрыт заглушкой, а полость, ограниченная внутренней поверхностью нижней втулки, внешней частью днища керамического чувствительного элемента и внутренними поверхностями селективной мембраны и заглушки, выполнена герметичной. Вверху потенциалосъемника установлена верхняя втулка, при этом кольцевая полость между внутренней поверхностью стенки верхней втулки и наружной поверхностью потенциалосъемника заполнена ситаллом. Изобретение обеспечивает повышение ресурса и надежности работы датчика водорода в широком диапазоне параметров рабочей среды, посредством обеспечения герметичности внутренней полости керамического чувствительного элемента. 2 з.п. ф-лы, 1 ил.

 

Область техники

Устройство относится к измерительной технике и может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в жидких и газовых средах в широком интервале температур и давлений.

Предшествующий уровень техники

Известен электрохимический датчик концентрации водорода в газовых и жидких средах (Патент на изобретение РФ №2120624, МПК G01N 27/417, «Электрохимический датчик концентрации водорода в газовых и жидких средах», опубл. 20.10.1998).

Датчик включает корпус, герметично соединенный с помощью металла с твердоэлектролитным датчиком кислорода. Твердоэлектролитный датчик кислорода состоит из керамического изолятора, закрытого в нижней части пробкой из твердого электролита, пористого платинового электрода, нанесенного на внешнюю сторону пробки, жидкого металлооксидного эталонного электрода, размещенного с внутренней стороны пробки, термопары-токоподвода, закрепленного в крышке, закрывающей сверху керамический изолятор. К нижней части корпуса приварена селективная мембрана, выполненная в виде гофрированного стакана. Между селективной мембранной и пробкой твердого электролита установлена таблетка из пористого электроизоляционного оксида.

Недостатком известного устройства является относительно низкая герметичность внутренней полости керамического чувствительного элемента, возникающая из-за натечек кислорода через зазор между центральной жилой и оболочкой потенциалосъемника, что приводит к окислению эталонного электрода и снижению ресурса и надежности работы устройства в целом.

Известен электрохимический датчик концентрации водорода в жидкостях и газах (Дмитриев И.Г., Орлов В.Л., Шматко Б.А. Электрохимический датчик водорода в жидкостях и газах // Сб. тезисов докладов Межотраслевой конференции «Теплофизика-91». Обнинск, 1993. С. 134-136).

Датчик включает электрохимическую кислородную ячейку на базе твердого электролита из стабилизированного диоксида циркония, жидкометаллического электрода сравнения из смеси Bi+Bi2O3, измерительного платинового электрода, который помещен в герметичную камеру, заполненную водным паром.

Недостатками известного технического решения являются:

- относительно низкая надежность и малый ресурс работы устройства из-за сложности конфигурации датчика;

- относительно низкая термическая и коррозийная стойкость твердоэлектролитического датчика кислорода к парам воды;

- относительно высокая инерционность устройства и недостаточная чувствительность из-за сложности стабилизации парциального давления паров воды в измерительной камере;

- относительно низкая точность измерения концентрации водорода, которая является следствием сложного поддержания стабильности температуры и трубопроводов.

Наиболее близким по технической сущности к заявляемому устройству является датчик водорода в жидких и газовых средах (Патент на изобретение РФ №2379672, МПК G01N 27/417, «Датчик водорода в жидких и газовых средах», опубл. 20.01.2008).

Датчик водорода включает селективную мембрану, пористую электроизоляционную керамику и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого электролита, в полости которого размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента, кремнеземная ткань и соединительный материал, пробка, имеющая отверстие и перекрывающая поперечное сечение полости керамического чувствительного элемента, гермоввод, расположенный герметично внутри корпуса над керамическим чувствительным элементом, потенциалосъемник в виде двухоболочечного кабеля, проходящий через центральное отверстие гермоввода, цилиндрическая втулка. Полость корпуса между гермовводом и керамическим чувствительным элементом является герметичной. Керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и части сферы, расположенной в нижней части цилиндрического элемента. Верхняя часть наружной цилиндрической поверхности керамического чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса посредством соединительного материала. Эталонный электрод расположен в полости, образованной внутренней поверхностью керамического чувствительного элемента и поверхностью пробки, и занимает, по меньшей мере, ее часть. Наружная сферическая часть керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника, обращенный в сторону керамического чувствительного элемента, выведен через отверстие в пробке в объем эталонного электрода. Обеспечен электрический контакт между эталонным электродом и нижней частью центральной жилы потенциалосъемника. Часть керамического чувствительного элемента выступает за пределы корпуса. Втулка, выполненная в виде трубки, соединена с нижней частью корпуса со стороны выступающей части керамического чувствительного элемента. Нижний конец втулки имеет дно с центральным отверстием, к которому прикреплена селективная мембрана, выполненная, по меньшей мере, из одной трубки. Нижний свободный конец селективной мембраны герметично закрыт заглушкой. Полость, ограниченная внутренней поверхностью втулки, соединительным материалом, внешней выступающей за пределы корпуса частью керамического чувствительного элемента и внутренней поверхностью селективной мембраны, герметична. Внутренняя полость втулки между выступающей частью керамического чувствительного элемента и дном втулки заполнена кремнеземной тканью. Пористая электроизоляционная керамика выполнена в виде цилиндра и размещена с кольцевым зазором по отношению к внутренней поверхности селективной мембраны.

Недостатком известного устройства является относительно низкая герметичность (недостаток 1) внутренней полости керамического чувствительного элемента, что может привести к натечкам во внутреннюю полость кислорода через зазор между центральной жилой и оболочкой потенциалосъемника, и в конечном результате к окислению эталонного электрода и снижению ресурса и надежности работы устройства в целом. Также, вследствие отсутствия надежной герметизации верхней части потенциалосъмника (недостаток 2), возможно попадание влаги внутрь изоляции двухоболочечного кабеля, что приводит к уменьшению сопротивления центральной жилой и оболочкой кабеля и, как следствие, к потере полезного сигнала и искажению показаний датчика.

Раскрытие изобретения

Задача изобретения заключается в повышении стабильности и достоверности показаний датчика водорода, а также ресурса и надежности его работы в широком диапазоне параметров рабочей среды.

Технический результат

Технический результат состоит в повышении точности показаний датчика водорода за счет обеспечения герметичности внутренней полости керамического чувствительного элемента и увеличения электросопротивления между центральной жилой и оболочкой потенциалосъемника вследствие обеспечения надежной герметизации верхней части потенциалосъемника, а также в исключении окисления эталонного электрода датчика.

Для решения поставленной задачи предложена конструкция датчика, включающего селективную мембрану и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого электролита. В полости керамического чувствительного элемента размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента. Гермоввод расположен герметично внутри корпуса над керамическим чувствительным элементом. Потенциалосъемник проходит через центральное отверстие гермоввода и нижнюю втулку, причем керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и днища, расположенного в нижней части цилиндрического элемента. Наружная цилиндрическая поверхность керамического чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса. Эталонный электрод расположен во внутренней полости керамического чувствительного элемента. Наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника выведен в объем эталонного электрода, при этом обеспечен электрический контакт между эталонным электродом и нижней частью центральной жилы потенциалосъемника. Нижняя втулка, выполнена в виде трубки и соединена с нижней частью корпуса со стороны керамического чувствительного элемента. Нижний конец нижней втулки имеет дно с центральным отверстием, к которому прикреплена селективная мембрана, выполненная, по меньшей мере, из одной трубки. Нижний свободный конец селективной мембраны герметично закрыт заглушкой, а полость, ограниченная внутренней поверхностью нижней втулки, внешней частью днища керамического чувствительного элемента и внутренними поверхностями селективной мембраны и заглушки, выполнена герметичной. Датчик отличается тем, что дополнительно снабжен верхней втулкой и герметиком, заполняющим кольцевую полость между внутренней поверхностью стенки верхней втулки и наружной поверхностью потенциалосъемника. Герметик представляет собой ситалл, состоящий из оксида кремния (SiO2) - 45÷55 мас. %, оксида алюминия (Al2O3) - 4÷6 мас. %, оксида бора (В2О3) - 18÷22 мас. %, оксида титана (TiO2) - 9÷12 мас. %, оксида натрия (Na2O) - 12÷15 мас. %, оксида калия (K2O) - 1÷2 мас. % и оксида магния (MgO) - 2÷3 мас. %.

Предпочтительным является ситалл, состоящий из оксида кремния (SiO2) - 50 мас. %, оксида алюминия (Al2O3) - 5 мас. %, оксида бора (В2О3) - 20 мас. %, оксида титана (TiO2) - 10 мас. %, оксида натрия (Na2O) - 12 мас. %, оксида калия (K2O) - 1 мас. % и оксида магния (MgO) - 2 мас. %.

При этом герметик заполняет кольцевую полость между внутренней поверхностью стенки верхней втулки и наружной поверхностью потенциалосъемника, верхняя втулка выполнена из нержавеющей стали. Селективная мембрана датчика водорода, выполнена, по меньшей мере, из одной трубки.

Истинные значения ЭДС датчика связаны с ЭДС, индицируемым вторичным прибором, следующим образом

где E0 - истинное значения ЭДС датчика;

E - ЭДС, индицируемая вторичным прибором;

R0 - внутреннее электросопротивление датчика (керамического чувствительного элемента);

Rц - электросопротивление внешней цепи, включая внутреннее сопротивление вторичного прибора и сопротивление центральная жила - оболочка кабеля потенциалосъемника.

Таким образом, из данной формулы видно, что чем больше электросопротивление цепи, тем ближе регистрируемый сигнал датчика к истинному.

Конструкция датчика позволяет повысить стабильность и достоверность показаний датчика водорода, а также ресурс и надежность его работы в широком диапазоне параметров рабочей среды.

Краткое описание чертежей

Сущность изобретения поясняется фигурой, на которой представлено продольное осевое сечение датчика, общий вид.

Осуществление изобретения

Датчик водорода включает селективную мембрану 1 и корпус 2. Внутри корпуса 2 расположен потенциалосъемник 3, керамический чувствительный элемент 4 из твердого электролита. В полости чувствительного элемента размещен эталонный электрод 5, пористый платиновый электрод 6, нанесенный на наружную поверхность керамического чувствительного элемента 4. Гермоввод 7 расположен герметично внутри корпуса 2 над керамическим чувствительным элементом 4. Датчик содержит верхнюю 8 и нижнюю 9 втулки, герметик 10, центральную жилу потенциалосъемника 11 и заглушку 12.

Герметик 10 заполняет кольцевую полость между внутренней поверхностью стенки верхней втулки 8 и наружной поверхностью центральной жилы потенциалосъемника 11.

Потенциалосъемник 3 проходит через центральное отверстие гермоввода 7.

Керамический чувствительный элемент 4 расположен в нижней части датчика и выполнен в виде сопряженных между собой цилиндрической части и донышка.

Наружная цилиндрическая поверхность керамического чувствительного элемента 4 герметично соединена с внутренней боковой поверхностью корпуса 2.

Эталонный электрод 5 расположен во внутренней полости керамического чувствительного элемента 4.

Наружная часть днища керамического чувствительного элемента 4 покрыта слоем пористого платинового электрода 6.

Конец центральной жилы потенциалосъемника 3 выведен в объем эталонного электрода 5.

Между эталонным электродом 5 и нижней частью центральной жилы 11 потенциалосъемника 11 обеспечен электрический контакт.

Нижняя втулка 9, выполненная в виде трубки, соединена с нижней частью корпуса 2 со стороны керамического чувствительного элемента 4.

Нижний конец нижней втулки 9 имеет дно с центральным отверстием, к которому прикреплена селективная мембрана 1, выполненная, по меньшей мере, из одной трубки.

Нижний свободный конец селективной мембраны 1 герметично закрыт заглушкой 12.

Полость, ограниченная внутренней поверхностью нижней втулки 9, внешней частью днища керамического чувствительного элемента 4 и внутренними поверхностями селективной мембраны 1 и заглушки 12, выполнена герметичной.

Герметик 10 представляет собой ситалл, состоящий из оксида кремния (SiO2) - 50 мас. %, оксида алюминия (Al2O3) - 5 мас. %, оксида бора (В2О3) - 20 мас. %, оксида титана (TiO2) - 10 мас. %, оксида натрия (Na2O) - 12 мас. %, оксида калия (K2O) - 1 мас. % и оксида магния (MgO) - 2 мас. %.

Герметик необходим для предотвращения попадания кислорода из воздуха во внутреннюю полость датчика и изменения свойств эталонного электрода 5. Указанный состав герметика был определен в ходе исследований и обеспечивает большую устойчивость к неблагоприятным условиям эксплуатации в агрессивной среде при повышенной температуре, а значит обеспечивается герметичность датчика на более длительном сроке эксплуатации и снижаются риски разгерметизации и ухудшения погрешности показаний.

В частном случае исполнения датчика верхняя втулка 8 выполнена из нержавеющей стали.

Материалы верхней втулки 8 и потенциалосъемника 3 имеют одинаковый коэффициент температурного расширения, что позволяет сохранять работоспособность датчика водорода при изменении температуры окружающей среды в диапазоне температур 0-300°C.

Нижняя втулка 9 и заглушка 12 выполнены из никеля марки НП0.

Гермоввод 7 и верхняя втулка 8 изготовлены из стали 12Х18Н10Т.

Керамический чувствительный элемент 4 выполнен из частично стабилизированного диоксида циркония и выступает за пределы корпуса 2 на расстояние 6 мм.

Корпус 2 изготовлен из ферритно-мартенситной стали ЭИ-852 и имеет следующие размеры: диаметр - 15 мм, длина - 220 мм.

Пористый платиновый электрод 6 имеет толщину 20 мкм.

В качестве потенциалосъемника 3 использован двухоболочечный кабель типа КНМС 2 С.

Селективная мембрана 1 состоит из одной трубки, выполненной из никеля марки НМг0.08в. Размеры селективной мембраны 1: диметр - 6 мм; длина - 40 мм, толщина стенки - 0,15 мм.

Эталонный электрод 5 выполнен из смеси висмута и оксида висмута.

Отношение площади внутренней боковой поверхности селективной мембраны 1 к ее внутреннему свободному объему составляет 0,4 мм-1.

На внешней и внутренней части селективной мембраны 1 выполнена химически стойкая в окислительной среде защитная пленка из Pd.

Принцип действия датчика водорода основан на использовании электрохимического метода определения концентрации кислорода с использованием сенсора кислорода на основе твердого оксидного электролита.

Датчик водорода работает следующим образом.

При размещении датчика водорода в исследуемой среде водород, содержащийся в ней, через селективную мембрану 1 обратимо диффундирует в паро-водородную камеру (полость, ограниченная внутренней поверхностью нижней втулки 9, внешней выступающей за пределы корпуса 6 частью керамического чувствительного элемента 4 и внутренней поверхностью селективной мембраны 1), изменяя ЭДС датчика.

ЭДС датчика возникает за счет разности парциальных давлений кислорода на электродах гальванического концентрационного элемента, схема которого может быть представлена в виде:

Ме|эталонный электрод (5) ||ZrO2·Y2O3||пористый платиновый электрод (6)|Н2О, Н2| селективная мембрана| среда.

Паро-водородная камера имеет фиксированное парциальное давление паров воды и функционирует как преобразователь термодинамического потенциала водорода в окислительный потенциал паро-водородной смеси на пористом платиновом электроде 6.

Результирующая ЭДС является функцией давления водорода и записывается следующим образом:

где Т - температура, K; R - универсальная газовая постоянная, Дж/(мольK); F- число Фарадея, Дж/моль; n - число электронов, участвующих в реакции; P H 2 O - парциальное давление паров воды в паро-водородной камере, Па; P H 2 - парциальное давление водорода в исследуемой среде, Па.

Вывод электрического сигнала для подачи его на вторичную аппаратуру обеспечивается потенциалосъемником 3. Изменение концентрации водорода в контролируемой среде приводит к изменению величины электрического сигнала, что позволяет осуществлять непрерывный его съем и обработку.

Инерционность датчика связана с проницаемостью водорода через селективную мембрану 1 и может быть оценена с помощью времени запаздывания сигнала:

где d - толщина селективной мембраны 1, м; D - коэффициент диффузии водорода в материале селективной мембраны 1, м2/сек, S - площадь поверхности селективной мембраны 1, м2 и V - внутренний объем селективной мембраны 1, м3.

Промышленная применимость

Датчик может быть изготовлен в промышленных масштабах и не требует для своего производства специального оборудования.

1. Датчик водорода в жидких и газовых средах, включающий селективную мембрану и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого электролита, в полости которого размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента, гермоввод, расположенный герметично внутри корпуса над керамическим чувствительным элементом, потенциалосъемником, проходящим через центральное отверстие гермоввода, и нижней втулкой, причем керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и днища, расположенного в нижней части цилиндрического элемента, наружная цилиндрическая поверхность керамического чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса, эталонный электрод расположен во внутренней полости керамического чувствительного элемента, наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода, конец центральной жилы потенциалосъемника выведен в объем эталонного электрода, при этом обеспечен электрический контакт между эталонным электродом и нижней частью центральной жилы потенциалосъемника, нижняя втулка, выполненная в виде трубки, соединена с нижней частью корпуса со стороны керамического чувствительного элемента, нижний конец нижней втулки имеет дно с центральным отверстием, к которому прикреплена селективная мембрана, выполненная, по меньшей мере, из одной трубки, нижний свободный конец селективной мембраны герметично закрыт заглушкой, а полость, ограниченная внутренней поверхностью нижней втулки, внешней частью днища керамического чувствительного элемента и внутренними поверхностями селективной мембраны и заглушки, выполнена герметичной, отличающийся тем, что в верху потенциалосъемника установлена верхняя втулка, при этом кольцевая полость между внутренней поверхностью стенки верхней втулки и наружной поверхностью потенциалосъемника заполнена герметиком, представляющим собой ситалл.

2. Датчик по п. 1, отличающийся тем, что ситалл состоит из оксида кремния (SiO2) - 50 мас.%, оксида алюминия (Al2O3) - 5 мас.%, оксида бора (В2О3) - 20 мас.%, оксида титана (TiO2) - 10 мас.%, оксида натрия (Na2O) -12 мас.%, оксида калия (K2O) - 1 мас.% и оксида магния (MgO) - 2 мас.%.

3. Датчик по п. 1, отличающийся тем, что верхняя втулка выполнена из нержавеющей стали.



 

Похожие патенты:

Электрохимическая ячейка относится к устройствам для определения концентраций серосодержащих газов в газовых смесях с применением твердотельных датчиков газа. Устройство предназначено для качественного и количественного определения серосодержащих газов (сероводорода и диоксида серы) в отходящих газах химических производств, теплоэлектростанций, для анализа светлых и темных нефтепродуктов и может быть использовано для определения предельно допустимых концентраций (ПДК) серосодержащих газов в химической, нефтехимической, медицинской и пищевой отраслей промышленности.

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа.

Устройство для определения концентрации кислорода и водорода в газовой среде относится к средствам измерительной техники и может быть использовано для контроля параметров газовых сред, в частности содержащих кислород и водород.

Изобретение относится к измерительной технике. Сущность изобретения: датчик водорода в жидких и газовых средах включает селективную мембрану (11), пористую электроизоляционную керамику (7) и корпус (5) с потенциалосъемником (9), керамический чувствительный элемент (4) с эталонным электродом (14), пористый платиновый электрод (8), кремнеземную ткань (6), соединительный материал (12), пробку (10) с отверстием, гермоввод (2), цилиндрическую втулку (1).

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной взрывобезопасности.

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. .

Изобретение относится к аналитической химии и приборостроению, может быть использовано для различных анализов жидкой пробы и направлено на уменьшение времени анализа и увеличение воспроизводимости результатов анализа за счет автоматизации забора жидкой пробы перед ее перемещением в реактор, а также возможности забора пробы как из одиночной емкости, так и из множества емкостей, проходящих точку забора пробы, а также из потока анализируемой жидкости.

Изобретение относится к области анионпроводящих неорганических твердых электролитов, а именно к керамическим твердым электролитам, обладающим высокой проводимостью по сульфид-ионам в области температур (300-500°С), и может быть использовано для исследования кристаллических и аморфных полупроводниковых сульфидов методом ЭДС, в составе электрохимических ячеек для кулонометрического изменения состава нестехиометрических соединений и для газового анализа серосодержащих сред, в твердоэлектролитных источниках тока.

Изобретение относится к измерительной технике. .

Изобретение относится к средствам для исследования или анализа газов, а точнее к системам, определяющим содержания кислорода, использующим твердоэлектролитные ячейки, и может быть использовано в прикладной электрохимии, металлургии, энергетике, автомобилестроении и других отраслях для определения содержания кислорода в жидких и газовых средах.

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и диском из кислородопроводящего электролита, на противоположных поверхностях каждого из дисков расположено по паре электродов, и капилляром, соединяющим полость с потоком газа. К электродам диска из кислородопроводящего электролита прикладывают напряжение постоянного тока, и по величине ЭДС, установившейся на электродах диска из протонпроводящего электролита, рассчитывают влажность анализируемого воздуха, при этом напряжение постоянного тока прикладывают к электродам диска, выполненного из кислородопроводящего твердого электролита, с подачей положительного полюса на электрод, находящийся внутри ячейки, а величину напряжения выбирают из условия обеспечения в цепи постоянного тока величиной 10-15 мА. 4 ил.

Изобретение относится к средствам для исследования или анализа газов и может быть использовано в энергетике, металлургии, нефте- и газодобывающей отраслях, автомобилестроении и других отраслях для определения содержания кислорода и химического недожога в газовых средах. Предложен чувствительный элемент газоанализатора кислорода и химнедожога, включающий эталонный электрод и два измерительных электрода, выполненные из пористого материала, обладающего каталитической активностью. Предлагаемый чувствительный элемент состоит из двух твердоэлектролитных электрохимических ячеек, герметично закрепленных в общем термоизоляционном чехле при помощи металлической шайбы. Причем каждая электрохимическая ячейка содержит твердый электролит из диоксида циркония, герметично соединенный с электроизолятором из керамики на основе алюмомагнезиальной шпинели и выполненный в виде усеченного конуса, герметично установленного в конические отверстия металлических трубок из феррито-мартенситной стали. Каждая из электрохимической ячейки снабжена термопарой, совмещенной с потенциалосъемником, расположенными коаксиально внутри каждой электрохимической ячейки. При этом обе ячейки содержат эталонный и измерительный электрод, нанесенные на наружную и внутреннюю поверхности каждой электрохимической ячейки. Термопары с потенциалосъемниками имеют электрический контакт с соответствующими эталонными электродами, при этом в термоизоляционном чехле размещен первый электронагреватель, Изобретение обеспечивает повышение точности и представительности измерений, повышение быстродействия, увеличение межповерочного интервала и ресурса работы. 11 з.п. ф-лы, 7 ил.
Наверх