Устройство для обработки призабойной зоны скважины

Изобретение относится к области нефтегазодобывающей промышленности и, в частности, к устройствам для обработки призабойной зоны скважины мгновенными импульсами давления. Технический результат - повышение надежности работы устройства. Устройство включает корпус с рядом отверстий и седло. В корпусе концентрично установлен шток с проходным каналом. Седло выполнено в проходном канале штока для размещения в нем шара. Сверху шток снабжен рядом радиальных отверстий, которые сообщены с рядом радиальных отверстий корпуса посредством перепускного канала, выполненного между корпусом и штоком. В перепускном канале на внутренней поверхности корпуса тангенциально размещены лопатки, позволяющие корпусу вращаться относительно штока, частично перекрывая и изменяя проходное сечение нижнего ряда радиальных отверстий штока. В теле шара выполнено три осевых канала, расположенных во взаимно перпендикулярных плоскостях. Они обеспечивают периодическое воздействие волновыми импульсами на забой скважины. 4 ил.

 

Предложение относится к области нефтегазодобывающей промышленности, в частности к устройствам для обработки призабойной зоны скважины мгновенными импульсами давления.

Известно устройство для обработки призабойной зоны скважины (авторское свидетельство SU №794199, МПК Е21В 43/18, опубл. 1981 г.), включающее корпус с каналами, концентрично установленные в нем дифференциальную втулку и подпружиненные дифференциальный поршень и обратный клапан.

Недостатки устройства:

- во-первых, наличие дифференциальной втулки, вводя дополнительный подвижный элемент, усложняет конструкцию, снижая тем самым надежность всего устройства;

- во-вторых, большое количество уплотнений разных типоразмеров требует постоянной ревизии и замены при износе;

- в-третьих, устройство требует тщательной взаимофиксации составляющих его деталей, что в полевых условиях сложно выполнить, так как все детали представляют собой концентрические тела вращения;

- в-четвертых, установочные пружины устройства работают на растяжение, что неконструктивно;

- в-пятых, процесс спуска устройства нетехнологичен, так как требует постоянной дозаливки жидкости вовнутрь колонны насосно-компрессорных труб (НКТ).

Наиболее близким по технической сущности и достигаемому результату является устройство для обработки призабойной зоны скважины (патент RU №2102577, МПК Е21В 43/18, опубл. в бюл. №2 от 20.01.1998 г.), включающее корпус с рядом радиальных отверстий, концентрично установленные в корпусе подпружиненные дифференциальный поршень и обратный клапан, при этом обратный клапан снабжен седлом для посадки дифференциального поршня и соединен с ним с возможностью телескопического взаимодействия.

Недостатки устройства:

- во-первых, низкая надежность работы, обусловленная наличием двух пружин сжатия в конструкции устройства, постоянно воспринимающих знакопеременные нагрузки в процессе обработки призабойной зоны скважины, что приводит к высокой вероятностью поломки одной или обеих пружин сжатия одновременно и, как следствие, выходу из строя устройства;

- во-вторых, низкая эффективность обработки призабойной зоны скважины связана с низкой скоростью создания импульсов давления и их интенсивностью, не позволяющих качественно обработать призабойную зону добывающей скважины;

- в-третьих, устройство не позволяет произвести его одновременный спуск на колонне с глубинным штанговым насосом, т.е. сначала необходимо спустить на колонне труб устройство для обработки призабойной зоны скважины, после обработки извлечь его из скважины, а затем спустить на колонне труб глубинный штанговый насос для эксплуатации скважины. Это создает дополнительные затраты на спуско-подъемные операции колонны труб.

Технической задачей предложения является разработка конструкции устройства, позволяющей повысить надежность и эффективность обработки призабойной зоны скважины с возможностью одновременного спуска на одной колонне труб предлагаемого устройства и глубинного штангового насоса с последующей их поочередной работой.

Поставленная техническая задача решается предлагаемым устройством для обработки призабойной зоны скважины, включающим корпус с рядом радиальных отверстий и седло.

Новым является то, что в корпусе концентрично установлен шток с проходным каналом, а седло выполнено в проходном канале штока для размещения в нем шара, причем сверху шток снабжен рядом радиальных отверстий, которые сообщаются с рядом радиальных отверстий корпуса посредством перепускного канала, выполненного между корпусом и штоком, при этом в перепускном канале на внутренней поверхности корпуса тангенциально размещены лопатки, позволяющие корпусу вращаться относительно штока, частично перекрывая и изменяя проходное сечение нижнего ряда радиальных отверстий штока, причем в теле шара выполнено три осевых канала, расположенных во взаимно перпендикулярных плоскостях, которые обеспечивают периодическое воздействие волновыми импульсами на забой скважины.

На фигурах 1 и 2 изображено предлагаемое устройство для обработки призабойной зоны скважины в процессе работы.

На фиг. 3 и 4 изображены частично перекрытые корпусом радиальные отверстия штока в процессе работы устройства.

Устройство для обработки призабойной зоны скважины включает корпус 1 (см. фиг. 1) с рядом радиальных отверстий 2 и седло 3. Например, по периметру корпуса 1 выполняют восемь отверстий диаметром: d1=10 мм = 0,01 м с углом 45° между отверстиями. В корпусе 1 концентрично установлен шток 4 с проходным каналом 5. Седло 3 выполнено в проходном канале 5 штока 4 для размещения в нем шара 6.

Сверху шток 4 снабжен рядом радиальных отверстий 7, например по периметру штока 4 выполняют восемь отверстий диаметром: d2=8 мм = 0,008 м2 с углом 45°C между отверстиями. Ряд радиальных отверстий 7 штока 4 сообщается с рядом радиальных отверстий 2 корпуса 1 посредством перепускного канала 8, выполненного между корпусом 1 и штоком 4.

В перепускном канале 8 на внутренней поверхности корпуса 1 тангенциально размещены лопатки 9, позволяющие корпусу 1 вращаться относительно штока 4, частично перекрывая и изменяя проходное сечение ряда радиальных отверстий 7 штока 4.

С целью беспрепятственного вращения корпуса 1 относительно штока 4 площадь поперечного сечения (Sк) ряда отверстий 2, выполненных в корпусе 1 больше площади поперечного сечения (Sш) ряда радиальных отверстий 7, выполненных в штоке 4, т.е.:

n1· (π·d1/4)>n2·(π·d2/4);

где, n1 - количество радиальных отверстий 2, выполненных в корпусе 1, шт.;

n2 - количество радиальных отверстий 7, выполненных в штоке 4, шт.;

d1 - диаметр одного радиального отверстия 2, м;

d2 - диаметр одного радиального отверстия 7, м;

подставляя числовые значения в неравенство 1, получим

8·(3,14·(0,01)2/4)>8·3,14·(0,008 м)2/4);

6,28·10-4 м2>4·10-4 м2.

В теле шара 6 выполнено три осевых канала 10′; 10″; 10″′, расположенных во взаимно перпендикулярных плоскостях, которые обеспечивают периодическое воздействие волновыми импульсами на забой скважины. Например, диаметр шара Dш=52 мм, а осевые каналы 10′; 10″; 10″′ в шаре 6 выполняют, например, диаметром 6 мм каждый канал.

Корпус 2 размещен на штоке 4 на шариковых опорах 11. Для снижения утечек рабочей жидкости используются уплотнительные кольца 12, изготовленные из материалов на основе фторопласта.

Устройство работает следующим образом.

Устройство (без шара 6) на конце колонны труб, например колонны насосно-компрессорных труб диаметром 73 мм по ГОСТ 633-80, оснащенной выше цилиндром вставного штангового насоса (без плунжера) (на фиг. 1, 2, 3, 4 не показано), спускают в скважину в интервал обработки призабойной зоны скважины.

В процессе спуска устройства в скважину колонна труб через проходной канал 5 заполняется скважинной жидкостью снизу вверх.

Перед эксплуатацией скважины производят обработку призабойной зоны пласта. Для этого с устья скважины в колонну труб сбрасывают шар 6 (см. фиг. 1), который садится на седло 3 и герметично перекрывает проходной канал 5 штока 4.

После чего с устья скважины насосом (на фиг. 1, 2, 3, 4 не показано), например, с помощью цементировочного агрегата ЦА-320 начинают закачку рабочей жидкости в устройство по колонне труб, например сточной воды плотностью 1100 кг/м3 для вибрационной обработки призабойной зоны скважины.

Поток рабочей жидкости по колонне труб достигает устройства и сверху через ряд радиальных отверстий 7 штока 4 попадает в перепускной канал 8, где воздействует на тангенциально размещенные на внутренние поверхности корпуса 1 лопатки 9, что приводит к вращению корпуса 1 относительно штока 5.

В результате получается устройство турбинного типа, состоящее из направляющего аппарата - штока 4 и рабочего колеса - корпуса 1.

Шар 6 обеспечивает перекрытие седла 3, диаметр которого меньше диаметра проходного канала штока 4. При диаметре шара Dш=52 мм, диаметр проходного канала, например, составляет Dк=60 мм, а диаметр седла Dс=45 мм.

В начальном положении (см. фиг. 1 и 3) поток жидкости через ряд радиальных отверстий 7 штока 4 с вращением благодаря тангенциальным лопаткам 9 опускается вниз по перепускному канала 8 и через ряд радиальных отверстий 2 корпуса 1 попадает в межколонное пространство (на фиг. 1, 2, 3, 4 не показано) скважины, при этом в начальном положении пропускная способность ряда радиальных отверстий 7 штока 4 (см. фиг. 1 и 3) составляет 0,9·d1. В процессе вращения корпуса 1 относительно штока 4 уменьшается проходное сечение отверстий 7 штока 4 из-за того, что корпус 1 перекрывает ряд радиальных отверстий 7 штока 4 до величины пропускной способности отверстий 7 штока 4, которая составляет 0,1·d1 (см. фиг. 2 и 4). В результате снижается поток рабочей жидкости, поступающей в перепускной канал 8 через ряд радиальных отверстий 7 штока 4, а в проходном канале 5 штока 4 выше шара 6 повышается давление, сопровождающееся гидравлическим импульсом, что приводит к резкому истечению рабочей жидкости из отверстий каналов 10′; 10″; 10″′ в шаре 6 ниже седла 3 и далее на забой скважины.

Далее корпус 1 продолжает вращаться и увеличивает проходное сечение отверстий 7 штока 4 от величины 0,1·d1 (см. фиг. 2 и 4), открывая их до величины пропускной способности отверстий 7 штока 4, составляющей 0,9·d1 (см. фиг. 1 и 3), при этом увеличивается поток рабочей жидкости, поступающей в межколонное пространство через ряд радиальных отверстий 7 штока 4, перепускной канал 8 и ряд радиальных отверстий 2 корпуса 1. В результате давление в проходном канале 5 штока 4 выше шара 6 снижается (гидравлический импульс отсутствует), прекращается истечение рабочей жидкости из отверстий каналов 10′; 10″; 10″′ в шаре 6 ниже седла 3 и далее на забой скважины.

Таким образом создаются мгновенные импульсы давления с высокой интенсивностью и глубиной обработки призабойной зоны скважины.

Повышается надежность работы устройства за счет исключения из конструкции пружин сжатия воспринимающих знакопеременные нагрузки. Таким образом, происходит один цикл работы устройства. При истечение жидкости при вращении корпуса относительно штока 4 создает циклические колебания в жидкости. В дальнейшем цикл с изменением проходного сечения ряда радиальных отверстий 7 штока 4 повторяется, при этом происходит пульсация жидкости, ведущая к вибрации устройства, причем частота пульсаций прямо пропорциональна расходу жидкости и, как результат, периодическое воздействие волновыми импульсами рабочей жидкости на забой скважины. В итоге происходит очистка призабойной зоны скважины от кольматаций (грязи, шлама, песка и т.д.), снижающих дебит скважины, и дебит скважин восстанавливается.

Повышается эффективность обработки призабойной зоны скважины за счет создания мгновенных импульсов давления с высокой интенсивностью и глубиной обработки. По окончании обработки призабойной зоны скважины шар 6 с помощью обратной промывки скважины вымывается на поверхность. Далее в скважину на колонне штанг спускается плунжер вставного штангового насоса и устанавливается в его цилиндре, после чего начинает устанавливается нормальный режим ее эксплуатации. Эксплуатацию скважины продолжают до снижения дебита скважины, например, на 50%. После чего извлекают из скважины плунжер вставного штангового насоса и технологические операции по обработке призабойной зоны скважины повторяют, как описано выше, начиная со сбрасывания шара 6 в колонну труб.

Устройство обладает возможностью одновременного спуска его на одной колонне труб с глубинным штанговым насосом, что позволяет поочередно обрабатывать (очищать) призабойную зону скважины и эксплуатировать скважину без проведения дополнительных спуско-подъемных операций колонны труб с привлечением бригад подземного ремонта скважин.

Предлагаемое устройство имеет конструкцию, позволяющую:

- повысить надежность работы устройства;

- повысить эффективность очистки призабойной зоны скважины;

- производить поочередную очистку призабойной зоны скважины и эксплуатацию скважины.

Устройство для обработки призабойной зоны скважины, включающее корпус с рядом отверстий и седло, отличающееся тем, что в корпусе концентрично установлен шток с проходным каналом, а седло выполнено в проходном канале штока для размещения в нем шара, причем сверху шток снабжен рядом радиальных отверстий, которые сообщены с рядом радиальных отверстий корпуса посредством перепускного канала, выполненного между корпусом и штоком, при этом в перепускном канале на внутренней поверхности корпуса тангенциально размещены лопатки, позволяющие корпусу вращаться относительно штока, частично перекрывая и изменяя проходное сечение нижнего ряда радиальных отверстий штока, причем в теле шара выполнено три осевых канала, расположенных во взаимно перпендикулярных плоскостях, которые обеспечивают периодическое воздействие волновыми импульсами на забой скважины.



 

Похожие патенты:
Изобретение относится к нефтегазодобывающей промышленности. Способ включает обустройство месторождения криогенной установкой, обустройство возмущающей и добывающей (добывающих) скважин и вызов притока к добывающей скважине путём создания депрессии через возмущающую скважину.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена при разработке залежи нефти массивного типа. Способ включает строительство добывающих и нагнетательных скважин, проведение гидравлического разрыва пласта, закачку вытесняющего агента через нагнетательные скважины, отбор пластовых флюидов через добывающие скважины.

Изобретение относится к нефтегазовой промышленности и может быть использовано при освоении скважины в процессе ее эксплуатации с целью повышения продуктивности скважины.
Изобретение относится к нефтяной промышленности и может быть применено для разработки нефтяной залежи. Способ включает отбор нефти через добывающие скважины, закачку рабочего агента через нагнетательные скважины, проведение гидроразрыва пласта в нагнетательных и добывающих скважинах.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных месторождений для импульсной закачки жидкости в пласт.

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к разработке месторождений посредством закачки воды и газа в нагнетательные скважины и извлечения нефти через добывающие.

Сваб // 2540728
Изобретение относится к оборудованию - свабу для снижения уровня жидкости и интенсификации притока прдукции при освоении нефтяных, газовых, водозаборных скважин. Технический результат - повышение надежности работы и расширение технологических возможностей сваба.

Группа изобретений относится к нефтяной промышленности, а именно к импульсной гидроударной обработке призабойной зоны пласта - ПЗП и освоению скважин. Обеспечивает повышение эффективности и технологичности способа и устройства за счет увеличения мощности и вариативности гидравлического воздействия на ПЗП при упрощении устройства и способа.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных месторождений для импульсной закачки жидкости в пласт.

Группа изобретений относится к горному делу и может быть применена для воздействия на застойную зону интервалов пластов. Способ включает многократное создание импульса пластового давления посредством закачки рабочего агента с заданными параметрами в нагнетательную скважину, осуществление регистрации и контроля скважинных параметров или времени в процессе эксплуатации нагнетательной скважины.

Группа изобретений относится к клапанам, используемым при бурении скважин, к компоновкам низа бурильной колонны и к способам избирательного приведения в действие забойного двигателя.

Изобретение относится к горному делу и может быть применено для управления работой скважинного клапана. Способ включает установку трубной колонны в стволе скважины, затем установку электрического привода в проточном канале, проходящем через трубную колонну по ее длине, и управление работой запирающего устройства клапана с помощью электрического питания, подаваемого к электрическому приводу через, по меньшей мере, одно электрическое соединение между электрическим приводом и указанным клапаном.

Группа избретений относится к скважинным шаровым клапанам и, более конкретно, к их седловым устройствам и проведению соответствующих скважинных операций с их использованием.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для очистки и освоения пласта при повышении проницаемости призабойной зоны пласта.

Группа изобретений относится к горному делу и может быть применена для выравнивания давления при использовании скважинного прибора в скважине. Устройство для выравнивания давления включает множество отдельных продольных отверстий, образующих непрерывный проточный канал, меняющий направление между указанными отверстиями.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации высокодебитных нефтяных скважин. Технический результат заключается в повышении производительности насоса.

Изобретение относится к нефтяной промышленности и может быть использовано при эксплуатации скважины с большим углом наклона эксплуатационной колонны. Технический результат - повышение надежности работы устройства в горизонтальной скважине и эффективности очистки добываемого продукта, увеличение межремонтного периода работы устройства, а также снижение его металлоемкости.

Группа изобретений относится к горному делу и может быть применена в предохранительном клапане в насосно-компрессорной трубе. Скважинный инструмент включает канал потока, проходящий продольно через скважинный инструмент, внутреннюю камеру, содержащую диэлектрическую текучую среду, и путь потока, который создает гидравлическую связь между внутренней камерой и каналом потока и который включает, по меньшей мере, два изменения направления в направлении потока.

Группа изобретений относится к оборудованию для эксплуатации подземной скважины и, в частности, к системе переменной сопротивляемости потоку. В скважине по добыче углеводородов имеется необходимость регулирования потока текучих смесей из геологического пласта в скважину.

Группа изобретений относится к горному делу и может быть применена в нефтегазовых скважинах. Гидравлическое устройство содержит гидравлический канал высокого давления, подвижный элемент, герметизирующие элементы и корпус, выполненный с камерой, с впускным отверстием, выполненным с возможностью гидравлического сообщения с камерой, и с перепускным отверстием, выполненным с возможностью гидравлического сообщения внутритрубного пространства с затрубным пространством.

Группа изобретений относится к оборудованию, используемому в работах, выполняемых в подземных скважинах и, в частности, к регулированию притока пластовых текучих сред и выпуска нагнетаемых текучих сред с сопротивлением потоку, зависящим от направления. Технический результат - повышение эффективности регулирования. Система внутрискважинного регулирования расхода текучей среды обеспечена возможностью регулирования расхода в зависимости от направления. При прохождении потока добываемой текучей среды через компонент регулирования расхода в первом направлении обеспечен первый перепад давления. При прохождении потока нагнетаемой текучей среды через компонент регулирования расхода во втором направлении обеспечен второй перепад давления. При этом первый перепад давления отличается от второго перепада давления. Возможность регулирования расхода обеспечена компонентом регулирования, содержащим вихревую камеру, выполненную с возможностью перемещения потока добываемой текучей среды первоначально в тангенциальном направлении и перемещения потока нагнетаемой текучей среды первоначально в радиальном направлении. 4 н. и 8 з.п. ф-лы, 6 ил.
Наверх