Ударный пневмоцилиндр

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с атмосферой. Из двух других по крайней мере одна заполнена сжатым газом, одна полость имеет возможность сообщения со средней полостью по каналу, выполненному в разделяющей их стенке, а вторая полость отделена от средней полости поршнем со штоком. Поршень содержит входящий в канал разделяющей стенки выступ, оснащенный продольным и радиальным отверстиями с площадями проходного сечения меньшими, чем площадь поперечного сечения поршня, образующими проходной канал для сообщения со средней полостью. Шток спускового механизма установлен в первой полости, а его свободный конец введен в продольное отверстие выступа поршня с возможностью перемещения в нем при срабатывании спускового механизма. В результате исключается возможность возникновения вынужденных высокочастотных колебаний штока пневмоцилиндра. 1 ил.

 

Изобретение относится к пневматическим устройствам ударного действия различного назначения, а именно к высокоскоростным пневматическим приводам со встроенным резервуаром.

Известен высокоскоростной пневматический цилиндр [Е.В. Герц, «Динамика пневматических систем машин», 1985 г., стр. 94], содержащий корпус, разделенный на три полости, средняя (рабочая) из которых каналом малого поперечного сечения соединена с атмосферой, а из двух других, по крайней мере, одна (резервуар) заполнена сжатым газом и имеет возможность сообщения со средней полостью по каналу, выполненному в разделяющей их стенке (седле), а вторая полость (штоковая) отделена от средней полости поршнем со штоком. В исходном положении поршень, имеющий на левом торце клапан, давлением сжатого газа во второй полости прижимается к разделительной стенке, закрывая доступ сжатому газу из первой полости в среднюю полость цилиндра. Площадь поршня со стороны штока превышает площадь отверстия поперечного сечения канала разделительной стенки.

В конце хода поршня происходит эффективное торможение и плавная остановка за счет образования воздушной подушки, что позволяет использовать данный цилиндр в качестве ударного или высокоскоростного транспортирующего привода.

Недостатком пневматического цилиндра является большое подготовительное время, так как давление в средней полости от магистрального должно снизиться почти до атмосферного.

Известен высокоскоростной пневмопривод с механическим пуском [Е.В. Герц, «Динамика пневматических систем машин», 1985 г., стр. 107], содержащий корпус, разделенный на три полости, средняя из которых каналом малого поперечного сечения соединена с атмосферой, а из двух других, по крайней мере, одна заполнена сжатым газом и имеет возможность сообщения со средней полостью по каналу, выполненному в разделяющей их стенке, а вторая полость отделена от средней полости поршнем со штоком, и расположенный вне корпуса спусковой механизм со штоком. Спусковой механизм содержит рабочую полость, заполняемую по каналу воздухом, и поршень со штоком, свободный конец которого находится в зацеплении со штоком пневмопривода.

Данное устройство принимается за прототип, как наиболее близкое по технической сущности к заявляемому.

После наполнения первой полости до давления, определяемого требуемой технологическим процессом энергией удара, срабатывает спусковой механизм. Свободный конец штока спускового механизма выходит из зацепления со штоком поршня пневмопривода и последний под действием перепада давлений газа по обе стороны поршня перемещается. Возврат поршня в исходное положение производится сжатым газом, подаваемым через канал во вторую полость.

В этом пневмоприводе до начала его срабатывания можно получить максимальный перепад давления по обе стороны поршня, а следовательно, и наибольшие ускорения.

Недостаток заключается в том, что при исследовании динамики высокоскоростного пневмопривода с механическим пуском необходимо учитывать определенное влияние динамики спускового механизма на весь цикл привода. В частности, это проявляется в появлении высокочастотных колебаний штока поршня пневмопривода после срабатывания спускового механизма.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является исключение возможности возникновения вынужденных высокочастотных колебаний штока пневмоцилиндра и получение квазистатического характера воспроизводимого пневмоцилиндром усилия за счет длительного времени нарастания давления в средней полости пневмоцилиндра, существенно превышающего одну четвертую периода собственных колебаний штока.

Указанный технический результат достигается тем, что ударный пневмоцилиндр содержит корпус, разделенный на три полости, средняя из которых каналом малого поперечного сечения соединена с атмосферой, а из двух других, по крайней мере, одна заполнена сжатым газом и имеет возможность сообщения со средней полостью по каналу, выполненному в разделяющей их стенке, а вторая полость отделена от средней полости поршнем со штоком, и расположенный вне корпуса спусковой механизм со штоком, согласно изобретению поршень снабжен входящим в канал разделительной стенки выступом, оснащенным продольным и радиальным отверстиями с площадями проходного сечения значительно меньшими, чем площадь поперечного сечения поршня, образующими проходной канал для сообщения со средней полостью, при этом шток спускового механизма установлен в первой полости, а его свободный конец введен в продольное отверстие выступа поршня с возможностью перемещения в нем при срабатывании спускового механизма.

Выполнение ударного пневмоцилиндра в виде корпуса, разделенного на три полости, средняя из которых каналом малого поперечного сечения соединена с атмосферой, а из двух других, по крайней мере, одна заполнена сжатым газом и имеет возможность сообщения со средней полостью по каналу, выполненному в разделяющей их стенке, а вторая полость отделена от средней полости поршнем со штоком, и расположенного вне корпуса спускового механизма со штоком, поршня, снабженного входящим в канал разделительной стенки выступом, оснащенным продольным и радиальным отверстиями с площадями проходного сечения значительно меньшими, чем площадь поперечного сечения поршня, образующими проходной канал для сообщения со средней полостью, при этом шток спускового механизма установлен в первой полости, а его свободный конец введен в продольное отверстие выступа поршня с возможностью перемещения в нем при срабатывании спускового механизма, позволяет обеспечить исключение возможности возникновения вынужденных высокочастотных колебаний штока пневмоцилиндра и получение квазистатического характера воспроизводимого пневмоцилиндром усилия за счет длительного времени нарастания давления в средней полости пневмоцилиндра, существенно превышающего одну четвертую периода собственных колебаний штока.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки, которые содержит отличительная часть формулы изобретения, не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

Изобретение иллюстрируется чертежом, на котором представлен продольный разрез ударного пневмоцилиндра.

Ударный пневмоцилиндр содержит корпус 1, разделенный на три полости. Средняя полость 2 по каналу 3 малого поперечного сечения соединена с атмосферой. Одна из двух других полостей - полость 4 по каналу 5 - заполнена сжатым газом и имеет возможность соединяться со средней полостью 2 по каналу 6, выполненному в разделяющей их стенке 7. Вторая полость 8 (штоковая) отделена от средней полости 2 поршнем 9 со штоком 10. Полость 8 по каналу 11 может быть заполнена сжатым газом.

Поршень 9 снабжен выступом 12, входящим в канал 6 разделительной стенки 7. В выступе 12 выполнены продольное 13 и радиальное 14 отверстия с площадями проходного сечения, значительно меньшими, чем площадь поперечного сечения поршня 9, образующие проходной канал для сообщения первой полости 4 со средней полостью 2.

Вне корпуса 1 установлен спусковой механизм 15 (например, электромагнит) со штоком 16. Свободный конец штока 16 расположен в полости 4 и введен в продольное отверстие 13 выступа 12 поршня 9 с возможностью перемещения в нем при срабатывании спускового механизма 15.

Взаимодействующие между собой поверхности элементов уплотнены, что препятствует нежелательному перетеканию сжатого газа из одной полости в другую.

Работа ударного пневмоцилиндра осуществляется следующим образом.

В исходном положении полости 4 и 8 заполнены сжатым газом, причем давление q в полости 4 значительно превышает давление q1 в полости 8, которое назначается из условия: fq1>f1q,

где: f - площадь поперечного сечения поршня 9;

f1 - площадь поперечного сечения выступа 12;

q - давление в полости 4;

q1 - давление в полости 8.

При подаче тока на электромагнит 15 шток 16, втягиваясь, выходит из продольного отверстия 13. Сжатый газ из полости 4 по проходному каналу, образованному продольным 13 и радиальным 14 отверстиями выступа 12, перетекает в среднюю полость 2. Скорость заполнения средней полости 2 сжатым газом, а соответственно нарастание давления, определяется площадью поперечного сечения радиального отверстия 14. По мере нарастания давления в средней полости 2 усилие сжатого газа на поршень 9 увеличивается. Когда создаваемое газом усилие на поршень 9 со стороны средней полости 2 превысит усилие, создаваемое газом со стороны полости 8, поршень 9 начнет перемещаться. При перемещении поршня 9 выступ 12 открывает канал 6, давая возможность газу перетекать через него. Так как канал 6 имеет большее поперечное сечение по сравнению с проходным каналом, образованным продольным 13 и радиальным 14 отверстиями, то происходит быстрое возрастание усилия газа на поршень 9 со стороны средней полости 2.

Сжатый газ, заполнивший полости 2 и 4, через канал 3 постепенно выходит в атмосферу, уменьшая тем самым давление в этих полостях, что позволяет поршню 9 под действием усилия, создаваемого газом со стороны полости 8, вернуться в исходное положение. Далее рабочий цикл пневматического ударного механизма повторяется.

Вариантом исполнения ударного пневмоцилиндра может быть пневмоцилиндр, полость 8 которого не заполняется сжатым газом. Этот вариант применяется в случае использования пневмоцилиндра в качестве привода, например, линейного или углового перемещения.

Работоспособность предлагаемого пневмоцилиндра подтверждена экспериментально на примере импульсной установки с диаметром поршня 200 мм. В среднюю полость 2 газ подавали при диаметрах поперечного сечения канала 6, равных 1 мм, 2 мм, 3 мм, 6 мм и 48 мм. При этом свободный конец штока 10 через переходные элементы входил в гидравлическую полость импульсной установки (не показана), выполняющую функцию источника импульсного давления.

При диаметре канала 6, равном 48 мм, в полости импульсной установки регистрировали гидравлический удар с высоким значением пикового давления рабочей среды (например, минерального масла) и частоты изменения этого давления. Наиболее благоприятные условия роста давления в источнике импульсного давления реализовалось при диаметре канала 6 равном 3 мм, при этом пиковое давление рабочей среды уменьшилось до значения существенно меньшего, чем допустимое импульсной установкой, что подтверждает эффективность предлагаемого технического решения.

Таким образом, применение заявленного ударного пневмоцилиндра позволяет исключить возможность возникновения вынужденных высокочастотных колебаний штока пневмоцилиндра и получить квазистатический характер воспроизводимого пневмоцилиндром усилия за счет длительного времени нарастания давления в средней полости пневмоцилиндра, существенно превышающего одну четвертую периода собственных колебаний штока.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий:

- средство, воплощающее заявленное изобретение при его осуществлении, предназначено для использования в пневматических устройствах ударного действия различного назначения, а именно как высокоскоростной пневматический привод со встроенным резервуаром;

- для заявленного устройства в том виде, как оно охарактеризовано в независимом пункте формулы изобретения, подтверждена возможность его осуществления;

- средство, воплощающее заявленное изобретение при осуществлении, способно обеспечить исключение возможности возникновения вынужденных высокочастотных колебаний штока пневмоцилиндра и получения квазистатического характера воспроизводимого пневмоцилиндром усилия за счет длительного времени нарастания давления в средней полости пневмоцилиндра, существенно превышающего одну четвертую периода собственных колебаний штока.

Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком, при этом средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с атмосферой, а из двух других по крайней мере одна заполнена сжатым газом, одна полость имеет возможность сообщения со средней полостью по каналу, выполненному в разделяющей их стенке, а вторая полость отделена от средней полости поршнем со штоком, отличающийся тем, что поршень снабжен входящим в канал разделяющей стенки выступом, оснащенным продольным и радиальным отверстиями с площадями проходного сечения меньшими, чем площадь поперечного сечения поршня, образующими проходной канал для сообщения со средней полостью, при этом шток спускового механизма установлен в первой полости, а его свободный конец введен в продольное отверстие выступа поршня с возможностью перемещения в нем при срабатывании спускового механизма.



 

Похожие патенты:

Изобретение относится к ударным устройствам и к способам генерирования импульса напряжения в ударных устройствах. .

Изобретение относится к пневматическим машинам ударного действия. Пневматическая машина содержит корпус пневмоцилиндра с отверстиями для выпуска воздуха в атмосферу, в котором расположен полый поршень. Поршень имеет торцовые крышку и днище, и его полость сообщена через осевой проходной канал воздухоподводящего стержня в днище поршня с источником сжатого воздуха. В крышке и днище поршня выполнены соосно сквозные отверстия, которые снабжены средствами для их открытия или закрытия при перемещении поршня с целью сообщения полости поршня соответственно с надпоршневой частью и подпоршневой частью полости корпуса пневмоцилиндра. Отверстия для выпуска воздуха в атмосферу выполнены в обоих противоположных торцах корпуса пневмоцилиндра. Каждое средство для открытия или закрытия сквозных отверстий в крышке и сквозных отверстий в днище поршня содержит направляющий стержень, установленный соосно с возможностью осевого перемещения в отверстиях крышки и днища поршня, снабженный в полости поршня уплотняющим элементом. В результате увеличивается ударный эффект и повышается надежность пневматической машины. 2 ил.

Изобретение относится к области бурения, а именно к механизмам с пневматическим приводом. Ударно-вращательная бурильная машина включает корпус, совмещенный с рукоятью, ротор, ротационный вращатель, связанный с рабочим инструментом с помощью втулки и волновой зубчатой передачи, включающей генератор, жесткое колесо и гибкое колесо, пневматический ударный механизм с бойком, размещенный в теле ротора с цилиндрическим продольным каналом, который сообщает камеру холостого хода пневматического ударного механизма с сетью питания, боек разделяет центральный цилиндрический канал на камеры холостого хода со стороны хвостовика рабочего инструмента и камеру рабочего хода со стороны крышки с центральным отверстием, посредством которого камера рабочего хода сообщается с сетью питания, в стенке ротора выполнены каналы выпуска отработавшего воздуха из камер рабочего и холостого хода в атмосферу. В бойке выполнено центральное отверстие, в котором установлена трубка, проходящая через центральное отверстие крышки с образованием кольцевого зазора канала, сообщающего камеру рабочего хода с сетью питания, и центральное отверстие бойка, сообщающая камеры рабочего и холостого хода с сетью питания. Обеспечивается снижение дисбаланса ротора, уменьшение поперечных колебаний, повышение ресурса подшипников и снижение уровня вибрации корпуса. 1 ил.

Изобретение относится к горному делу и строительству - к машинам ударного действия, применяется при отбойке монолитов, в строительстве для разрушения устаревших фундаментов, при реконструкции зданий, при прокладке трубопроводов, а также в сейсморазведке как источник возбуждения сейсмических волн на малых глубинах. Машина содержит корпус и размещенный в нем ударник, образующие верхнюю и нижнюю камеры, вакуум-компрессор, расположенный в верхней части корпуса, соединенный с верхней камерой и содержащий по меньшей мере одну пару центробежных компрессионно-вакуумных механизмов, установленных встречно друг другу всасывающими отверстиями, соединенных с диском и имеющих общий канал через отверстие в этом диске, который образует камеры над и под диском в верхней части корпуса, причем камера над диском соединена с атмосферой, и отсекает упомянутую верхнюю камеру и камеру под диском от атмосферы, при этом упомянутые центробежные компрессионно-вакуумные механизмы электрически соединены с трехпозиционным переключателем, который электрически соединен с источником тока, ресивер, соединенный с верхней камерой, магнитный фиксатор для ударника, установленный в верхней камере, и рабочий инструмент, при этом нижняя камера соединена с атмосферой. Ресивер размещен в корпусе между верхней камерой и вакуум-компрессором и соединен с верхней камерой через отверстия центрирующего диска, отделяющего ресивер от верхней камеры, а с вакуум-компрессором - через отверстия в монтажном диске, отделяющем вакуум-компрессор от ресивера. Магнитный фиксатор для ударника соединен с регулятором, расположенным в ресивере и выполненным с возможностью изменения его длины. Обеспечивается возможность расширения энергии ударов и частоты, исключение потерь давления при перетечке из ресивера в верхнюю камеру, уменьшение габаритов машины в ширину, возможность работы в труднодоступных местах. 2 з.п. ф-лы, 1 ил.

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с атмосферой. Из двух других по крайней мере одна заполнена сжатым газом, одна полость имеет возможность сообщения со средней полостью по каналу, выполненному в разделяющей их стенке, а вторая полость отделена от средней полости поршнем со штоком. Поршень содержит входящий в канал разделяющей стенки выступ, оснащенный продольным и радиальным отверстиями с площадями проходного сечения меньшими, чем площадь поперечного сечения поршня, образующими проходной канал для сообщения со средней полостью. Шток спускового механизма установлен в первой полости, а его свободный конец введен в продольное отверстие выступа поршня с возможностью перемещения в нем при срабатывании спускового механизма. В результате исключается возможность возникновения вынужденных высокочастотных колебаний штока пневмоцилиндра. 1 ил.

Наверх