Способ получения гидрофильного сшитого полимера со свойствами суперабсорбента


 


Владельцы патента RU 2574722:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" ФГБОУ ВПО "ВГУ" (RU)

Изобретение относится к химии высокомолекулярных соединений, в частности к способам получения сетчатых гидрофильных полимеров, относящихся к суперабсорбентам, обладающим способностью поглощать большое количество воды. Способ получения гидрофильного сшитого полимера со свойствами суперабсорбента характеризуется тем, что в 5 мас.% раствор полисахарида в 2% водном растворе уксусной кислоты, содержащем 0,01-0,20 мас.% формальдегида или аскорбиновой кислоты, при температуре 18-30°С прибавляют 0,01-0,30 мас.% пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15-40 мин, затем в реакционную массу вводят раствор акриламида в (мет)акриловой кислоте или N,N-ди(метил)этилоксиэтилметакрилате в соотношении 0,1:0,9÷0,9:0,1 мольных долей и 0,1-10,0 мас.% N,N-метилен-бис-акриламида или диэтиленгликольдиметакрилата, пропиленгликольдиметакрилата и реакционную массу при перемешивании выдерживают в течение 3 ч при температуре 18-30°С, лиофильно сушат. Технический результат заключается в исключении дорогостоящих компонентов и оборудования из способа получения сшитого полимера. 1 з.п. ф-лы, 4 пр.

 

Изобретение относится к химии высокомолекулярных соединений, в частности к способам получения сетчатых гидрофильных полимеров, относящихся к суперабсорбентам, обладающим способностью поглощать большое количество воды, и может быть использовано в медицине, сельском хозяйстве и при производстве товаров личной гигиены.

Известны три подхода к получению сшитых полимеров, но каждый из них или основан на использовании дорогостоящих исходных компонентов, или требует применения дорогостоящего оборудования. Поэтому устранение этих недостатков является важной и необходимой задачей.

Известен способ получения сшитого полимера, проявляющего свойства свойства суперабсорбента [Е.Л. Жданкович, В.М. Анненкова, В.М. Анненков, Л.Г. Ерофеева, Д.В. Владимиров. "Тройной сополимер акриловой кислоты, аммонийной соли акриловой кислоты и стирола в качестве суперабсорбента". Пат РФ №2128191 (1996), МКП С08А 220/06, опубл. 1996 г.]. В соответствии с этим суперабсорбент получают сополимеризацией акриловой кислоты и стирола при 100-120°С в присутствии аммиака, персульфата калия и алюмомагнезиального силиката в качестве сшивающего агента. Полученный таким образом суперабсорбент способен поглощать 2553-4000 г воды на 1 г сшитого полимера. Недостатком этого способа получения является использование сложных гетерофазных, многокомпонентных исходных предполимеризационных систем, включающих высокотоксичный и пожароопасный стирол, необходимость использования высоких температур. Указанные недостатки снижают привлекательность его для промышленного производства.

Известен другой способ получения полимеров, абсорбирующих жидкости [Д. Штокхаузен, Х.-Г. Хартан, Г. Брем, Г. Ионас, Б. Месснер, К. Пфлюгер. "Абсорбирующие жидкость полимеры и их получение". Пат. РФ 2193045 91996; МПК C08F 220/06, А6115/60, опубл. 9.1996 г.], согласно которому сшитый полимер получают радикальной сополимеризацией аллилполиэтиленгликолевых эфиров (мет)акриловой кислоты, метилполиэтиленгликолевых эфиров (мет)акриловой кислоты в присутствии в качестве сшивающего агента триметилолпропаноксиэтилат(мет)акриловых эфиров, глицеринооксиэтилат (мет)акриловых эфиров, пентаэритритоксиэтилат(мет)акриловых эфиров, полиэтиленгликоль-ди(мет)акриловых эфиров и, соответственно, ди-, триаллиламина, N,N-метилен-бис-акриламида или бисакриламидоуксусной кислоты. Полученные таким способом суперабсорбенты способны впитывать водные растворы даже при механической нагрузке. К числу недостатков данного технического решения относятся: использование дорогостоящих мономеров - аллиловых и (мет)акриловых эфиров полиэтиленгликолей, сложный состав исходной мономерной смеси и многостадийность синтеза.

В патенте [G. Herth, М. Dannehl, N. Steiner. "Water-soluble or water-swellable polymers, particularly water-soluble or water-swellable copolymers made of acryl-amide and least one ionic comonomer having a low residual monomer concentration". US Pat. 7973095 (2006), C08F 2/16; C08F 220/56, опубл. 2001 г.] для получения суперабсорбента используют менее сложный состав исходной смеси сомономеров: один из акриловых мономеров (или их смесь) - акриловая кислота, метакриловая кислота, акриламид, метакриламид, N,N-диметилакриламид в условиях фотоинициирования. Акриламидометилпропансульфоновая кислота, гидроксиэтил- и гидроксипропиловые эфиры акриловой или метакриловой кислот и др. В качестве сшивающего агента - различные диакрилаты, ди- и олигоэпоксиды, ди- и полиальдегиды и др. Также предложенный способ предусматривает использование фотоинициатора, например бензоина или его производных, азо-бис-изобутиронитрила, азо-бис-(2-аминопропан)гидрохлорида, ацетофенона и др. Полимеризацию проводят в адиабатических условиях при температуре - 20-50°С. Недостатками данного способа является использование дорогостоящих фотоинициаторов и специальной аппаратуры, а также использование сшивающего агента до 10 мас.% не позволяет получать редкосшитые полимеры и, соответственно, количество поглощаемой влаги мало (количественные характеристики не приведены).

Известен способ получения сшитого гидрофильного полимера, проявляющего свойства суперабсорбента [В.И Лозинский, О.В. Заборина. "Способ получения сшитого гидрофильного полимера, проявляющего свойства суперабсорбента. Патент РФ №2467017, C08F 2/00, опубл. 2012 г.], предусматривающий упрощение состава исходной смеси акриловых мономеров и повышения безопасности процесса. В качестве акрилового мономера используют N,N-диметилакриламид или его смесь с гидрофильными незаряженными и/или ионогенным акриловым сомономером (акриламид, метакриламид, N,N-диэтилакриламид, N-изопропилакриламид, 2-гидроксиэтилакрилат, N-акрилоил-2-гидроксиметил-1,3-пропандиол), а в качестве ионогенного сомономера - соль акриловой кислоты с щелочным металлом или аммонием, соль 3-сульфопропилакриловой кислоты с щелочным металлом или аммонием, соль 3-сульфопропилметакриловой кислоты с щелочным металлом или аммонием, соль акриламидометилпропанфосфоновой кислоты с щелочным металлом или аммонием. Для инициирования полимеризационного процесса используют окислительно-восстановительные системы: пероксид водорода - Fe2+, пирофосфат Mn3+ - ацетальдегид, персульфат - метабисульфит, персульфат - третичный амин и др. Температуру процесса поддерживают в интервале от -40°С до -5°С. Недостатком данного способа получения является использование отрицательных температур, что требует специального оборудования.

Задача предлагаемого изобретения состоит в разработке способа получения гидрофильного полимера, проявляющего свойства адсорбента, на основе акриловых мономеров при комнатной температуре с включением в структуру его каркаса гидрофильных биодегадируемых фрагментов, способствующих увеличению количества поглощаемой воды в процессе их эксплуатации.

Технический результат - исключение из технологического процесса дорогостоящих исходных компонентов и сложного специального оборудования - достигается тем, что в раствор (5 мас.%) полисахарида (хитозан, карбоксиметилцеллюлоза, крахмал) в 2% водном растворе уксусной кислоты, содержащем 0,01-0,20 мас.% формальдегида (аскорбиновой кислоты), при температуре 18-30°С прибавляют 0,01-0,30 мас.% пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15-40 минут. Затем в реакционную массу вводят раствор акриламида в (мет)акриловой кислоте или N,N-ди(метил)этилоксиэтилметакрилате в соотношении 0,1:0,9÷0,9:0,1 мольных долей и 0,1-10,0 мас.% N,N-метилен-бис-акриламида или диэтиленгликольдиметакрилата, пропиленгликольдиметакрилата и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 18-30°С. Реакционную массу подвергают лиофильной сушке с получением гидрофильного сшитого полимера со свойствами суперабсорбента с выпариваемым объемом в 5000-10000 весовых частей.

Реализация способа показана на конкретных примерах.

Пример 1

В трехгорлую колбу вносят 5 г хитозана в 100 мл 2% водного раствора уксусной кислоты, содержащего 1,2 г раствора формалина (0,5 г формальдегида), при температуре 18-30°С прибавляют 2,0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 5 г акриламида в 5 г акриловой кислоты и 0,2 г N,N-метилен-бис-акриламида, и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 18-30°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 4,9 г.

Пример 2

В трехгорлую колбу вносят 5 г хитозана в 100 мл 2% водного раствора уксусной кислоты, содержащего 0,5 г аскорбиновой кислоты, при температуре 18-30°С прибавляют 2,0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 5 г акриламида в 5 г акриловой кислоты и 0,5 г диэтиленгликольдиметакрилата, и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 18-30°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 5,0 г.

Пример 3

В трехгорлую колбу вносят 5 г крахмала в 100 мл 2% водного раствора уксусной кислоты, содержащего 1,2 г раствора формалина (0,5 г формальдегида), при температуре 18-30°С прибавляют 2,0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 1 г акриламида в 9 г акриловой кислоты и 0,4 г N,N-метилен-бис-акриламида, и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 18-30°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 4,8 г.

Пример 4.

В трехгорлую колбу вносят 5 г крахмала в 100 мл 2% водного раствора уксусной кислоты, содержащего 0,5 г аскорбиновой кислоты, при температуре 18-30°С прибавляют 2,0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 2 г акриламида в 8 г акриловой кислоты и 0,5 г диэтиленгликольдиметакрилата, и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 18-30°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 4,9 г.

Предлагаемое изобретение найдет широкое применение в различных прикладных областях, в частности в сельском хозяйстве для улучшения структуры почв и запасания почвенной влаги в засушливых регионах, используется при производстве товаров личной гигиены и предметов ухода за новорожденными, больными и престарелыми (водовпитывающие прокладки, памперсы и т.д.), применяется в медицинской практике в качестве накладок на раны и ожоги, кровеостанавливающих средств и т.д. ["Modern Superabsorbent Polymer Technology", Eds. F.L. Buchholz, A.T. Graham, J. Wiley & Sons, 1997]. Поэтому предлагаемое изобретение может быть полезным во всех этих областях.

1. Способ получения гидрофильного сшитого полимера со свойствами суперабсорбента, характеризующийся тем, что в раствор (5 мас.%) полисахарида в 2% водном растворе уксусной кислоты, содержащем 0,01-0,20 мас.% формальдегида или аскорбиновой кислоты, при температуре 18-30°С прибавляют 0,01-0,30 мас.% пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15-40 мин, а в реакционную массу вводят раствор акриламида в (мет)акриловой кислоте или N,N-ди(метил)этилоксиэтилметакрилате в соотношении 0,1:0,9÷0,9:0,1 мольных долей и 0,1-10,0 мас.% N,N-метилен-бис-акриламида или диэтиленгликольдиметакрилата, пропиленгликольдиметакрилата и реакционную массу при перемешивании выдерживают в течение 3 ч при температуре 18-30°С, лиофильно сушат.

2. Способ по п. 1, характеризующийся тем, что в качестве полисахарида используют хитозан, карбоксиметилцеллюлозу, крахмал.



 

Похожие патенты:

Изобретение относится к композиции, обладающей импрегнирующим действием, которую можно использовать как импрегнирующее средство и/или средство для верхних поверхностей различных материалов в различных формах применения.

Изобретение относится к производному хитозана, в котором хитозановый фрагмент имеет общую формулу (I), где R - остаток жирной или аминокислоты, n для гидрофильного лиганда составляет от около 12 до около 25% относительно количества моносахаридных остатков хитозана, m для гидрофобного лиганда составляет от около 30 до около 60% относительно количества моносахаридных остатков хитозана.

Изобретение относится к способам получения биоразлагаемых пленок и может быть использовано в фармацевтике, медицине, ветеринарии, пищевой или косметической промышленности, а также для изготовления оберточной пищевой пленки, капсул и упаковочных материалов.

Изобретение относится к медицине. Описаны биоматериалы, полученные смешиванием автопоперечносшитого производного гиалуроновой кислоты (ACP) с производным (HBC) гиалуроновой кислоты, поперечносшитым с простым диглицидиловым эфиром 1,4-бутандиола (BDDE), в массовом соотношении от 10:90 до 90:10, в качестве новых наполнителей.

Изобретение относится к природным полимерам из класса полисахаридов и может найти применение в медицине, в частности фотон захватной терапии (ФЗТ), фототермической терапии, фото- и радиосенсибилизации, химиотерапии, лечении ревматоидного артрита, антиВИЧ терапии, косметологии, эстетической дерматологии и пластической хирургии.

Изобретение относится к гидрогелю карбоксиалкиламида хитозана и может быть использовано для косметического и дерматологического лечения кожных ожогов. .

Изобретение относится к химии высокомолекулярных соединений и может найти применение в качестве матриц в тканевой инженерии. .

Изобретение относится к композициям биоразлагаемых пленок, содержащих пектин, для использования в фармацевтике, медицине, ветеринарии, пищевой или косметической промышленности, а также для изготовления оберточной пищевой пленки, капсул.
Изобретение относится к синтетической полимерной химии. .

Изобретение относится к области биотехнологии, конкретно к способу получения жизнеспособных клеток, и может быть использовано в исследованиях морфологии живых клеток в норме и при патологии.

Изобретение относится к производству биоразлагаемых композиций, предназначенных для создания пленок и различных тароупаковочных изделий, способных к биодеградации под воздействием природных факторов.

Изобретение относится к технологии получения композитных полимерных упаковочных материалов и может быть использовано в пищевой промышленности, а также в сельском хозяйстве и в быту.
Изобретение относится к получению нетоксичных композиционных материалов, таких как полимерная глина для художественного моделирования, и может использоваться в промышленности для формования изделий любых форм и размеров.
Описан способ получения биоразлагаемой смеси для производства формованных изделий. В качестве упрочняющих наполнителей используют волокна из различных природных источников, особенно волокна из отходов, получаемых во время различных процессов производства.

Изобретение относится к связующим композициям для изоляционных изделий на основе минеральной ваты. Предложена связующая композиция на основе минерального войлока или стекловолокна, которая включает по меньшей мере один сахарид, по меньшей мере одну органическую поликарбоновую кислоту, включающую от 2 до 4 функциональных карбоксильных групп и имеющую молекулярную массу менее или равную 1000, и по меньшей мере один полиорганосилоксан, содержащий по меньшей мере одну функциональную группу, способную реагировать с по меньшей мере одним из составляющих связующей композиции.

Изобретение относится к новым композициям латексов на основе биополимеров и способу их получения и их применению. Новые композиции латексов содержат комплекс биополимер-добавка (полученный в результате соэкструдирования биополимерного исходного сырья по меньшей мере одной добавки, улучшающей эксплуатационные характеристики, и по меньшей мере одного пластификатора под действием сдвиговых усилий), вступивший в реакцию со сшивателем под действием сдвиговых усилий.
Изобретение относится к способу получения термопластической композиции на основе крахмала, включающему следующие этапы, на которых: (a) выбирают, по меньшей мере, один гранулированный крахмал (компонент 1) и, по меньшей мере, один органический пластификатор (компонент 2) этого крахмала; (b) получают пластифицированную композицию путем термомеханического смешивания этого крахмала и этого органического пластификатора; (c) при необходимости включают в пластифицированную композицию, полученную на этапе (b), по меньшей мере, одно функциональное вещество (необязательный компонент 4), отличное от гранулированного крахмала, содержащее функциональные группы, имеющие активный водород, и/или функциональные группы, которые дают посредством гидролиза такие функциональные группы, имеющие активный водород; и (d) включают в полученную пластифицированную композицию, по меньшей мере, один связующий агент (компонент 3), имеющий молекулярный вес менее чем 5000, выбранный из органических двухосновных кислот и соединений, содержащих, по меньшей мере, две одинаковые или различные, свободные или скрытые функциональные группы, выбранные из функциональных групп изоцианата, карбамоилкапролактама, эпоксида, галогена, кислотного ангидрида, ацилгалогенида, оксихлорида, триметафосфата и алкоксисилана, причем указанный гранулированный крахмал представляет собой нативный крахмал, а указанный пластификатор выбирают из диолов, триолов и полиолов.
Изобретение относится к композиции на основе крахмала, включающей: (а) по меньшей мере, 51% по весу пластифицированной крахмальной композиции, включающей крахмал и пластификатор для указанного крахмала, полученной термомеханическим смешиванием гранулированного крахмала и пластификатора для указанного крахмала, (b) не более 49% по весу, по меньшей мере, одного некрахмального полимера и (с) связующего агента с молекулярной массой менее чем 5000, содержащего две функциональные группы, по меньшей мере, одна из которых способна реагировать с пластификатором и, по меньшей мере, другая из которых способна реагировать с крахмалом и/или некрахмальным полимером, причем эти количества выражаются относительно твердых веществ и относятся к сумме (а) и (b).

Изобретение относится к биологически разрушаемой высоконаполненной термопластичной композиции, применяемой в производстве пленок и потребительской тары. .

Изобретение относится к термопластичной композиции для пластических масс, применяемых в производстве термоформованных изделий. .
Наверх