Фильтрующий материал для очистки питьевой воды

Изобретение относится к сорбционно-фильтрующим материалам и может быть использовано при очистке хозяйственно-питьевых и промышленных сточных вод предприятий различных отраслей промышленности. Зернистый природный материал содержит на поверхности каталитически активный слой, состоящий из смеси Мn2O3, МnО2 и Fe(OH)2 при их массовом соотношении (2-2,5):(5-5,5):(0,5-0,7). Каталитически активный слой закреплён на поверхности фильтрующего путем обработки натрием серноватистокислым. Изобретение обеспечивает получение эффективного материала, пригодного для очистки воды от железа. 4 табл., 2 пр.

 

Изобретение относится к области водоподготовки питьевой воды, а именно к фильтрующим материалам, применяемым для очистки воды от железа.

Известен способ получения гранулированного фильтрующего материала (патент RU №2162737, опубл. 10.02.2001). Доломит подвергают измельчению и классификации до фракции 0,3-1,5 мм. Полученный полупродукт подвергают отжигу в атмосфере воздуха при температуре 500-900°С в течение 1-3 ч. Зачем остужают до комнатной температуры и обрабатывают раствором, содержащим ионы двухвалентного марганца (Mn2+~0,01-0,2 моль/л). После этого раствор сливают, а материал подвергают сушке при 100-200°С. К недостаткам данного способа относится то, что обработка по данному способу является энергоемкой, поскольку производится при высокой температуре 900°С. Другим недостатком является то, что при разложении марганца двухлористого выделяется хлор, который не утилизируется, а непосредственно выбрасывается в атмосферу.

Известен обезжелезивающий фильтрующий материал (патент RU №2184600 опубл. 10.07.2002). Обезжелезивающий фильтрующий материал содержит, мас. %: мел 13-36, пиролюзит 10-33, жидкое стекло 48,96-52,18, кремнефтористый натрий 1,82-5,04. Недостатком которого является искусственное получение фильтрующего материала, кроме того, он трудоемок в изготовлении, поскольку сушка длится 1 сутки, а термообработка длится 20-30 часов при температуре 120-130°С, это энергозатратно, также этот материал дорог в изготовлении, поскольку получается искусственным путем.

Известно изобретение (патент RU №2229336, опубл. 27.05.2004), в котором используется носитель - бентонитовая глина, которую термообрабатывают при температуре 1200°С, затем проводят активацию азотной кислотой. Предложен сорбционно-фильтрующий материал для очистки воды, содержащий диоксид марганца на алюмосиликатной основе, в качестве которого он содержит бентонитовую глину, подвергнутую последовательно термической и кислотной активации, при этом он содержит компоненты при следующем соотношении, мас. %: диоксид марганца - 10-14, активированная бентонитовая глина - остальное. Способ получения заключается в термоактивации бентонита, кислотной обработке и обработке растворами Мn и КМnО. Недостаток - в использовании кислоты, которую необходимо нейтрализовать. Кроме того, бентонитовая глина в процессе приготовления сорбционно-фильтрующего материала проходит термообработку, что влечет затраты на электроэнергию.

Известен фильтрующий материал для очистки воды от марганца и железа (патент RU №2275335, опубл. 27.04.2006), выбранный в качестве прототипа.

В этом фильтрующем материале в качестве носителя используется зернистый материал природного происхождения - горелая порода, а на поверхности горелой породы образован каталитически активный слой, состоящий из смеси оксидов MnО, Мn2O3 и МnO2. Данный зернистый материал хорошо работает при рН 7,8-9,0.

К недостаткам данного модифицированного фильтрующего материала можно отнести следующее: модифицированная горелая порода хорошо удаляет из воды железо при рН 6,3-6,5. Однако при этих значениях рН происходит растворение оксидов марганца, что приводит к увеличению содержания в воде ионов марганца выше ПДК.

Задача изобретения - разработка нового фильтрующего материала на основе зернистого материала природного происхождения - горелой породы, пригодного для очистки воды от железа.

По сравнению с прототипом предлагается новый технический результат - создание эффективного материала, позволяющего очищать воду от железа.

Поставленная задача достигается тем, что фильтрующий материал для очистки питьевой воды содержит в качестве основы зернистый материал природного происхождения. На поверхности основы образован каталитически активный слой, состоящий из смеси Мn2O3МnO2 и Fe(OH)2 при их массовом соотношении (2-2,5) : (5-5,5) : (0,5-0,7). Закрепление каталитически активного слоя на поверхности фильтрующего материала осуществляют путем его обработки натрием серноватистокислым.

Для получения фильтрующего материала, способного очищать воду от железа, зернистый материал природного происхождения подвергали последовательной обработке растворами модифицирующих реагентов, содержащих в том числе соединения марганца.

Модификацию фильтрующей загрузки можно описать уравнением: Fe(SO4)+KMnO4+2H2O=4Fe(OH)2+MnO2+Fe2(SO4)3+КОН.

При обработке модифицирующими реагентами на поверхности зернистого материала природного происхождения получали комплекс не только оксидных соединений марганца: Мn2O3, МnO2, но и гидроксид: Fe(OH)2, что было подтверждено рентгеноструктурными исследованиями, проведенными с помощью дифрактометра ДРОН-УМ1. Растворимость Fe(OH)2 велика, и он значительно диссоциирован, равновесие гидролиза сильно смещено влево. Образовавшийся Fe(OH)2 под действием кислорода, растворенного в воде, окисляется в Fe(OH)3:

4Fe(OH)2+O2+2H2O=4Fe(OH)3.

Изоэлектрическая точка Fe(OH)3 соответствует значению рН, несколько большему, чем 6,5. Ренгенографически установлено, что при гидролизе солей железа (III) в гидрокарбонатно-хлоридных и гидрокарбонатно-сульфидных средах образуется одна и та же модификация гидроксида железа (III) - гетит α-FeO(OH). Характерно, что α-гидроксид железа (III) образуется в случае гидролиза железа (II), например железного купороса, окисляемого хлором или растворенным в воде кислородом при подщелачивании известью.

Окисление железа (II) кислородом воздуха происходит по реакции:

Fe2++O2+8НСO3-+2H2O=4Fe(OH)3+8СO2.

Соединение железа (II) в присутствии гидрокарбонатов природных вод полностью гидролизуется по реакции:

2Fe2++Cl2+6HCO3-=2Fe(OH)3+2Cl-+6СO2.

Процесс окисления железа (II) высшими оксидами марганца, которые при этом восстанавливаются до низших степеней окисления, а затем вновь окисляются растворенным в воде кислородом, описывается уравнением:

Fe(HCO3)2+3MnO2+2H2O=4Fe(OH)3+MnO2+Мn2O3+8СO2.

Высокоактивный диоксид марганца, нанесенный на поверхность зернистого материала природного происхождения, образует с растворимым в воде кислородом промежуточный комплекс МnO2-O2. Реакцию окисления ионов сорбированным диоксидом марганца можно представить в виде следующей общей схемы:

Мn2++O=O→Мn3+, Мn4+

Активным «игроком» в реакции окисления ионов Мn2+ нерастворимыми оксидами марганца являются анион-радикалы кислорода О2-, образующиеся на поверхности зернистого материала природного происхождения при сорбции молекул кислорода.

В работе [Губайдулина Т.А., Мельников А.Г. Зернистый каталитически активный материал для очистки питьевой воды от железа и марганца. // Химия - XXI век: новые технологии, новые продукты: Труды IX Международной научно-практической конференции. - г. Кемерово, 16-17 мая 2006, с. 204-206] указывалось, что сорбированный на поверхности гранул загрузки диоксид марганца и сам действует как окислитель, переводя растворимые ионы Мn2+ в нерастворимые оксиды:

Мn2++МnO2 Ц→Мn3O4, Мn2O3 Ц,

где Ц - зернистый материал природного происхождения.

Оксид Мn2O3 также обладает окислительными свойствами, и не исключено, что его роль весома при окислении Мn2+. В дальнейшем изобретение поясняется конкретными примерами изготовления материала. В заявляемом изобретении предлагается в качестве носителя использовать зернистый материал природного происхождения, с характеристиками, приведенными в Таблице 1, диаметром от 0,8 до 2,0 мм, имеющий пористость 52-60%, с толщиной меж поровых стенок 0,07-0,1 мкм.

Таблица 1. Характеристики зернистого материала природного происхождения.

Пример 1 - оксидная пленка получена при следующей весовой концентрации компонентов, г/л:

железо сернокислое 15,0
калий марганцовокислый 15,0
натр едкий 1,0
натрий серноватистокислый 3,0

Пример 2 - оксидная пленка получена при следующей весовой концентрации компонентов, г/л:

железо сернокислое 15,0
калий марганцовокислый 35,0
натр едкий 1,0
натрий серноватистокислый 15,0

Зернистый материал природного происхождения заливали раствором сульфата железа и выдерживали при перемешивании 15-20 мин. Затем раствор сульфата железа сливали до исчезновения капель. Подщелачивали едким натром раствор калия марганцовокислого и заливали им зернистый материал природного происхождения. Для получения пленки, окончательную обработку производили натрием серноватистокислым.

В таблице 2 представлены данные экспериментов по интенсивности окрашивания для получения фильтрующего материала с заявляемым составом каталитически активного слоя в зависимости от концентрации реагентов.

Результаты:

При использовании концентраций реагентов:

- эксперимент 1 - получен слой, состоящий из смеси гидроксида марганца Fe(OH)2 и оксидов марганца Mn2O3, МnO2 при массовом соотношении компонентов (0,5 : 2:5);

- эксперимент 2 - получен слой, состоящий из смеси гидроксида марганца Fe(OH)2 и оксидов марганца Мn2O3, МnO2 при массовом соотношении компонентов (0,7 : 2,5 : 5,5).

После просушивания на поверхности образцов, обработанных по примеру 1 и 2, на поверхности зернистого материала природного происхождения получали каталитически активный слой, состоящий из смеси оксидных соединений марганца Mn2О3, МnO2 и железа Fe(OH)2 Характеристики заявляемого фильтрующего материала для очистки питьевой воды от ионов железа приведены в таблице 2.

Таблица 3. Характеристики заявляемого фильтрующего материала.

Испытания проб скважинных вод на очистку от ионов железа были проведены с использованием фильтрующего материала на основе зернистого материала, полученного в соответствии с экспериментом 2. В таблице 3 приведены результаты испытаний заявляемого фильтрующего материала.

Таблица 4. Испытания проб скважинных вод с использованием заявляемого фильтрующего материала, изготовленного на основе гранул пеностеклокерамики.

Полученные оксидные соединения марганца и гидроксид железа на поверхности зернистого материала вступают во взаимодействие с соединениями железа, растворенными в воде, с образованием нерастворимых соединений, которые осаждаются на поверхности зернистого материала. Как видно из лабораторных результатов и эксплуатационных испытаний, комплекс оксидных соединений Мn2O3, МnO2 и гидроксид железа, полученный на поверхности зернистого материала, позволяет снизить содержание растворенных в воде железа в 10-15 раз.

Фильтрующий материал для очистки питьевой воды, содержащий в качестве основы зернистый материал природного происхождения, отличающийся тем, что на поверхности основы образован каталитически активный слой, состоящий из смеси Mn2O3, MnO2 и Fe(OH)2 при их массовом соотношении (2-2,5):(5-5,5):(0,5-0,7), закрепление каталитически активного слоя на поверхности фильтрующего материала осуществлено путем его обработки натрием серноватистокислым.



 

Похожие патенты:

Изобретение относится к области химической технологии. Химически активный фильтрующий элемент, содержащий химически активный материал в виде порошка или гранул, распределенный по каркасу из пористого инертного металлического носителя, размещенного в пористой оболочке.

Настоящее изобретение относится к материалу для разделения, содержащему осажденный диоксид кремния, высушенный во вращающейся или распылительной сушилке. Диоксид кремния имеет площадь P поверхности пор, при которой log10 P>2,2, и отношение площади поверхности по BET к площади поверхности по СТАВ, измеренное до какого-либо модифицирования поверхности диоксида кремния, составляющее по меньшей мере 1,0.

Изобретение относится к синтезу сорбентов с химически закрепленными функциональными группами. Сорбент содержит 3-глицидилоксипропил-силикагель, который обработан тиосемикарбазидом при катализе хлорной кислотой в среде кипящего метанола в течение 8 часов.

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Сорбент общей формулы (1) содержит химически привитую с помощью спейсера четвертичную аммониевую функциональную группу, содержащую по крайней мере один 2-гидроксипропильный радикал. При этом R1 - (СН2)n, где n=2-8, R2 выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал). В качестве исходного материала при получении берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия.

Изобретение относится к производству адсорбентов для сигаретных фильтров. Предложен способ получения частицы несущего ароматизатор адсорбента.

Изобретение относится к никелевому комплексу 5,10,15,20-тетракис [3′,5′-ди-(2″-метилбутилокси)фенил]-порфина формулы: Изобретение позволяет получить никелевый комплекс, проявляющий свойство стационарной фазы для газовой хроматографии.

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота.

Изобретение относится к способам получения сорбентов для хроматографического разделения фуллеренов. Проводят термическую обработку многослойных углеродных нанотрубок при 800-1000°C.
Изобретение относится к области медицины, а именно к формованному сорбенту с антибактериальными свойствами для лечения эндометрита, представляющему собой нанодисперсный мезопористый углеродный материал с удельной адсорбционной поверхностью не более 50 м2/г и прочностью на раздавливание не менее 20 кг/см2, содержащему поливинилпирролидон в количестве не менее 5,0%, характеризующемуся тем, что выполнен в виде цилиндров диаметром 2-4 мм, длиной 15-25 мм с одним внутренним каналом круглого сечения, к способу его изготовления, а также к способу лечения эндометрита.
Изобретение относится к области сорбции. Предложен способ получения сорбента для газохроматографического разделения ароматических полициклических углеводородов.

Изобретение относится к области химической технологии и может быть использовано при получении сорбентов сернистых соединений, входящих в состав углеводородных газов и нефтяных фракций.

Изобретение относится к области разработки материалов, обладающих фотокаталитической активностью под действием ультрафиолетового и видимого излучения. Материал представляет собой структурно-организованную систему, состоящую из тканевой основы, на которую нанесен промежуточный слой диоксида кремния и наружный слой фотокаталитически активного нанокристаллического диоксида титана анатазной модификации.

Изобретение относится к области неорганической химии. Предложен продукт в виде агломератов оксигидроксидов металлов, выбранных из группы, состоящей из Al, Fe, Mg, Ti или их смеси.

Изобретение относится к области получения самоочищающегося тканевого материала, обладающего фотокаталитической активностью под действием ультрафиолетового и видимого излучения и предназначенного для фотокаталитической деструкции опасных органических и неорганических веществ и макромолекул.

Изобретение относится к фотокаталитическим материалам с адсорбционными и антибактериальными свойствами. Материал содержит текстильную целлюлозосодержащую основу, фотокаталитический слой, представляющий собой комплекс из диоксида кремния, модифицированного алюминат-ионами, и диоксида титана анатазной модификации, и слой адсорбента из оксида алюминия бемитной структуры, который расположен между фотокаталитическим слоем и текстильной основой.
Изобретение относится к решению проблем охраны окружающей среды. Способ получения гранулированного сорбента заключается в том, что отходы ОГЖ в дисперсном состоянии подвергают высушиванию и суспендируют в грануляторе с мешалкой и внутренним оребрением со скоростью 300-2000 оборотов в течение 5-10 минут в аполярной среде с добавлением полярного водного раствора полимера до получения гранул, которые затем отфильтровывают и сушат при температуре от 20 до 100°C.

Группа изобретений относится к сорбентам и их применению. Сорбент анионов сурьмы содержит частицы или гранулы оксида циркония и характеризуется коэффициентом распределения анионов сурьмы, по меньшей мере, 10000 мл/г при рН в диапазоне от 2 до 10, причем указанные частицы имеют средний размер от 10 нм до 100 мкм, для которых скорость потока составляет от 100 до 10000 объемов слоя в час и указанные гранулы имеют средний размер от 0,1 до 2 мм, для которых скорость потока составляет от 10 до 50 объемов слоя в час.

Изобретение относится к области получения ферромагнитных углеродных сорбентов, предназначенных для очистки вод. Целлюлозосодержащее сырье пропитывают водным раствором соли железа, отделяют избыток влаги и полученную смесь подвергают пиролизу.
Изобретение относится к технологии получения магнитных сорбентов. Сорбент содержит полимерное связующее в виде гуминовых кислот и магнитный наполнитель-магнетит.

Изобретение относится к материалам для адсорбционной сероочистки углеводородных топлив. Предложен адсорбент для удаления сераорганических соединений из жидкого углеводородного топлива на основе γ-оксида алюминия, модифицированного оксидом цинка в количестве 0,1-10% масс.

Изобретение относится к фильтровальной технике. Модуль сорбционной очистки содержит вертикальный корпус, состоящий из цилиндрической обечайки (17), днища (5) и крышки (11), верхний (1) и нижний (12) перфорированные насадки, поддерживающий слой (14), коллектор (10), фильтрующую загрузку.

Изобретение относится к сорбционно-фильтрующим материалам и может быть использовано при очистке хозяйственно-питьевых и промышленных сточных вод предприятий различных отраслей промышленности. Зернистый природный материал содержит на поверхности каталитически активный слой, состоящий из смеси Мn2O3, МnО2 и Fe2 при их массовом соотношении ::. Каталитически активный слой закреплён на поверхности фильтрующего путем обработки натрием серноватистокислым. Изобретение обеспечивает получение эффективного материала, пригодного для очистки воды от железа. 4 табл., 2 пр.

Наверх