Способ автоматического управления наземным робототехническим комплексом



Способ автоматического управления наземным робототехническим комплексом
Способ автоматического управления наземным робототехническим комплексом

Владельцы патента RU 2574938:

Российская Федерация, от имени которой выступает Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (МЧС России) (RU)
Федеральное государственное бюджетное учреждение "Всероссийский ордена "Знак Почета" научно-исследовательский институт противопожарной обороны Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" (ФГБУ ВНИИПО МЧС России) (RU)

Изобретение относится к области робототехники, а именно к робототехническим средствам, предназначенным для работы в дистанционном режиме в особо опасных условиях без участия человека. Способ автоматического управления наземным робототехническим комплексом включает радиообмен между пультом управления и объектом управления, обеспечение ввода и обработки входной информации, поступающей от бортовых датчиков, осуществление вычисления текущей ориентации и местоположения робототехнического комплекса. При этом осуществляют автоматический возврат робототехнического комплекса в точку старта или в зону уверенного радиообмена при потере радиосвязи между пультом и объектом управления по ранее пройденной траектории с корректировкой этой траектории в обход обнаруженных препятствий. Для этого производится реализация на борту робототехнического комплекса базовых алгоритмов движения в заранее неизвестной обстановке. Предлагаемое техническое решение позволит решить задачу трехмерной визуализации робототехнического комплекса в окружающей обстановке с наложением опасных факторов аварийной ситуации и задачу автономных движений по скорректированным при необходимости траекториям. 1 ил.

 

Изобретение относится к области робототехники, а именно к робототехническим средствам, предназначенным для работы в дистанционном режиме в особо опасных условиях без участия человека.

Известно, что в случае возникновения техногенных аварий и пожаров, сопряженных с поражением больших площадей в зонах повышенного риска, обусловленных наличием радиации, химической и биологической зараженности местности, взрывоопасностью, для подавления пожара, проведения пожарно-спасательных и аварийно-восстановительных работ необходимо максимально сократить непосредственное нахождение людей в опасных зонах, исключив при этом возможность их поражения. Для выполнения этих работ наиболее эффективно применять технологии проведения аварийно-спасательных работ с использованием робототехнических комплексов различного назначения.

Существенные трудности для операторов при управлении роботом вне зоны прямой видимости представляют ситуации серьезного ухудшения качества или полной потери видеосигнала, принимаемого с расположенных на роботе телекамер, а также ситуация частичной или полной потери управления и прекращение получения телеметрической информации вследствие прерывания канала связи. Это обусловлено в первую очередь физическими ограничениями на беспроводную передачу сигналов управления и телевидения с применением передатчиков, усилителей и антенн, работающих в разрешенном диапазоне частот. Причинами этих помех могут являться как естественные преграды, например железобетонные конструкции, складки местности, растительность, так и искусственные, например сильные индустриальные радиопомехи.

Для решения этих задач в части автономности движения необходимо иметь подсистемы технического зрения, навигации, формирования модели внешней среды, планирования и отработки автономного целенаправленного движения. С точки зрения аппаратного расширения в системах управления должны быть предусмотрены элементы коммутации для внедрения таких составляющих, как системы сбора информации на основе датчиков, системы технического зрения на основе телекамер и тепловизоров, а также измерительных приборов и устройств, предназначенных для сбора информации об опасных факторах внешней среды (таких как химическое и радиоактивное загрязнение).

С точки зрения программного расширения возможностей работы удобным является применение в системе отлаженных протоколов обмена информацией как на борту робота, так и между роботом и пультом управления.

Известно устройство управления адаптивным мобильным роботом по патенту РФ №2187832, кл. G05D 1/02, G06F 19/00, опубликованному 20.08.2002.

Данное устройство предназначено для управления движением адаптивного робота, обладающего свойствами искусственного интеллекта.

Устройство управления адаптивным роботом содержит блок сенсорных датчиков, выходы которого соединены с входами блока формирования модели внешней среды, чьи выходы подключены к первым входам вычислительного блока, вторые входы которого связаны со вторыми выходами блока исполнительных устройств, а выходы подключены к входам m-стабильного триггера. В качестве вычислительного блока используется нейросеть, содержащая матрицу k·m ключевых элементов. Кроме того, имеется схема сравнения, блок задания движения, блок задания констант, блок регулирования, блок определения координат робота, блок датчиков внутренней информации.

Недостатками данного устройства являются его плохая адаптация к сложной и изменяющейся окружающей среде и к сложному и изменяющемуся внутреннему состоянию робота и узкая область применения.

Наиболее близким к предлагаемому техническому решению является мобильный робот и способ корректировки его курса по патенту РФ №2210492, кл. B25J 5/00, B25J 9/00, опубликованному 27.03.2003, принятый за прототип.

Данное техническое решение содержит устройство для перемещения мобильного робота по помещению, устройство для обнаружения наличия препятствия, управляющую часть, соединенную с устройством для перемещения мобильного робота и устройством для обнаружения препятствия и управляющую ими, устройство для определения текущего местоположения мобильного робота, соединенное с управляющей частью, и источник питания. Устройство для определения текущего местоположения мобильного робота содержит первую обзорную телекамеру для создания изображения потолка помещения и распознавания базового знака на потолке и первую видеоплату, обрабатывающую изображение, полученное с первой обзорной телекамеры, и передающую данные в управляющую часть. Источник питания соединен с управляющей частью и аккумулирует электроэнергию и питает устройство для перемещения мобильного робота, устройство для обнаружения препятствия, устройство для определения местоположения и управляющую часть. Устройство для обнаружения препятствия содержит линейный лазер для излучения линейного светового пучка по направлению к препятствию, вторую обзорную телекамеру для распознавания отраженного от препятствия линейного светового пучка и вторую видеоплату для обработки видеоданных, полученных второй телекамерой. Изобретение позволяет определять местоположение робота и корректировать его направление при обнаружении препятствия.

Недостатками данного устройства являются: плохая адаптация к изменяющимся условиям окружающей среды, ограниченность числа решаемых задач из-за узконаправленной комплектации и отсутствие внешнего наблюдения.

Задачей, на решение которой направлено предлагаемое техническое решение, является разработка системы автоматического возврата робототехнического комплекса в исходную позицию в экстремальной ситуации при потере связи по каналу управления.

Для этого в способе автоматического управления наземным робототехническим комплексом, включающим в себя радиообмен между пультом управления и робототехническим комплексом, обеспечение ввода и обработку входной информации, поступающей от бортовых датчиков, вычисление текущей ориентации и местоположения робототехнического комплекса, при потере радиосвязи между пультом управления и робототехническим комплексом осуществляют его автоматический возврат в точку старта или в зону уверенного радиообмена по ранее пройденной траектории с корректировкой этой траектории в обход обнаруженных препятствий путем реализации на борту робототехнического комплекса базовых алгоритмов движения в заранее неизвестной обстановке по дальнометрическому изображению внешней среды с помощью навигационно-вычислительного блока.

Технический результат заключается в повышении эффективности управления робототехническим средством и приспособляемости к сложной и изменяющейся окружающей среде. Такой способ является аварийным способом управления робототехническим средством и позволяет сохранить робототехническое средство в экстремальных условиях при нарушении штатных режимов управления.

В целях повышения эффективности работы операторов в дистанционном режиме управления и обеспечения автономного и/или автоматического управления наземными робототехническими комплексами в особо сложных условиях работы в штатные системы управления робототехнических комплексов встраивают комплект устройств интеллектуального управления.

При помощи специального измерительного оборудования на базе сканирующего лазерного дальномера, ультразвуковых датчиков и датчиков теплового потока комплект формирует на экране пульта управления упрощенную модель окружающей обстановки вокруг мобильного робота. Также комплект обеспечивает моделирование положения самого робота, его ориентации в пространстве и положение его подвижных частей. Это позволяет оператору намного более полно оценивать рабочую ситуацию в режиме реального времени.

Комплект обладает возможностью управления роботом в автоматическом режиме, а именно позволяет вернуть робота к оператору при наличии серьезных помех или полном пропадании сигналов радиоуправления. При ручном управлении роботом, позволяет избегать попадания робота в зоны с опасно высокой температурой, дает возможность управления роботом с помощью макрокоманд выведения манипулятора в рабочее или транспортное положения.

В состав комплекта входят: устройство сопряжения со штатной системой управления, навигационно-вычислительный блок, комплект датчиков и комплект расширения пульта дистанционного управления.

Все составные части комплекта выполнены в виде конструктивно законченных изделий (модулей) с местами крепления на несущие части корпуса робота и оснащены необходимыми разъемами для внешнего подключения.

Навигационно-вычислительный блок предназначен для непосредственного управления движением мобильного робота по заданной траектории.

Аппаратно-программное обеспечение навигационно-вычислительного блока выполняет задачи сбора информации, подготовленной другими устройствами, ее анализа и выработки управляющих команд на штатные устройства робототехнического комплекса. Блок работает независимо от канала дистанционного управления и в автоматическом режиме следит за состоянием окружающей среды. Блок выполняет задачи построения карты местности, формирования траектории движения при автономном возврате робота и посылки команд движения или остановки на исполнительные механизмы шасси робота. В том числе блок препятствует управлению подвижными механизмами робототехнического комплекса в случае их непосредственной близости к температурно-опасным зонам. Память навигационно-вычислительного блока позволяет запомнить маршрут до 50 метров пройденного пути.

На чертеже изображена схема возврата робототехнического комплекса в точку старта или в зону уверенного радиообмена.

Реализация заявляемого способа автоматического управления наземным робототехническим комплексом заключается в следующем.

Для получения детального дальнометрического изображения внешней среды во фронтальной части робота размещают лазерный дальномер, что позволяет решить задачу определения геометрических параметров заранее неопределенного пространства вокруг робота при прямолинейном движении. В навигационно-вычислительном блоке происходит обработка значений, поступающих от дальномера. Далее с использованием полученной информации решается задача построения карты местности и формирования траектории движения.

Кадр изображения формируется в виде массива дальностей, полученных лазерным дальномером. Сканирование лазерного луча производится по углу азимута и возвышения. Этот массив данных поступает в навигационно-вычислительный блок, который дополняет его данными о пройденном пути, полученными с обоих датчиков пройденного пути, о курсе движения, поступившем от гироскопа, о крене и дифференте робота. Кроме того, в кадр изображения заносится информация о глобальных координатах положения робота в пространстве, полученных спутниковой навигационной системой. Окончательно сформированный кадр передается в бортовой компьютер по быстродействующему интерфейсу Ethernet для дальнейшей его обработки. Обработав введенный кадр изображения внешней среды, бортовой компьютер строит траекторию движения внутри этого кадра и выводит ее в навигационно-вычислительный блок для дальнейшей ее реализации.

Уже на первом этапе обработки с целью получения для каждой отдельной точки обзора текстурированный фрагмент виртуального трехмерного изображения окружающей среды предлагается комплексировать информацию от видеокамеры и дальномера. В дальнейшем в процессе движения такие фрагменты собираются в объединенную трехмерную модель больших областей внешней среды (например, одного этажа или всего здания). В предлагаемом решении лазерный сенсор с зоной обзора в виде плоского сектора 180° (270°) и широкоугольная видеокамера с одной ПЗС-линейкой с зоной обзора в виде плоского сектора 90° собирают в единый модуль для обеспечения максимально общей зоны обзора. Данный модуль закрепляется на вращающемся сканаторе, позволяющем получать круговую зону обзора в телесном угле 360°×90°, и устанавливается на одну из площадок крепления телекамеры.

Комплексирование дальнометрического и телевизионного изображений выполняется в два этапа.

На первом этапе для каждого элементарного дальнометрического измерения (дальнометрического пикселя) находится соответствие в пространстве видеокадра и для соседних измерений определяется геометрическое и цветовое расстояния, с учетом которых на втором этапе строются аппроксимирующие элементарные грани каркасной модели. Соответствие пикселей видеокадра и измерений дальномера находится путем преобразования координат. На втором этапе по дальнометрическому изображению строится трехмерная каркасная модель и на нее "натягивается" соответствующий телевизионный кадр. При этом каркасная модель формируется в виде набора отдельных треугольников, а телевизионный кадр с исправленной геометрией загружается в текстуру. Для построений может быть использован графический пакет Direct3D. В этой модели могут быть отмечены температурно-опасные зоны, выявленные с помощью температурных датчиков и навигационной подсистемы.

При этом эффективность управления существенно возрастает вследствие появления дополнительной возможности получения различных геометрических сечений рабочей зоны и ее осмотра с различных позиций наблюдения (в том числе и с позиций, в которых сенсоры не находились или находится не могут).

Комплексирование дальнометрического и телевизионного изображения, снятых с одной позиции, позволяет получить только фрагмент рабочей зоны.

Для формирования полной модели рабочей зоны (например, целого помещения, одного этажа или всего здания) комплексированные изображения получают для разных позиций (например, в процессе движения), а затем объединяют в обобщенную модель.

Объединение отдельных комплексированных изображений возможно только при решении навигационной задачи - определении приращения координат (линейных и угловых) между позициями съема изображений.

Реальная ситуация во внешней среде по каким-либо причинам может меняться с течением времени.

В процессе движения робота эти несоответствия могут быть обнаружены и использованы для уточнения модели внешней среды. Обнаруженные бортовой системой технического зрения препятствия и свободные от препятствий участки заносятся в модель путем преобразования из подвижной системы координат, связанной с роботом, в неподвижную систему координат, связанную с внешней средой.

Используя информацию о построенной модели и о местонахождении в ней робота, бортовое программное обеспечение формирует целенаправленную безопасную траекторию движения. Отработка найденной траектории сводится к выполнению определенной последовательности ограниченного набора команд, сводящихся к удержанию на заданном курсе и поддержанию заданного радиуса поворота.

Предлагаемое техническое решение позволит решить задачу трехмерной визуализации робототехнического комплекса в окружающей обстановке с наложением опасных факторов аварийной ситуации и задачу автономных движений по скорректированным при необходимости траекториям.

Способ автоматического управления наземным робототехническим комплексом, включающий радиообмен между пультом управления и робототехническим комплексом, обеспечение ввода и обработку входной информации, поступающей от бортовых датчиков, вычисление текущей ориентации и местоположения робототехнического комплекса, отличающийся тем, что при потере радиосвязи между пультом управления и робототехническим комплексом осуществляют его автоматический возврат в точку старта или в зону уверенного радиообмена по ранее пройденной траектории с корректировкой этой траектории в обход обнаруженных препятствий путем реализации на борту робототехнического комплекса базовых алгоритмов движения в заранее неизвестной обстановке по дальнометрическому изображению внешней среды с помощью навигационно-вычислительного блока.



 

Похожие патенты:

Изобретение относится к робототехнике, а именно к робототехническим комплексам, предназначенным для дистанционной работы в труднодоступных и опасных для присутствия человека местах.

Изобретение относится к области робототехники и предназначено для построения колесных андроидных роботов, используемых внутри помещений. Шасси колесного робота содержит прямоугольную раму, два ведущих колеса, выполненные большего диаметра и с жестко закрепленными осями, два пассивных колеса, выполненные меньшего диаметра и свободно вращающимися вокруг вертикальной оси, и пятое пассивное колесо, выполненное большего диаметра и с жестко закрепленной осью.

Изобретение относится к области робототехники и предназначено для построения колесных андроидных роботов. Устройство для подъема и пускания торса андроидного робота содержит основание, на котором закреплен двигатель, и гайку, навинченную на винт, опирающийся на подшипник.

Робототехнический комплекс содержит самоходное управляемое транспортное средство, пульт дистанционного управления, систему управления движением, систему навигации, систему связи и передачи данных, комплект специального оборудования, систему технического зрения, исполнительные механизмы.

Изобретение относится к робототехнике и может найти применение в качестве мобильного робота и самодвижущейся транспортной тележки для использования в цехах промышленных предприятий с высокими градиентами окружающей температуры.

Изобретение относится к сканирующей зондовой микроскопии, микромеханике, робототехнике и нанотехнологии. Шагающий робот-нанопозиционер предназначен для прецизионного перемещения зонда микроскопа или исследуемого под микроскопом образца и содержит перемещаемую платформу, более трех опор и несущую поверхность, его конструктивные элементы изготовлены из материалов с малыми коэффициентами теплового расширения.

Изобретение относится к военной технике, а именно к способам применения многофункциональных робототехнических комплексов, предназначенных для дистанционной работы, и может быть использовано для решения задач обеспечения боевых действий сухопутных войск.

Изобретение относится к военной и специальной технике а именно к робототехническим комплексам, предназначенным для дистанционной работы в условиях боевых действий, а также в труднодоступных и опасных для присутствия человека местах.
В способе перед началом выполнения работ устанавливают значения параметров для управления машиной. Далее оператор указывает направление на объект с одновременным измерением, по меньшей мере, одного угла направления на объект относительно базового направления, с последующим автоматизированным управлением движениями машины и/или ее подвижных частей.

Изобретение относится к робототехнике и может быть использовано в роботах, предназначенных для ликвидации чрезвычайных ситуаций, например, для обнаружения и уничтожения взрывоопасных устройств.

Для реализации задачи обнаружения препятствий, возникающих на пути движения мобильного робототехнического комплекса, используют ультразвуковые датчики, установленные по периметру комплекса. Перед началом движения в системе управления задают предельную дальность обнаружения препятствия и вводят зону гистерезиса, когда расстояние до препятствия находится на границе зоны обнаружения. После выбора основного направления движения и начала движения осуществляют непрерывную обработку данных с ультразвуковых датчиков. После обнаружения препятствия определяют угол поворота комплекса для выполнения маневра по объезду препятствия, для чего в состав комплекса введен аналоговый датчик угловой скорости - микромеханический гироскоп. Для исключения влияния на точность вычисления угла поворота перед использованием комплекса проводят калибровочные работы, складывающиеся из двух частей. Первая - калибровка «нуля» датчика и принятие постоянной поправки X к значению угловой скорости. Вторая - нахождение масштабных коэффициентов К1, К2 для вычисления значений угла поворота. Для получения требуемой точности выполняют предварительную фильтрацию оцифрованного сигнала угловой скорости по методу скользящего среднего. Для получения значения угла - численное интегрирование значения угловой скорости с учетом коэффициента К. Достигается определение с высокой точностью угла поворота для выбора дальнейшего направления движения. 5 ил.

Изобретение относится к сельскому хозяйству и может быть использовано для транспортировки и заливки воды в баки на фермы. Технический результат - повышение скорости доставки воды на фермы. Электроробот-водовоз содержит цистерну, двигатель, люк с автоматическим люкозатворным механизмом, насос, датчик уровня воды в баке, электрифицированную платформу, кабину. Также он содержит пантограф для питания электроробота-водовоза по контактной сети постоянного тока, манипулятор со шлангом для слива воды в бак, две веб-камеры внешнего вида с адаптером, две веб-камеры для контроля работы манипулятора, wi-fi передатчик для связи с центром управления и систему управления. Система управления содержит микроконтроллер, блок синхронизации для контроля места остановки электроробота-водовоза, регулятор скорости и блок диагностики электрических и механических узлов. 2 ил.

Изобретение относится к модулю обнаружения препятствий и роботу-уборщику, включающему упомянутый модуль. Робот-уборщик содержит корпус, приводное устройство для приведения в движение корпуса, модуль обнаружения препятствий для обнаружения препятствий вокруг корпуса и устройство управления для управления приводным устройством на основании результатов, полученных модулем обнаружения препятствий. Модуль обнаружения препятствий содержит по меньшей мере один излучатель света и приемник света. Излучатель света включает в себя источник света и широкоугольную линзу для преломления или отражения света от источника света для рассеивания падающего света в виде плоского света. Приемник света содержит отражающее зеркало для повторного отражения отраженного света, отражаемого препятствием, для генерации отраженного света, оптическую линзу, отнесенную от отражающего зеркала на заданное расстояние, чтобы позволить отраженному свету проходить через оптическую линзу, и датчик изображений и схему обработки изображений. Изобретение позволяет повысить точность обнаружения препятствий без использования множества датчиков или отдельного сервомеханизма. 2 н. и 13 з.п. ф-лы, 52 ил.

Изобретение относится к использованию роботизированных устройств для обработки объемных объектов и может найти применение в области сельского хозяйства, в промышленности, строительстве, а также в дефектоскопии. Способ включает использование роботизированного устройства для обработки, манипулятор которого удерживает съемный рабочий инструмент. Способ характеризуется тем, что включает этапы, на которых: а) последовательно перемещают роботизированное устройство для обработки на заранее рассчитанные или произвольно выбранные дискретные рабочие места в непосредственной близости от объемного объекта, б) на каждом занятом роботизированным устройством для обработки рабочем месте с помощью системы позиционирования определяют реальные координаты и ориентацию роботизированного устройства для обработки, в) для каждого занятого рабочего места с учетом размеров рабочего инструмента и мобильного шасси и определенных на этапе б) реальных координат и ориентации определяют возможность достижения рабочим инструментом из данного занятого рабочего места по крайней мере части области обработки объемного объекта. При отсутствии такой области перемещают роботизированное устройство для обработки в новое рабочее место, этапы а)-в) повторяют для нового рабочего места, рассчитывают траекторию движения рабочего инструмента для части области обработки объемного объекта, достижимой из занятого рабочего места, и осуществляют обработку части области обработки объемного объекта. При определении возможности достижения рабочим инструментом по крайней мере части области обработки из данного занятого рабочего места и расчете траектории движения рабочего инструмента исключают ранее обработанные части области обработки. Способ обеспечивает точную и полную автоматизированную обработку объемных объектов сложной формы в реальных условиях на месте их расположения. 5 з.п. ф-лы, 2 ил.

Группа изобретений относится к орбитальной заправке космических аппаратов (КА), например искусственных спутников. Система дозаправки содержит обслуживаемый (14) и обслуживающий (12) КА со средствами транспортировки топлива из баков КА (12) в баки КА (14). Она также содержит клапанный инструмент (30) для соединения и отсоединения заправочного трубопровода (25) с отверстием (23) для горючего и с отверстием (27) для окислителя на соответствующих баках КА (12). Имеется механизм (16) позиционирования инструмента (рука-манипулятор, например, с двумя степенями свободы) с концевым исполнительным элементом (18). С помощью матрицы (26) датчиков определяются смещения между инструментом и отверстиями (23) и (27). Механизм (16) может захватывать, кроме (30), и другие инструменты, которые хранятся в контейнере (20). Система может быть автономной и/или дистанционно управляться оператором, находящимся в космосе или на Земле. Техническим результатом группы изобретений является обеспечение роботизированной (дистанционно контролируемой) дозаправки заранее не подготовленных спутников. 4 н. и 86 з.п. ф-лы, 12 ил.

Изобретение относится к робототехнике, а именно к устройствам, с помощью которых осуществляют испытания мобильных роботов, в том числе, в рамках игровых мероприятий и соревнований. Конструктивные узлы, выполняющие роль препятствий для прохождения роботов, установлены на общем основании и соединены между собой с образованием единой сборно-разборной конструкции. Конструктивные узлы включают соединенные друг с другом платформу, выполненную в виде объемного элемента с плоским верхним основанием, пандус, выполненный в виде объемного элемента, имеющего наклонную верхнюю поверхность, башню, предназначенную для перемещения внутри нее робота. Башня включает полую трубчатую конструкцию с входным проемом, внутри которой смонтирована винтообразная лестница, содержащая лестничные марши, выполненные в виде настилов. Техническим результатом изобретения является повышение уровня сложности перемещений робота для оценки характеристик его работы. 15 з.п. ф-лы, 2 ил.

Изобретение относится к герметизации трещины в стенке бассейна атомной электростанции, а именно способу герметизации шва и мобильному роботу, оснащенному размотчиком клейкой ленты, который содержит головку, прижимающую клейкую ленту к стенке. Для осуществления герметизации шва управляют множеством отсасывающих систем робота, содержащих присоски, причем указанное множество отсасывающих систем содержит первую отсасывающую систему и по меньшей мере вторую отсасывающую систему. При этом размотчик механически интегрирован с первой отсасывающей системой, выполненной с возможностью перемещения относительно второй отсасывающей системы для регулирования положения головки размотчика и клейкой ленты, которую наносят на шов. И управляют перемещением первой отсасывающей системы относительно второй отсасывающей системы. При этом клейкую ленту размотчика наносят на шов при перемещении первой отсасывающей системы относительно второй отсасывающей системы. Изобретение позволяет наклеивать ленту в труднодоступных местах, на острых краях и при этом на протяженных участках. 3 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к области робототехники, а именно к мобильному робототехническому комплексу МРК с автономным питанием и системой дистанционного управления, предназначенному для поиска, эвакуации или разрушения подозрительных предметов на месте их обнаружения. МРК содержит мобильный робот, состоящий из манипулятора с навесным оборудованием, устанавливаемым на гусеничное шасси в сборе, включающее соединенный с ходовой частью корпус, на который с обоих бортов внутри замкнутого гусеничного обвода установлены приводные мотор-звездочки. Внутри каждого замкнутого гусеничного обвода на корпус устанавливают по нижнему краю два опорных катка и балансирную тележку с катками, по верхнему краю - поддерживающий каток и механизм изменения геометрии гусеничного обвода. С наружной стороны гусеничного обвода на корпусе шасси устанавливают кронштейн с прижимным катком, обеспечивающим сцепление гусеничного обвода с приводной мотор-звездочкой. Механизм изменения геометрии гусеничного обвода состоит из линейного привода с подвижным штоком, соединенным с ленивцем, на одном конце которого установлена роликовая опора, а на другом - механизм натяжения с опорным катком, которые постоянно находятся в контакте с гусеничным обводом. МРК обладает повышенной проходимостью и устойчивостью. 2 ил.

Изобретение относится к области робототехники, в частности к вариантам движущегося робота, и может быть использовано для дистанционного беспилотного исследования труднодоступных или опасных для человека участков земной и инопланетной поверхностей. Движущийся робот состоит из трех или шести приводов поступательного движения, состоящих из неподвижно соединенных цилиндров под углом 90° между их осями и выдвигающихся штоков-опор, и корпуса, расположенного вокруг места соединения упомянутых приводов с размещенными внутри источником энергии и узлом управления. Робот выполнен с возможностью поочередного отталкивания штоков-опор от поверхности перемещения. Два штока-опоры при движении служат опорами робота, находящимися на поверхности перемещения, с возможностью выдвижения из цилиндра третьего штока-опоры и его отталкиванием от поверхности перемещения с обеспечением смещения центра тяжести робота и опрокидывания его корпуса через два штока-опоры, находящихся на поверхности перемещения. 2 н.п. ф-лы, 11 ил.

Изобретение относится к области робототехники и может быть использовано для управления мобильным роботом. Посредством камеры, установленной на подвижном роботе, получают изображение местности. С помощью мыши или сенсорного дисплея указывают конечную точку, в которой должен оказаться робот, на полученном изображении, отображенном на мониторе посредством приложения или веб-сайта через интерфейс, запущенный на программируемом устройстве управления, показывающем видео с камеры робота, с использованием оптических параметров камеры вычисляют координаты конечной точки в системе координат, связанной с роботом. Осуществляют обнаружение препятствий с помощью установленного на подвижном роботе сканирующего лазерного дальномера и осуществляют автоматическое перемещение робота в конечную точку по спланированной траектории с объездом им статических и динамических препятствий. При этом рассчитывают требуемые угловую и поступательную скорости движения робота с минимальным отклонением от спланированной траектории. Изобретение обеспечивает повышение точности позиционирования положения робота при его перемещении. 2 з.п. ф-лы, 3 ил.
Наверх