Способ измерения тока короткого замыкания

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для измерения токов в электроустановках. Способ измерения тока короткого замыкания заключается в том, что четыре геркона устанавливают на безопасных расстояниях h1, h2, h3, h4 от проводника, угол между перпендикулярной линией продольной оси проводника и продольной осью первого геркона, второго, третьего и четвертого герконов составляет 90°. Настраивают герконы так, чтобы они срабатывали при токах срабатывания IСР4>ICP3>IСР2>ICP1. Измеряют время между замыканием первого и второго, второго и третьего геркона, третьего и четвертого геркона, которые расположены в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания IСР1, IСР2, IСР3, ICP4 в проводнике. Определяют амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima путем решения системы уравнений для токов срабатывания IСР1, IСР2, IСР3, ICP4, после чего определяют амплитуду полного тока короткого замыкания Iпол по формуле:

Технический результат заключается в повышении быстродействия релейной защиты. 2 ил.

 

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для измерения токов короткого замыкания в электроустановках.

Известен способ измерения тока короткого замыкания [Хомерике O.K. Полупроводниковые преобразователи магнитного поля. - М.: Энергоатомиздат, 1986. - С. 7-19] путем фиксации напряжения на выходе датчика Холла, установленного вблизи проводника. По напряжению определяют величину магнитной индукции, создавшей его, а по последней - величину тока в проводнике.

Однако величина контролируемого напряжения незначительна и зависит от температуры окружающей среды, что требует дополнительного усиления сигнала и компенсации температурных погрешностей. В конечном итоге это ведет к снижению точности измерения тока.

Наиболее близким к предлагаемому является способ измерения тока короткого замыкания [KZ 21350 A4, МПК G01R 19/30 (2006.01), опубл. 15.06.2009], при котором фиксируют время t1 между моментами замыкания и размыкания контактов первого геркона, время t1, 2 между замыканием контактов первого и второго герконов и время t3 между моментами замыкания и размыкания контактов второго геркона. Первый и второй герконы располагают в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания IСР1 и IСР2 в проводнике и размыкали контакты при токах возврата IВ1 и IВ2. Второй геркон настраивают так, чтобы он срабатывал при токах срабатывания IСP2>ICP1 и возвращался при токах возврата IB2>IB1. Составляют уравнения для ICP1, IСР2, IB1 и IВ2 по формуле:

где Im - амплитуда периодической составляющей измеряемого тока;

t - время в любой момент времени;

φΗ - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока короткого замыкания;

ima - начальное значение апериодической составляющей измеряемого тока;

ω - угловая частота тока;

Та - постоянная времени,

используя t1, t1, 2, t3. Находят амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima из системы четырех составленных уравнений. По указанной формуле определяют полный ток короткого замыкания Iпол в любой момент времени.

Недостатком этого способа является низкое быстродействие релейной защиты, так для определения тока короткого замыкания нужно время 10 мс.

Задачей изобретения является повышение быстродействия релейной защиты.

Это достигается тем, что способ измерения тока короткого замыкания, так же как и в прототипе, заключается в том, что фиксируют время t1, 2 между замыканием контактов первого и второго герконов, которые расположены в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания ICP1, IСР2 в проводнике, второй геркон настраивают так, чтобы он срабатывал при токах срабатывания IСP2>ICP1, составляют уравнения для ICP1, IСР2, используя t1, 2, и определяют амплитуду полного тока короткого замыкания по формуле:

где Im - амплитуда периодической составляющей измеряемого тока;

t - время в любой момент времени;

φΗ - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока короткого замыкания;

ima - начальное значение апериодической составляющей измеряемого тока;

ω - угловая частота тока;

Та - постоянная времени.

Согласно изобретению четыре геркона устанавливают на безопасных расстояниях h1, h2, h3, h4 от проводника. Угол между перпендикулярной линией продольной оси проводника и продольной осью первого геркона, второго, третьего и четвертого герконов составляет 90°. Настраивают герконы так, чтобы они срабатывали при токах срабатывания IСP4>ICP3>ICP2. Дополнительно измеряют время между замыканием второго и третьего геркона, третьего и четвертого геркона и определяют амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima из выражения:

где t1, 2 - время между замыканием контактов первого и второго герконов;

t2, 3 - время между замыканием контактов второго и третьего герконов;

t3, 4 - время между замыканием контактов третьего и четвертого герконов;

tH - время до замыкания контактов первого геркона;

ICP1 - ток срабатывания первого геркона;

IСР2 - ток срабатывания второго геркона;

IСР3 - ток срабатывания третьего геркона;

IСР4 - ток срабатывания четвертого геркона,

используя которые определяют амплитуду полного тока короткого замыкания Iпол.

Измерение времени между срабатыванием второго и третьего, третьего и четвертого герконов позволяет определить амплитуду тока короткого замыкания за 5 мс, так как срабатывания всех герконов происходит в первую половину полупериода переменного тока. Таким образом, по сравнению с прототипом, повышено быстродействие релейной защиты.

На фиг. 1 показано устройство для реализации предлагаемого способа.

На фиг. 2 представлены зависимости I=f(t), где кривая 1 - полный ток короткого замыкания Iпол, кривая 2 - номинальный ток Iном, кривая 3 - ток апериодической составляющей Iапер, кривая 4 - ток периодической составляющей Iпер.

Предложенный способ измерения тока короткого замыкания может быть реализован с помощью устройства, в котором первый 1, второй 2, третий 3 и четвертый 4 герконы (фиг. 1) с нормально разомкнутыми контактами размещены в магнитном поле проводника 5 с током и подключены к микроконтроллеру 6 (МК).

Могут быть использованы герконы типа МКА-14103 группы А производителя ОАО "Рязанского завода металлокерамических приборов". Микроконтроллер 6 (МК) может быть выполнен на микроконтроллере серии 51 производителя atmel AT89S53.

Способ осуществляют следующим образом.

Первый 1, второй 2, третий 3 и четвертый 4 герконы с нормально разомкнутыми контактами устанавливают вблизи проводника 5 на безопасном расстоянии. Расстояние от проводника 5 до первого 1 геркона h1=0,1 м, расстояние от проводника 5 до второго 2 геркона h2=0,13 м, расстояние от проводника 5 до третьего 3 геркона h3=0,16 м, расстояние от проводника 5 до четвертого 4 геркона h4=0,19 м. Угол между перпендикулярной линией продольной оси проводника 5 и продольной осью первого геркона 1, второго 2, третьего 3 и четвертого 4 герконов составляет 90°. Герконы подобраны так, чтобы токи срабатывания ICP1, IСР2, ICP3, ICP4 первого 1, второго 2, третьего 3 и четвертого 4 герконов соответствовали неравенствам:

IСР1<IСР2<ICP3<IСР4.

В проводнике 5 протекает ток короткого замыкания. При увеличении тока до тока срабатывания IСР1=33,9 А первого 1 геркона (фиг. 2, кривая 1) замыкаются разомкнутые до этого контакты. Это происходит под действием созданного током IСР1 срабатывания магнитного поля напряженностью срабатывания в зазоре между контактами первого 1 геркона, направленной вдоль его продольной оси. Второй 2 геркон замыкает контакты при токе срабатывания ICP2=60,4 А. Третий 3 геркон замыкает контакты при токе срабатывания IСР3=98,8 А. Четвертый 4 геркон замыкает контакты при токе срабатывания IСР4=176,0 А.

При увеличении тока в проводнике 5 до величины тока срабатывания IСР1 (фиг. 2, кривая 2) первый геркон 1 срабатывает, его контакты замыкаются, микроконтроллер 6 (МК) фиксирует значение тока и начинает отчет времени t1, 2 между замыканием контактов первого и второго герконов. Если ток не увеличился до ICP2, тo второй геркон 2 не срабатывает и микроконтроллер 6 (МК) обнуляет все значения.

Но если в проводнике 5 ток увеличивается до тока срабатывания IСР2, то срабатывает второй геркон 2 (фиг. 2, кривая 1). Микроконтроллер 6 (МК) фиксирует срабатывание второго 2 геркона, время между замыканием первого и второго герконов t1, 2=1 мс и начинает отчет времени t2, 3 между замыканием второго и третьего герконов. Когда ток в проводнике 5 увеличивается до тока срабатывания ICP3, то срабатывает третий геркон 3 (фиг. 2, кривая 1). Микроконтроллер 6 (МК) фиксирует срабатывание третьего 3 геркона, промежуток времени между замыканием второго и третьего герконов

t2, 3=0,8 мс и начинает отчет времени t3, 4 между замыканием третьего и четвертого герконов. Далее ток в проводнике 5 увеличивается до тока срабатывания IСР4, срабатывает четвертый геркон 4 (фиг. 2, кривая 1), и фиксируется время между замыканием третьего и четвертого герконов t3,4=1,2 мс.

В микроконтроллере 6 (МК) вычисляют значения Im, tH, φΗ по формулам разложения тока короткого замыкания на апериодическую (фиг. 2, кривая 3) и периодическую составляющие (фиг. 2, кривая 4) [Ульянов С.А. Электромагнитные переходные процессы. - Москва, 1970 г. - С. 58-65.]:

где Im - амплитуда периодической составляющей измеряемого тока;

tH - время до замыкания контактов первого геркона;

φΗ - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока;

ima - начальное значение апериодической составляющей измеряемого тока,

Та - постоянная времени.

Затем определяют полный ток короткого замыкания Iпол для любого момента времени по формуле:

Расчет ведется следующим образом, в выражении (2) второе уравнение делят на первое; раскладывают на

- представлено в виде , при этом сокращается и уравнение принимает вид:

Раскрывают скобки, аргументы, содержащие амплитуду периодической составляющей измеряемого тока Im, переносят в правую часть уравнения, а - в левую. В правой части уравнения (4) аргумент выносят за скобку:

Для третьего и четвертого уравнений системы (2) выполняют аналогичные (4)-(5) операции. В результате получают:

Далее делят уравнение (6) на (5), Im·sin(ωtΗΗ) сокращают, определяют ctg(ωtkΗ):

и находят:

Затем определяют амплитуду периодической составляющей измеряемого тока Im:

Находят значение мгновенной величины периодической составляющей тока IМ в точке Μ (фиг. 2):

и мгновенное значение величины апериодической составляющей тока iN в точке N:

Чтобы найти начальное значение ima апериодической составляющей измеряемого тока в уравнении (10) в момент перехода через ноль периодической составляющей измеряемого тока Im, принимают φΗ=0, тогда ωtH1 и φ1=arcsin(IM/Im), которые подставляют в формулу (11) и определяют:

Принимая данное значение амплитудой апериодического составляющий при переходе полного тока короткого замыкания через ноль при φΗ=0, строят кривую апериодической составляющей измеряемого тока (фиг. 2, кривая 3).

По полученным данным строят кривую полного тока короткого замыкания Iпол (фиг. 2, кривая 1) в любой момент времени по формуле:

Амплитуда полного тока короткого замыкания полученная с использованием предложенного способа IМпол=435 А при заданном значении I′Мпол=412 А. Таким образом, погрешность определения составила

Способ измерения тока короткого замыкания, при котором фиксируют время t1,2 между замыканием контактов первого и второго герконов, которые расположены в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания IСР1, IСР2 в проводнике, второй геркон настраивают так, чтобы он срабатывал при токах срабатывания IСР2>IСР1,
составляют уравнения для IСР1, IСР2, используя t1,2, и определяют амплитуду полного тока короткого замыкания по формуле:

где Im - амплитуда периодической составляющей измеряемого тока;
t - время в любой момент времени;
H - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока короткого замыкания;
ima - начальное значение апериодической составляющей измеряемого тока;
- угловая частота тока;
Ta - постоянная времени,
отличающийся тем, что четыре геркона устанавливают на безопасных расстояниях h1 h2, h3, h4 от проводника, угол между перпендикулярной линией продольной оси проводника и продольной осью первого геркона, второго, третьего и четвертого герконов составляет 90°, причем настраивают герконы так, чтобы они срабатывали при токах срабатывания IСР4>IСР3>IСР2, дополнительно измеряют время между замыканием второго и третьего геркона, третьего и четвертого геркона и определяют амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima из выражения:

где t1,2 - время между замыканием контактов первого и второго герконов;
t2,3 - время между замыканием контактов второго и третьего герконов;
t3,4 - время между замыканием контактов третьего и четвертого герконов;
tH - время до замыкания контактов первого геркона;
IСР1 - ток срабатывания первого геркона;
IСР2 - ток срабатывания второго геркона;
IСР3 - ток срабатывания третьего геркона;
IСР4 - ток срабатывания четвертого геркона,
используя которые определяют амплитуду полного тока
короткого замыкания Iпол.



 

Похожие патенты:

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для измерения токов в электроустановках. Способ измерения тока короткого замыкания в проводнике с помощью герконов заключается в том, что n герконов с нормально разомкнутыми контактами устанавливают вблизи проводника, настраивают их так, чтобы они замыкали контакты при токах срабатывания ICP1 и ICP2 и размыкали контакты при токах возврата IB1 и IB2.

Изобретение относится к устройствам защиты трехфазных двигателей от неполнофазной работы и может быть использовано, преимущественно, при разработке систем управления, диагностики и защиты от аварийных режимов для шахтных взрывобезопасных магнитных пускателей.

Изобретение относится к энергетике, а именно к измерительной технике. .

Изобретение относится к энергетике, а именно к измерительной технике. .

Изобретение относится к электроизмерительной технике, а именно к способам определения параметров изоляции кабельной сети, и может быть использовано при экспериментальных измерениях.

Изобретение относится к электротехнике, к системам автоматического поэлементного контроля напряжения химических источников тока. .

Изобретение относится к области измерительной техники и может быть использовано в тех областях научной и промышленной деятельности, где необходимо знание параметров синусоидального напряжения или тока.

Изобретение относится к электротехнике и может быть использовано в приборах для измерения сопротивления петли "фаза-нуль" однофазной питающей сети любого типа при проведении сертификации электроустановок зданий и соответствующих испытаний электрооборудования и электроустановок промышленных и жилых зданий.

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для построения дифференциально-фазных защит. Способ идентификации переменного тока в проводнике с помощью замыкающего геркона, заключающийся в том, что геркон устанавливают вблизи проводника, настраивают его так, чтобы он срабатывал и замыкал контакты при токе Iср в проводнике, возвращался в исходное положение и размыкал контакты при токе Iв. После настройки геркона включают электроустановку и при появлении переменного тока в проводнике: а) измеряют промежуток времени t1,2 между моментами первого и второго размыкания контактов геркона и продолжают измерять промежутки времени между следующими размыканиями контактов геркона до достижения 0,01 с; б) измеряют промежуток времени между моментом tCP(n) замыкания и моментом tB(n) размыкания контактов, фиксируют время момента tB(n) размыкания контактов геркона и определяют амплитуду переменного тока где ; f - частота переменного тока, в) определяют промежуток времени t01(n) от момента tB(n) размыкания контактов геркона до момента t0(n) перехода синусоиды переменного тока через ноль: г) затем определяют время момента перехода синусоиды через ноль t0(n)=tB(n)+t01(n) и запоминают его; д) определяют длительность полуволны синусоиды переменного тока tT/2=t01(n)-t0(n-1); е) если tT/2=0,01 с, то повторяют измерение промежутка времени t1(n+1) между замыканием и размыканием контактов геркона и действия б), в), г), д); ж) при других значениях tT/2, или когда t1(n)≥0,01 с, или t1(n)≥1.2⋅t1(n-1), или , измеряют промежуток времени t1(n+1) между замыканием и размыканием контактов геркона, повторяют действия б), в), г) и определяют длительность периода tT=t0(n+l)-t0(n-1); з) если tT=0,02 с, то повторяют измерение промежутка времени t1(n+2) между замыканием и размыканием контактов геркона и действия б), в), г), д); и) при других значениях tT определяют сдвиг фазы переменного тока: . Техническим результатом заявленного изобретения выступает расширение области использования способа идентификации переменного тока в проводнике с помощью замыкающего геркона за счет определения моментов перехода синусоиды тока через ноль. 6 ил.

Изобретение относится к энергетике, а именно к электроэнергетическим системам, и может быть использовано для построения микропроцессорных устройств защиты от коротких замыканий. Способ идентификации установившегося переменного тока в проводнике с помощью замыкающего геркона и микропроцессора, при котором в лабораторных условиях в катушку индуктивности (КИ) размещают первый замыкающий геркон так, чтобы их продольные оси совпадали, затем в КИ подают переменный ток, постепенно увеличивая его до тока где - наименьший ток в КИ, при котором происходит срабатывание геркона (замыкание контактов), - амплитуда тока, измеряют его величину время замкнутого состояния контактов геркона от момента срабатывания (замыкания) до момента возврата (размыкания) контактов при первом измерении и ток возврата, при котором геркон возвращается в исходное положение, далее увеличивают ток до I2>I1, измеряют ( - величина амплитуды тока при втором измерении) и время от момента срабатывания до возврата при этом измерении, затем увеличивают ток до I3>I2, измеряют ( - величина амплитуды тока при третьем измерении) и время от момента срабатывания до возврата, затем увеличивают ток до I4>I3 и так далее, повторяя предыдущие операции до In>In-1, где n-1 - количество необходимых измерений времени и тока и (i=1, 2…n), N - кратность тока в КИ по отношению к минимальному току срабатывания геркона n=30÷40, N=50÷100, далее строят зависимость амплитуды тока в проводнике от времени замкнутого состояния от момента срабатывания первого геркона до его возврата и вводят полученную зависимость в микропроцессор (в (1), где - амплитуда тока в проводнике, КПР - коэффициент пересчета тока в КИ на ток в проводнике, h - расстояние от проводника до контактов геркона, ωК - количество витков в первой КИ, - длина первой КИ), далее устанавливают геркон в расчетной точке вблизи проводника и при его срабатывании с помощью микропроцессора измеряют время замкнутого состояния геркона, и по зависимости (1) определяют величину амплитуды отличающийся тем, что при каждом i-м измерении и в катушке индуктивности измеряют еще и i-й ток срабатывания геркона, по окончании всех измерений строят зависимость вводят зависимость (2) и в микропроцессор, затем в лабораторных условиях во второй КИ размещают второй замыкающий геркон так, чтобы их продольные оси совпадали, затем в КИ подают переменное напряжение U(K2), определяют угол ψ между подаваемым напряжением U(K2) и током протекающим во второй КИ, далее постепенно увеличивая U(K2) до увеличения тока в КИ до где - наименьший ток, протекающий в КИ, при котором происходит срабатывание второго геркона (замыкание контактов), - амплитуда тока, измеряют величину время замкнутого состояния контактов второго геркона от момента срабатывания до момента возврата (размыкания контактов) и ток возврата, при котором геркон возвращается в исходное положение, далее увеличивают U(K2) до увеличения тока в КИ до измеряют где - величина амплитуды тока, время от момента срабатывания до возврата, и ток срабатывания затем увеличивают U(K2) до увеличения тока в КИ до измеряют где - величина амплитуды тока, время от момента срабатывания до возврата, и ток срабатывания затем увеличивают U(K2) до увеличения тока в КИ до и так далее, повторяя предыдущие операции до где - ток в КИ при поданном напряжении U(K2)=120 В, k-1 - количество необходимых измерений времени и токов и (i=1, 2…k), k=10÷15, далее строят зависимости величин амплитуды тока и тока срабатывания в КИ от времени замкнутого состояния от момента срабатывания геркона до момента его возврата и вводят полученные зависимости, и ψ в микропроцессор, далее устанавливают первый геркон вблизи проводника, а вторую КИ со вторым герконом подключают к выводам вторичной обмотки трансформатора напряжения, оба геркона могут срабатывать параллельно, поэтому микропроцессор одновременно может выполнять следующие операции, при замыкании контактов первого геркона, установленного вблизи проводника, фиксируют астрономическое время и , при котором произошло замыкание и размыкание его контактов, соответственно, затем с помощью микропроцессора из зависимости (2) по находят ток в проводнике при котором геркон замкнул контакты, находят время и из формул и где и - промежутки времени от перехода синусоиды через ноль до срабатывания и от момента возврата до следующего перехода через ноль, соответственно, затем определяют астрономическое время перехода синусоиды тока через ноль по формуле при срабатывании второго геркона с помощью микропроцессора фиксируют астрономическое время измеряют время замкнутого состояния геркона, при размыкании контактов второго геркона в КИ с помощью микропроцессора фиксируют астрономическое время и по зависимостям (3) определяют величины амплитуды тока и тока срабатывания затем находят время и из формул и где и - промежутки времени от перехода синусоиды через ноль до срабатывания и от момента возврата до следующего перехода через ноль, соответственно, и определяют астрономическое время перехода синусоиды тока во второй КИ через ноль по формуле далее определяют переход синусоиды напряжения через ноль по формуле запоминают это время до определения момента следующего перехода напряжения через ноль, затем определяют с помощью микропроцессора фазу установившегося переменного тока в проводнике относительно напряжения по формуле Технический результат заявленного технического решения заключается в расширение области использования за счет определения фазы установившегося переменного тока путем фиксации астрономического времени моментов срабатываний и возвратов герконов, определения моментов перехода через ноль синусоиды тока и напряжения, используемого в качестве точки отсчета. 2 ил.
Наверх