Панель солнечной батареи



Панель солнечной батареи
Панель солнечной батареи
Панель солнечной батареи

 


Владельцы патента RU 2575182:

Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" (RU)

Изобретение относится к устройствам энергопитания космического аппарата, предназначенным для преобразования солнечной энергии в электрическую с максимальной эффективностью и удельной мощностью. Панель солнечной батареи содержит верхнюю и нижнюю обшивки и элементы, соединяющие их на требуемом расстоянии друг от друга, обшивки выполнены с ячейками меньшего размера, чем фотоэлектрические преобразователи, на величину, обеспечивающую возможность их крепления к обшивке, и обшивки соединены между собой элементами, выполненными в виде ребер жесткости. Изобретение обеспечивает возможность улучшить тепловой режим фотоэлектрических преобразователей, уменьшить массу и толщину панели за счет перемещения фотоэлектрических преобразователей внутрь несущей конструкции. 3 з.п. ф-лы, 3 ил., 1 пр.

 

Изобретение относится к устройствам энергообеспечения искусственного спутника Земли - космического аппарата (КА), служащим для преобразования солнечной энергии в электрическую.

В практике создания солнечных батарей для КА существует несколько видов несущей конструкции панели солнечной батареи.

Одним из видов такой несущей конструкции является каркас с натянутыми на его поверхности сетеполотном для размещения и крепления фотоэлектрических преобразователей (патент RU 2190900 C2) и каркас с натянутыми на его поверхности ортогональными струнами для размещения и крепления фотоэлектрических преобразователей (патент RU 2220477 C2).

Недостатком таких конструкций является то, что силовой элемент, рама из труб и подложка, в виде сетеполотна или ортогональных струн, функционально разъединены, что приводит к избыточной массе панели, а также на такую подложку не представляется возможным установка солнечных концентраторов. Но такая конструкция имеет и существенное преимущество за счет отсутствия конструктивных элементов под фотоэлектрическими преобразователями, что улучшает их тепловой режим и приводит к повышению их КПД.

Другим видом несущей конструкции является сотопанель с установленными на ней солнечными концентраторами, состоящими из трансформируемых гибких отражателей и солнечных элементов - фотоэлектрических преобразователей (патенты RU 2346355, US №6017002). Сотопанель состоит из двух обшивок и сотового заполнителя, расположенного между ними, соединение между ними является клеевым. Размещение и крепление фотоэлектрических преобразователей и отражателей производится непосредственно к верхней обшивке. Недостатком такой конструкции является то, что под фотоэлектрическими преобразователями находятся две обшивки, затрудняющие теплоотвод, также гибкие отражатели требуют специальных устройств для их фиксации в сложенном состоянии.

В качестве прототипа выбрано изобретение, патент US №6075200А, опубликованный в 13.06.2000 г, содержащее основные элементы концентраторных солнечных батарей. Оно содержит тонкие и гибкие линейно-фокусные линзы Френеля, сделанные из силиконового полимера, разворачивающиеся и поддерживающиеся концевыми арками, которые растягивают линзы в их протяженном направлении и формируют оптический элемент в виде натянутой мембраны. Эти растянутые линзы собирают солнечное излучение и фокусируют его на узкие солнечные элементы, которые монтируются на тонкие пластины-радиаторы для сброса тепла в космическое пространство.

Тем не менее, рассмотренная конструкция концентраторной солнечной батареи на основе растянутых на арках силиконовых линз Френеля имеет некоторые серьезные недостатки:

- для силиконовых линз Френеля на арочных держателях необходимы специальные высокотехнологические устройства для раскрытия, натяжения гибких силиконовых мембран, закрепленных на арочных держателях, и фиксации арочных держателей линз;

- процессы монтажа арочных держателей на поверхности панелей, закрепление краев гибких силиконовых линз Френеля на арочных держателях требуют применения прецизионной технологической оснастки и существенно усложняют процесс сборки концентраторных солнечных батарей, а также увеличивают погрешность установки компонентов приемников солнечного излучения в фокус линз Френеля.

Задачей изобретения является улучшение теплового режима фотоэлектрических преобразователей и уменьшение массы и толщины панели солнечной батареи, а также повышение надежности за счет исключения трансформации линз Френеля из сложенного положения в рабочее.

Поставленная задача решается за счет того, что в панели солнечной батареи, содержащей верхнюю и нижнюю обшивки и элементы, соединяющие их на требуемом расстоянии друг от друга, обшивки выполнены сетчатыми, с ячейками меньшего размера, чем фотоэлектрические преобразователи на величину, обеспечивающую возможность их крепления к обшивке, и обшивки соединены между собой элементами, выполненными в виде ребер.

В качестве примера использования несущей конструкции с фотоэлектрическими преобразователями рассмотрим панель солнечной батареи, представленную на фиг. 1.

Верхние 1 и нижние 2 обшивки выполнены с вырезами под фотоэлектрические преобразователи. Вырезы меньше, чем размер фотоэлектрических преобразователей, примерно на 2 мм по периметру фотоэлектрических преобразователей для возможности их закрепления в зоне 5. Толщина обшивок выбрана для обеспечения требуемой жесткости панели солнечной батареи. Ребра 3, соединяющие обшивки 1, 2 через клеевое соединение, выполнены ортогональными и обеспечивают требуемую толщину панели и соответственно ее жесткость. Фотоэлектрические преобразователи 4, закрепленные на верхней обшивке 1, с тыльной стороны практически полностью открыты и имеют возможность излучать тепло в космическое пространство без потерь на теплопроводность несущей конструкции. В ребрах выполнены отверстия 6, позволяющие располагать кабельную сеть внутри панели.

Пример использования несущей конструкции с солнечными концентраторами, включающими фотоэлектрические преобразователи и отражатели, показан на фиг. 2. Солнечные концентраторы состоят из фотоэлектрических преобразователей 4, размещенных на радиаторе 9, и отражателей 10. Несущая конструкция панели позволила разместить отражатели 10 и фотоэлектрические преобразователи 4 внутри панели. При этом верхняя часть отражателей 10 крепится на верхней обшивке 1, а радиатор 9 (теплоотводящая плата) с фотоэлектрическими преобразователями 4 - на нижней обшивке 2.

Пример использования несущей конструкции с солнечными концентраторами показан на фиг. 3, который включает в себя фотоэлектрические преобразователи и линейные линзы Френеля. При этом линзы Френеля 11 крепятся на верхней обшивке 1, а радиатор 9 (теплоотводящая плата) с фотоэлектрическими преобразователями 4 крепится на нижней обшивке 2.

Таким образом, заявленная несущая конструкция с солнечными концентраторами позволяет улучшить тепловой режим фотоэлектрических преобразователей, уменьшить массу и толщину панели для солнечной батареи за счет перемещения фотоэлектрических преобразователей внутрь несущей конструкции.

1. Панель солнечной батареи, состоящая из элементов, расположенных на несущей подложке, содержащей верхнюю и нижнюю обшивки и элементы, соединяющие их на требуемом расстоянии друг от друга, отличающаяся тем, что обшивки выполнены с прямоугольными ячейками и соединены между собой элементами, выполненными в виде ребер по периметру каждой ячейки.

2. Панель солнечной батареи по п. 1, отличающаяся тем, что для закрепления фотоэлектрических преобразователей без концентраторов светового потока ячейки обшивок несущей подложки выполнены меньшим размером хотя бы с одной стороны фотоэлектрического преобразователя на величину, обеспечивающую возможность его крепления к обшивке.

3. Панель солнечной батареи по п. 1, отличающаяся тем, что фотоэлектрические преобразователи закреплены на нижней обшивке несущей подложки, а оптические отражатели размещены между верхней и нижней обшивками несущей подложки и концентрируют световой поток на фотоэлектрические преобразователи.

4. Панель солнечной батареи по п. 1, отличающаяся тем, что фотоэлектрические преобразователи закреплены на нижней обшивке несущей подложки, а оптические линзы размещены на верхней обшивке несущей подложки и концентрируют световой поток на фотоэлектрические преобразователи.



 

Похожие патенты:

Изобретение относится к способу получения структурированного электропроводящего покрытия на подложке. Технический результат - предоставление способа получения структурированного металлического покрытия на подложке, при реализации которого формируют структурированный металлический слой с четко определенными кантами и краями, что позволяет напечатать картину с высоким разрешением и структурами малых размеров, применимую в солнечных батареях.

Изобретение относится к области создания детекторов излучения и касается фотоприемника ик-излучения с диафрагмой. Фотоприемник содержит держатель, фоточувствительный элемент, приклеенный на растре, и диафрагму.

Изобретение относится к области фотогальванических устройств, в частности тонкопленочных композитных материалов, пригодных для изготовления гибких высокоэффективных преобразователей солнечной энергии, и касается нанокристаллических слоев на основе диоксида титана с низкой температурой отжига для применения в сенсибилизированных красителем солнечных элементах и способов их получения.

Группа изобретений относится к области медицины. Искусственная сетчатка представляет собой матрицу сенселей, каждый из которых содержит светочувствительный элемент в виде фотодиода и электрод.

Изобретение относится к электротехнике альтернативных источников энергии, в частности к устройствам для генерирования электрической и тепловой энергии путем преобразования энергии светового излучения, и предназначено для использования в конструкциях солнечных панелей.

Изобретение обеспечивает фотогальваническое устройство и способ изготовления такого устройства. Фотогальваническое устройство согласно изобретению включает в себя комбинацию полупроводниковых структур и защитный слой.

Изобретение относится к композиционным материалам, используемым в сверхлегких каркасах солнечных батарей и элементов конструкций космических аппаратов, и касается трехслойной панели.

Изобретение относится к области солнечной энергетики. Устройство для преобразования солнечной энергии содержит, по крайней мере, одну пару подложек, каждая из которых выполнена в виде полосы, при этом, по крайней мере, одна из полос выполнена профилированной с периодически повторяющимся профилем, образующим полости траншейного типа, и установлена с возможностью соединения своей лицевой поверхностью с тыльной поверхностью второй полосы, при этом полосы выполнены из материала, обеспечивающего возможность формирования их профилированными посредством изгибания, полоса, выполненная профилированной с периодически повторяющимся профилем, образующим полости траншейного типа, установлена с возможностью соединения своей лицевой поверхностью с тыльной поверхностью второй полосы и образования их профилями, по крайней мере, одного ряда траншей, а из полос одной пары - гибкого устройства для преобразования солнечной энергии, профили, по крайней мере, одного ряда траншей выполнены с возможностью образования части окружности, и/или части гиперболы, и/или части параболы, и/или траншеи с плоским, выпуклым или вогнутым дном и наклонными расширяющимися боковыми стенками, при этом все траншеи выполнены с направленными наружу перпендикулярными или наклонными относительно воображаемой плоскости, наложенной на края соответствующей траншеи первой полосы, бортами по контуру соответствующей траншеи, причем траншеи выполнены с нанесенным на их рабочую поверхность фотоприемным слоем, а борты траншей - с нанесенным на их поверхность фотоприемным слоем или отражающим покрытием.

Устройство относится к области электротехники. Техническим результатом является повышение прочности.

Изобретение относится к новым редокс парам для применения в сенсибилизированных красителем солнечных элементах СКСЭ. Редокс-пары образованы по общей формуле (производное бипиридина)nMe(Ion)m, где производное бипиридина есть: где R1, R2, R3 - любой заместитель из ряда метил, этил, пропил, бутил, пентил, гексил, Me - металл из ряда Cr, Mo, Nd, Ni, Pd, Pt, Ir, Co, Rh, Cu, W, Mn, Та, Fe, Ru, Ion - противоион - любой анион из ряда ClO4 -, Cl-, I-, BF4 -, PF6 -, CF3SO3 -, n, m - соответствуют валентности иона металла.

Изобретение относится к области возобновляемых источников энергии, использующих солнечное излучение для генерирования экологически чистой электроэнергии в больших объемах. Объемный фотоэлектрический модуль выполнен в виде плоских фотоэлектрических элементов, вертикально расположенных на внутренних сторонах полого многогранника с соотношением размеров ширины к длине как 1/6. Для выполнения условий максимального использования внутренней поверхности многогранника и площади мест установки объемных фотоэлектрических модулей в качестве основы модуля выбрана трехгранная призма. Внутренние поверхности призмы, за исключением торцов, покрываются фотоэлектрическими элементами. Применение объемных модулей большой мощности позволит: повысить КПД преобразования солнечной энергии в электрическую до 0,8; снизить цены на электроэнергию, генерируемую объемными ФЭП, до уровня 0,1-0,4 евроцента/кВт·ч.; повысить в 10-12 раз эффективность использования площади, занимаемой солнечной электроустановкой; исключить необходимость использования системы слежения за Солнцем. 7 ил.

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из диэлектрического материала с двусторонним металлическим покрытием (12), (13), и металлические платы (9) с регулярно расположенными углублениями (8) для солнечных фотоэлементов (6) и параллельными канавками (10) для планок (11). Металлические платы (9) прикреплены к светопрозрачной тыльной панели (5), солнечные фотоэлементы (6) установлены в центрах углублений (8) металлических плат (9), служащих нижним контактом солнечных фотоэлементов (6) и нижних металлических покрытий (12) планок (11). Изобретение обеспечивает увеличенный срок эксплуатации при сохранении эффективности преобразования солнечного излучения. 21 з.п. ф-лы, 4 ил.

Изобретение относится к герметизирующему материалу для солнечных батарей и модулю солнечной батареи, полученному при использовании герметизирующего материала. Герметизирующий материал содержит, по меньшей мере, адгезивный слой (I) и слой (II) композиции смолы (С), который содержит статистический сополимер этилена-α-олефина (А) с теплотой плавления кристаллов от 0 до 70 Дж/г, измеренной при скорости нагрева 10° С/мин посредством дифференциальной сканирующей калориметрии (ДСК), и блок-сополимер этилена-α-олефина (В), который имеет измеренные при скорости нагрева 10° С/мин посредством ДСК максимальную температура плавления кристаллов 100° С или выше и теплоту плавления кристалла от 5 до 70 Дж/г. При этом адгезивный слой (I) выполнен из композиции смолы (Z), которая имеет теплоту плавления кристаллов от 0 до 70 Дж/г, измеренную при скорости нагрева 10° С/мин посредством ДСК, и содержит смолу на основе полиэтилена (X) и смолу на основе силан-модифицированного этилена (Y). Герметизирующий материал по изобретению удовлетворяет высоким требованиям адгезивности, долговременной стабильности адгезионной прочности, прозрачности и термостойкости, а также облегчает изготовление модулей солнечных батарей. 2 н. и 13 з.п. ф-лы, 1 ил., 3 табл., 12 пр.
Наверх