Устройство для определения параметров заложения нисходящих наклонных скважин и шпуров

Изобретение относится к горному делу и предназначено для определения пространственного положения нисходящих скважин и шпуров. Предложено устройство для определения параметров заложения нисходящих наклонных скважин и шпуров, содержащее основание с размещенными на нем круговым уровнем и угломерной шкалой в виде двухкоординатной сетки, присоединенный к основанию шаровой шарнир, штангу с ограничителем, расположенную по направлению скважины и снабженную отвесом со световым точечным прибором, а также распорную трубку с упором. Кроме того, устройство дополнительно снабжено буссолью, муфтой и цилиндрическим уровнем. При этом буссоль расположена на основании, муфта выполнена в форме стакана и надета на верхнюю часть штанги с возможностью вращения вокруг штанги, цилиндрический уровень присоединен к муфте перпендикулярно ее продольной оси, а отвес закреплен на муфте по ее диаметральной оси, перпендикулярной продольной оси цилиндрического уровня. Техническим результатом является повышение точности определения численных значений углов наклона нисходящих наклонных скважин и шпуров за счет обеспечения ориентирования устройства параллельно оси выработки, а также совмещения в вертикальной плоскости осей отвеса и штанги. 6 ил.

 

Изобретение относится к горному делу и предназначено для определения пространственного положения нисходящих скважин и шпуров.

Известно устройство для определения направления шпуров, содержащее основание в виде плиты, телескопическую штангу, соединенную с шаровым шарниром, и угломерную шкалу (а.с. №232883, МПК Е21В 47/02,1968 г.).

Недостатком данного устройства является невозможность определения численных значений углов наклона нисходящих шпуров и скважин.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является устройство для определения параметров заложения нисходящих наклонных шпуров и скважин, содержащее основание с размещенными на нем круговым уровнем и угломерной шкалой в виде двухкоординатной сетки, присоединенный к основанию шаровой шарнир, штангу с ограничителем, расположенную по направлению скважины и снабженную отвесом со световым точечным прибором, а также распорную трубку с упором (Патент РФ №2503809, МПК Е21В 47/02, 2012 г.).

Недостатками данного устройства являются использование визуального ориентирования устройства относительно оси выработки, а также сложность совмещения в вертикальной плоскости оси отвеса и оси штанги, что предопределяет несоответствие численных значений фактических углов заложения нисходящих скважин и шпуров.

Задачей изобретения является точность определения численных значений углов наклона нисходящих наклонных скважин и шпуров.

Поставленная задача достигается тем, что устройство для определения параметров заложения нисходящих наклонных скважин и шпуров содержит основание с размещенными на нем круговым уровнем и угломерной шкалой в виде двухкоординатной сетки, присоединенный к основанию шаровой шарнир, штангу с ограничителем, расположенную по направлению скважины и снабженную отвесом со световым точечным прибором, а также распорную трубку с упором, также устройство дополнительно снабжено буссолью, муфтой и цилиндрическим уровнем, при этом буссоль расположена на основании, муфта выполнена в форме стакана и надета на верхнюю часть штанги с возможностью вращения вокруг штанги, цилиндрический уровень присоединен к муфте перпендикулярно ее продольной оси, а отвес закреплен на муфте по ее диаметральной оси, перпендикулярной продольной оси цилиндрического уровня, кроме того, все элементы устройства, кроме магнитной стрелки буссоли, изготовлены из немагнитного материала.

По отношению к прототипу у предлагаемого устройства имеются следующие отличительные признаки:

на основании расположена буссоль;

муфта выполнена в форме стакана и надета на верхнюю часть штанги с возможностью вращения вокруг штанги;

цилиндрический уровень присоединен к муфте перпендикулярно ее продольной оси;

отвес закреплен на муфте по ее диаметральной оси перпендикулярно продольной оси цилиндрического уровня;

все элементы устройства, кроме магнитной стрелки буссоли, изготовлены из немагнитного материала.

Наличие буссоли, размещенной на основании, позволяет, при известном значении азимутального угла оси выработки, устанавливать угломерную шкалу параллельно направлению оси выработки с высокой точностью. Это обеспечивает точность измерения углов заложения скважин и шпуров.

Выполнение муфты в форме стакана позволяет надеть ее на верхнюю часть штанги с возможностью вращения вокруг штанги, а также присоединить к ней цилиндрический уровень и отвес.

Наличие на муфте цилиндрического уровня, размещенного перпендикулярно к ее продольной оси, и отвеса, прикрепленного к муфте по ее диаметральной оси перпендикулярно продольной оси цилиндрического уровня, позволяет при повороте муфты вокруг оси штанги совместить в вертикальной плоскости отвес и продольную ось штанги при различных углах и направлениях наклона штанги. Это положение соответствует горизонтальному положению цилиндрического уровня. Тем самым обеспечивается достоверность установления углов наклона штанги и, как следствие, точность измерения углов заложения скважин и шпуров.

Изготовление элементов устройства, кроме магнитной стрелки буссоли, из немагнитного материала обеспечивает определение азимутальных углов без искажения показаний буссоли за счет влияния магнитных материалов.

Устройство поясняется чертежами. На фиг. 1 показан общий вид устройства и его закрепление в скважине; на фиг. 2 - вид устройства при измерении углов; на фиг. 3 показано размещение муфты на штанге и цилиндрического уровня на муфте, а также закрепление на муфте отвеса; на фиг. 4 - то же вид А; на фиг. 5 - то же вид сверху (вид Б); на фиг. 6 приведена схема ориентации устройства в горной выработке.

Устройство содержит основание 1, на которое нанесена угломерная шкала 2, размещен круговой уровень 3, а также буссоль 4. Основание 1 присоединено к шаровому шарниру 5, свободно надетому на верхнюю часть штанги 6, снабженную ограничителем 7, определяющим длину выступающего над основанием верхнего конца штанги, на величину которой рассчитана двухкоординатная угломерная шкала 2. На верхний конец штанги 6 надета муфта 8, на которой закреплен цилиндрический уровень 9 и отвес 10, находящийся под углом 90° к оси цилиндрического уровня 9. На конце отвеса 10 подвешен световой точечный прибор 11.

К нижней части штанги 6 присоединена посредством стоек 12 и шарниров 13 распорная трубка 14, снабженная упором 15. Муфта 8 снабжена зажимом 16. Нижняя часть штанги 6 расположена в скважине 17.

Значение азимутального угла (АM) оси 18 выработки устанавливается по проектной документации.

Ось буссоли 0°-180° размещают отметкой 0° по маркшейдерскому направлению съемки. Длину штанги 6 принимают экспериментально, исходя из удобства проведения измерений. В качестве светового точечного прибора 11 можно использовать, например, лазерную указку.

Устройство работает следующим образом. Распорную трубку 14 продвигают в направлении нижнего конца штанги 6 посредством стоек 12 и шарниров 13. При этом внешнее расстояние между распорной трубкой 14 и штангой 6 становится меньше диаметра скважины. Затем нижний конец штанги 6 вставляют в скважину 17. Упор 15 распорной трубки 14 упирается в породу в устье скважины 17, штангу 6 продвигают далее по длине скважины, при этом стойки 12 поворачиваются посредством шарниров 13, вследствие чего штанга 6 и распорная трубка 14 распираются между стенками скважины 17. На верхний конец штанги 6 до ограничителя 7 надевают, посредством шарового шарнира 5, основание 1. Основание 1 с размещенной на основании угломерной шкалой 2 с помощью кругового уровня 3 устанавливают в горизонтальном положении, а по буссоли 4 угломерную шкалу 2 ориентируют по оси 18 выработки.

Это осуществляется следующим образом. Устройство поворачивают вокруг шарового шарнира 5 и по магнитной стрелке буссоли 4 устанавливают значение азимутального угла (АM) направления оси 18 выработки. При этом угломерная шкала 2 устанавливается параллельно направлению продольной оси 18 выработки.

Затем на верхний конец штанги 6 надевают муфту 8, снабженную цилиндрическим уровнем 9 и отвесом 10 с присоединенным к нему световым точечным прибором 11. Далее муфту 8 поворачивают вокруг оси штанги 6, пока воздушный пузырек уровня 9 не покажет горизонтальное положение уровня. При этом совмещаются в вертикальной плоскости отвес 10 со световым прибором 11 и продольная ось штанги 6. В этом положении муфта 8 фиксируется на штанге 6 зажимом 16.

Включают световой точечный прибор 11. Световой луч прибора 11 укажет точку на угломерной шкале 2, по которой производится считывание значений углов наклона скважины в вертикальных плоскостях относительно выбранного направления. Значения углов записаны на пересечениях координатных линий шкалы 2.

Если световая точка не указывает точно на пересечение координатных линий, то значение углов устанавливается с использованием интерполяции ближайших значений углов. Погрешность определения зависит от принятого шага значений углов при построении угломерной двухкоординатной шкалы.

Использование данного устройства позволяет определить численные значения углов наклона нисходящих наклонных скважин и шпуров с высокой точностью за счет обеспечения ориентирования устройства параллельно оси выработки, а также совмещения в вертикальной плоскости осей отвеса и штанги.

1. Устройство для определения параметров заложения нисходящих наклонных скважин и шпуров, содержащее основание с размещенными на нем круговым уровнем и угломерной шкалой в виде двухкоординатной сетки, присоединенный к основанию шаровой шарнир, штангу с ограничителем, расположенную по направлению скважины и снабженную отвесом со световым точечным прибором, а также распорную трубку с упором, отличающееся тем, что устройство дополнительно снабжено буссолью, муфтой и цилиндрическим уровнем, при этом буссоль расположена на основании, муфта выполнена в форме стакана и надета на верхнюю часть штанги с возможностью вращения вокруг штанги, цилиндрический уровень присоединен к муфте перпендикулярно ее продольной оси, а отвес закреплен на муфте по ее диаметральной оси, перпендикулярной продольной оси цилиндрического уровня.

2. Устройство по п. 1, отличающееся тем, что все элементы устройства, кроме магнитной стрелки буссоли, изготовлены из немагнитного материала.



 

Похожие патенты:

Изобретение относится к средствам для выполнения скважинного каротажа. Техническим результатом является повышение чувствительности и точности информации в процессе измерений в скважине.

Изобретение относится к ориентирующей системе, предназначенной для направления движения бурового наконечника так, чтобы избежать столкновения с обсадной трубой в первом стволе скважины или ввести его в столкновение с ней.

Изобретение относится к направленному бурению скважин. Техническим результатом является повышение точности проводки ствола скважины в пределах продуктивного пласта.

Изобретение относится к средствам для геонавигации в процессе бурения наклонно-направленных или горизонтальных скважин для разведки нефти и газа. Техническим результатом является повышение точности определения направления скважин в процессе бурения по заданной траектории наклонно-направленных или горизонтальных скважин.

Изобретение относится к средствам контроля направления бурения скважин. Техническим результатом является обеспечение точности определения положения измерительного тела и его пространственной ориентации в скважине.

Изобретение относится к бурению скважин и может найти применение при определении профиля скважин. Техническим результатом является сокращение временных затрат путем совмещения технологических операций, т.е.

Изобретение относится к технике измерений в процессе бурения, в частности к средствам автоматической калибровки датчика нагрузки бурового долота и регулирования продольного изгиба бурильной колонны.
Изобретение относится к области геофизических исследований скважин, в частности к инклинометрическим измерениям в процессе бурения. Техническим результатом является повышение точности определения параметров скважины при значительном уровне вибраций и наличии постороннего влияния магнитных масс.

Изобретение относится к горному делу и предназначено для ориентации буровой машины в заданном направлении бурения шпуров. Устройство для направленного бурения шпуров с помощью буровой машины по ранее установленному реперу содержит совмещаемый с репером указатель в виде стержня, который снабжен линейной угломерной шкалой, проградуированной по формуле: где Lα - длина отрезка, соответствующая величине угла (α); α - величина угла, град.; b - расстояние от оси буровой машины до репера; L - длина по оси буровой машины от места забуривания шпура на плоскости забоя до репера.

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Предложен тренажер, состоящий из кожуха, источника света, угломерной шкалы в виде полукруга с отвесом, и пластины.

Изобретение относится к направленному бурению скважин, в частности к средствам каротажа удельного сопротивления пород в реальном времени. Техническим результатом является повышение точности и информативности о наборе слоев перед буровым долотом по мере перемещения компоновки низа бурильной колонны, что обеспечивает более точное управление направленным бурением. Предложены способ и система для получения опережающих измерений профиля, при этом способ включает в себя расположение излучателя энергии, такого как излучающая антенна, вблизи инструмента компоновки низа бурильной колонны. При этом один или несколько приемников энергии, таких как приемные антенны, располагают по длине компоновки низа бурильной колонны. Затем излучают энергию для выполнения опережающих сканирований относительно инструмента компоновки низа бурильной колонны. Образуют данные графика опережающего просмотра с осью x, являющейся функцией времени относительно положения инструмента компоновки низа бурильной колонны. Строят график опережающего просмотра и отображают его на дисплейном устройстве. На основании моделей геологической среды по графику опережающего просмотра можно прослеживать оцененные пластовые значения. Оцененные пластовые значения отображают ниже линии изменения во времени положения инструмента, которая является частью графика опережающего просмотра. Причем оцененные пластовые значения на графике опережающего просмотра могут быть основаны на инверсиях данных об удельном сопротивлении из опережающих сканирований. 3 н. и 17 з.п. ф-лы, 12 ил.

Изобретение относится к области инклинометрии и может быть использовано в нефте- и газопромысловой геофизике. Достигаемый технический результат - расширение функциональных возможностей инклинометра за счет более высокой точности выработки азимута и обеспечения работоспособности инклинометра в условиях произвольного характера распределения поля в зоне считывания. Способ основан на использовании показаний проекций HX3, HY3, hZ3 классической триады феррозондов и двух дополнительных датчиков поля, пространственно разнесенных вдоль продольной оси Z инклинометра. В качестве дополнительных феррозондов используют одноосные с направленными вдоль оси Z осями чувствительности датчики поля, вырабатывающие соответственно текущие значения проекций суммарного поля hZ1=HZ3+HP1 и hZ2=HZ3+HP2, где HZ3 - проекция поля Земли на ось Z инклинометра, a HP1, HP2 - напряженности поля помехи, фиксируемые дополнительными датчиками 1 и 2, и затем производят вычисление величин HZ(1), HZ(2), HZ(3), представляющих собой три независимые реализации одного и того же значения проекции HZ3, очищенной от влияния магнитных помех, в соответствии с выражениями: HZ(1)=hZ1-(hZ1-hZ3)/1-K31, HZ(2)=hZ2-(hZ2-hZ3)/1-K32, HZ(3)=hZ1-(hZ1-hZ2)/1-K21, где (hzi-hzj) характеризует разность показаний первичных измерителей, ответственных за локальный градиент поля между датчиками i и j, а величины - масштабные коэффициенты, являющиеся постоянными величинами на всем протяжении времени проводки скважины и которые экспериментально определяют на начальном этапе проведения буровых работ, для чего колонну в собранном виде устанавливают в вертикальное положение со значением зенитного угла в диапазоне (0÷15)° и опускают на такую глубину, при которой приращение разности показаний δ(hZ1-hZ3) в процессе движения колонны вниз не превышает одной-двух отсчетных единиц. 1 з.п. ф-лы, 1 табл.

Изобретение относится к средствам передачи информации из скважины на поверхность. Техническим результатом является повышение эффективности использования поплавкового клапана и снижение затрат энергии на передачу информации по давлению на поверхность. Предложена система для передачи скважинной информации по стволу скважины на поверхность, включающая: переводник на конце бурильной колонны; детектор, расположенный на упомянутом месте на поверхности и взаимодействующий с жидкостью, проходящей через переводник, для предоставления на упомянутое место на поверхности величины измерения, коррелированной со временем между изменениями давления жидкости в бурильной колонне; и скважинный электронный модуль, расположенный в переводнике. При этом скважинный электронный модуль содержит поплавковый клапан для создания ограничения потока для жидкости, проходящей через переводник. Причем поплавковый клапан управляет падением давления бурового раствора в переводнике и включает корпус, керамическую оболочку седла, размещенную в отверстии корпуса, тарелку, выполненную с возможностью аксиального сдвига в корпусе и наружу от керамического седла, шток поршня, соединенный с тарелкой и выходящий наружу из корпуса, и верхнюю и нижнюю втулки для аксиального направления штока поршня в корпусе. Кроме того, система содержит датчик, расположенный в переводнике, для отслеживания состояния в стволе скважины и тормоз, взаимодействующий со штоком поршня, для фиксации тарелки по меньшей мере в двух статических положениях во время начала потока бурового раствора через переводник и во время открывания поплавкового клапана. 3 н. и 15 з.п. ф-лы, 10 ил.

Изобретение относится к способу и системе прямого моделирования скважинного изображения свойств пласта. Техническим результатом является повышение эффективности прямого моделирования скважинного изображения свойств пласта. Способ содержит этапы, на которых центрируют воображаемый круг, имеющий множество элементов дискретизации, на представляющем интерес месте в осевом положении вдоль целевого ствола скважины, при этом воображаемый круг помещают перпендикулярно к оси целевого ствола скважины. При этом воображаемый круг представляет область анализируемого пласта, определяют псевдокаротажную диаграмму, относящуюся к представляющему интерес параметру, в осевом положении вдоль целевого ствола скважины, при этом определение псевдокаротажной диаграммы в заданной точке содержит: образование первой соседней скважины и второй соседней скважины, при этом первая соседняя скважина и вторая соседняя скважина пересекают поверхность, соответствующую заданной точке, определение значений каротажных диаграмм представляющего интерес параметра в первой точке на поверхности, соответствующей первой соседней скважине, и во второй точке на поверхности, соответствующей второй соседней скважине; интерполирование значения каротажной диаграммы представляющего интерес параметра в первой точке и во второй точке для определения псевдокаротажной диаграммы в заданной точке, при этом псевдокаротажная диаграмма содержит по меньшей мере одно значение представляющего интерес параметра в заданной точке, соответствующей одному из множества элементов дискретизации, и визуализируют определенную псевдокаротажную диаграмму. 3 н. и 15 з.п. ф-лы, 7 ил., 1 пр.

Изобретение относится к области геологии, а именно к средствам определения угла наклона и направления падения трещин в керновом материале, в частности к способу для определения элементов залегания трещин и границ пластов в керне. Техническим результатом является повышение эффективности и точности. Предложен способ определения угла наклона и направления падения трещин в керновом материале, в котором выкладывают на неподвижный лоток керновый материал, вдоль которого перемещают устройство, определяющее расстояние пересечения кернового материала трещинами. При этом первоначально у образцов кернового материала проводят оценку первичного состояния, затем керновый материал состыковывают с образованием керновой колонки 4 и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки 4. Далее керновый материал моют и помещают керновую колонку 4 на неподвижный лоток, затем с помощью персонального компьютера с соответствующим программным обеспечением устанавливают параметры съемки и последовательно производят сканирование участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180°+2-3°. Затем сканирующий блок возвращают на исходную позицию, керновую колонку накрывают вторым фиксирующим лотком и производят поворот фиксирующих лотков с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А». Далее сканируют сторону «Б» аналогично процессу сканирования стороны «А», т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой всей отсканированной поверхности керновой колонки. Далее, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» отмечают выявленные трещины, после чего по координатам выявленных трещин рассчитывают углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки. 4 з.п. ф-лы, 9 ил.

Изобретение относится к области подземного направленного бурения, а более конкретно к системе наведения на цель при направленном бурении, устройству и связанному с ним способу. Устройство, используемое совместно с системой для выполнения горизонтально направленного бурения; система включает в себя бурильную колонну, вытянутую от буровой установки до бурового инструмента, так чтобы буровой инструмент управлялся на основании ориентации по крену. Система также включает в себя устройство для выработки команд управления для направления бурового инструмента на положение цели. В ответ, по меньшей мере частично, на указанные команды управления, дисплей выполнен с возможностью избирательного отображения команды поворота, команды толкания и командой вращения. Описан индикатор управления, который показывает текущую ориентацию по крену бурового инструмента. 3-D сетка может быть анимационной и отцентрированной на индикаторе управления или индикаторе цели. Округление отношения команд управления позволяет ограничить отображение лишь такими ориентациями по крену цели, которые может измерить и показать заданный измерительный преобразователь бурового инструмента. 5 н. и 25 з.п. ф-лы, 10 ил.

Изобретения относятся к геофизике и предназначены для быстрой оценки угла падения формации. Сущность: каротажное устройство содержит по меньшей мере одну передающую антенну, по меньшей мере одну приемную антенну и управляющее устройство. Управляющее устройство измеряет параметры связи между передающими и приемными антеннами, причем, по меньшей мере один из этих параметров связи измеряется как функция от глубины и азимутального угла. Управляющее устройство дополнительно определяет, является ли окружающая формация анизотропной и неоднородной, по меньшей мере, частично на основании по меньшей мере одного из параметров связи, и если является, то извлекает угол падения из частной производной по глубине и искусственному углу падения параметра или параметров связи. 3 н. и 19 з.п. ф-лы, 4 ил.

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Технический результат - упрощение конструкции устройства, а также снижение трудоемкости работы при обучении навыкам глазомерного определения направления бурения шпуров. Достигается это тем, что тренажер определения направления забуриваемых шпуров относительно плоскости забоя состоит из пластины с угловой шкалой, имитатора буровой машины, включающего буровой молоток с буровой штангой, выполненной телескопической с возможностью соединения с шаровой пятой шарового шарнира, закрепленного на плоскости забоя, присоединенную к буровому молотку шарнирно телескопическую опору, соединенную с основанием, а также размещенного на верхней площадке бурового молотка кожуха, снабженного источником света и угломерной шкалой в виде полукруга с отвесом, при этом оси источника света, бурового молотка и буровой штанги расположены в одной вертикальной плоскости. Согласно изобретению пластина выполнена плоской и установлена параллельно плоскости забоя, а угловая шкала, размещенная на пластине, проградуирована по формуле где Lβ - длина отрезка угловой шкалы, отмеряемой от отметки 90° на угловой шкале, соответствующая величине горизонтального угла β; L - расстояние между пластиной с угловой шкалой и шаровым шарниром; β - величина горизонтального угла, град; кроме того, тренажер снабжен второй пластиной, установленной перпендикулярно плоскости забоя, имитирующей боковую стенку выработки. 7 ил.

Изобретение относится к средствам для определения направления стороны света и может быть использовано при бурении нефтяных скважин. Предложен способ определения направления стороны света, содержащий этапы, на которых: предоставляют по меньшей мере двум телам возможность движения под действием силы тяжести через среду; определяют местоположение столкновения по меньшей мере двух тел с прибором; и определяют направление стороны света на основе сравнения местоположений столкновения по меньшей мере двух тел. Также предложено устройство для осуществления указанного способа, содержащее источник, выполненный с возможностью обеспечения падения тел под действием силы тяжести через среду, прибор, выполненный с возможностью приема падающих тел и подачи сигналов, соответствующих местоположениям падения тел на прибор, и процессор, выполненный с возможностью определения направления на восток по сигналам упомянутого прибора. Предложенное изобретение обеспечивает точное определение направления относительно сторон света без использования магнитных средств. 5 н. и 18 з.п. ф-лы, 4 ил.

Изобретение относится к турбине для передачи электрических данных от одного конца турбины на другой конец. Турбина (100) имеет первый конец (101) и второй конец (103). Концы (101) и (103) противоположны друг другу. Турбина (100) содержит корпус (104), вал (102), расположенный в центре корпуса (104), двигатель (106), содержащий множество роторов, статоров и подшипников, расположенных между валом (102) и корпусом (104), по меньшей мере один непроводящий изолятор, способствующий электрической изоляции вала (102) и корпуса (104) друг от друга. Двигатель (106) расположен между первым концом (101) и вторым концом (103) турбины (100). Непроводящий изолятор расположен между корпусом (104) и множеством роторов, статоров и подшипников или расположен между валом (102) и множеством роторов, статоров и подшипников. Изобретение направлено на обеспечение передачи сигналов электрических данных. 19 з.п. ф-лы, 12 ил.
Наверх