Электроэнергетическая установка судна



Электроэнергетическая установка судна
Электроэнергетическая установка судна
Электроэнергетическая установка судна
Электроэнергетическая установка судна

 


Владельцы патента RU 2575366:

Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (RU)

Изобретение относится к судостроению, в частности к электроэнергетическим установкам судов. Электроэнергетическая установка судна содержит главный первичный тепловой двигатель, преобразователи частоты, гребной электродвигатель, вспомогательный дизель-генератор, согласующий трансформатор, главный распределительный щит, вторичный распределительный щит, автоматические выключатели и потребители собственных нужд. На статоре гребного электродвигателя размещены изолированные друг от друга трехфазные обмотки. Трехфазные обмотки синхронного генератора через автоматические выключатели подключены к входам преобразователей частоты, выходы которых через автоматические выключатели подключены к статорным обмоткам гребного электродвигателя. Вспомогательный дизель-генератор через автоматический выключатель подключен к главному распределительному щиту, который через автоматические выключатели соединен с входом преобразователя частоты. Достигается повышение энергетической эффективности и увеличение коэффициента загрузки первичных тепловых двигателей. 2 з.п. ф-лы, 3 ил.

 

Предложение относится к судостроению, в частности к электроэнергетическим установкам судов как гражданского, так и военно-морского флота для которых необходимо обеспечить питание гребного электродвигателя с широким диапазоном регулирования частоты вращения гребного винта и питание потребителей собственных нужд.

Известна конструкция единой судовой электроэнергетической установки (Григорьев А.В., Ляпидов К.С., Макаров Л.С. Единая электроэнергетическая установка гидрографического судна на базе системы электродвижения переменного тока // Судостроение, 2006, №4, с. 33-34), содержащая первичные тепловые двигатели, с которыми механически соединены синхронные генераторы переменного тока, трехфазные обмотки статора которых подключены к трехфазной линии главного распределительного щита. К шинам трехфазной линии главного распределительного щита подключены потребители собственных нужд и первичные обмотки трансформаторов, к вторичным обмоткам которых подключены входы преобразователей частоты, к выходам которых подключены гребные электродвигатели переменного тока. Недостатком известной установки является то, что гребные электроприводы, которые являются на судах с электродвижением основными потребителями электроэнергии, питаются не напрямую от главного распределительного щита, а через трансформаторы, что снижает К.П.Д. судовой электроэнергетической установки и повышает ее стоимость, массу и габариты. К недостаткам также относится искажение напряжения на шинах главного распределительного щита, вызванное работой преобразователей частоты, так как мощность гребных электроприводов может значительно превышать мощность потребителей собственных нужд.

Наиболее близким по технической сущности к заявляемому устройству является выбранная в качестве прототипа судовая электроэнергетическая установка (МПК В 63Н 21/17, В63Н 23/24, Η02J 3/16, патент RU 2458819 (С1), Заявка: 2011107510/11, 25.02.2011, Васин И.М., Сеньков А.П., Токарев Л.Н., Судовая электроэнергетическая установка (варианты)). Известная установка содержит главные первичные тепловые двигатели, главные синхронные генераторы, главный распределительный щит, преобразователи частоты, гребные электродвигатели, аварийный дизель-генератор, аварийный распределительный щит, согласующие трансформаторы и потребители собственных нужд. На статоре каждого главного синхронного генератора размещены несколько изолированных друг от друга трехфазных обмоток, подключенных к раздельным шинам главного распределительного щита к которому также подключены выпрямители каскадных преобразователей частоты и согласующие трансформаторы потребителей собственных нужд. К выходу каскадных многоуровневых преобразователей частоты подключены гребные электродвигатели, а к шинам вторичного распределительного щита подключены аварийный и стояночный дизель-генератор. Технический результат такой конструкции обеспечивает повышение К.П.Д. и надежности судовой установки исключения трансформаторов между линиями главного распределительного щита и преобразователями частоты.

Недостатками известного прототипа является сложная структура системы распределения электроэнергии, сложная схемотехническая реализация преобразователей частоты, а также искажения напряжения на шинах главного распределительного щита вызванные работой преобразователей частоты. К недостаткам известной установки также можно отнести невозможность использования высокочастотного генераторного агрегата, так как шины главного распределительного щита должны быть рассчитаны на напряжение промышленной частоты 50 Гц для последующего питания потребителей собственных нужд.

Предлагаемая электроэнергетическая установка судна может быть построена с использованием высокооборотных безредукторных главных генераторных установок с выходным напряжением повышенной частоты. Электроэнергетическая установка судна помимо выполнения требований эксплуатационного характера позволяет:

обеспечивать потребители собственных нужд электроэнергией от главного первичного теплового двигателя в режимах движения судна;

обеспечивать регулирование частоты вращения гребного винта от вспомогательного теплового двигателя при сохранении питания потребителей собственных нужд обеспечивая швартовный режим и аварийный режим в случае отказа главного теплового двигателя;

обеспечивать большой диапазон регулирования частоты вращения гребного винта на малых частотах вращения без использования главного теплового двигателя;

улучшить массогабаритные характеристики, а также повысить надежность и живучесть энергетической установки;

улучшить виброшумовые характеристики электроэнергетической установки для режима работы при питании от статического источника тока и, как следствие, осуществить снижение шума излучаемого в воду при движении судна;

повысить экономичность энергоустановки и коэффициент загрузки первичных тепловых двигателей тем самым повысив их ресурс эксплуатации.

Описанные преимущества достигаются тем, что для управления гребным электродвигателем используются преобразователи частоты, которые можно использовать и для обеспечения питания мощных электроприводов и потребителей собственных нужд. Структура электроэнергетической установки судна построена таким образом, что для различных режимов работы энергетической установки используются различные варианты соединения элементов структуры таким образом, чтобы помимо выполнения требований технологического процесса между источником энергии и исполнительным агрегатом было минимальное число элементов, а используемый источник энергии загружался под номинальное значение и не работал вхолостую.

Электроэнергетическая установка судна, структурная схема которой представлена на фиг. 1, содержит главный первичный тепловой двигатель 1, механически соединенный с синхронным генератором 2, на статоре которого размещены изолированные друг от друга трехфазные обмотки, преобразователи частоты 3, 4, 5, 6, гребной электродвигатель 7, вспомогательный дизель-генератор 8, согласующий трансформатор 9, главный распределительный щит 10, вторичный распределительный щит 11, автоматические выключатели 12-23 и потребители собственных нужд 24. На статоре гребного электродвигателя 7 размещены изолированные друг от друга трехфазные обмотки, число которых равно числу трехфазных обмоток синхронного генератора 2, причем трехфазные обмотки синхронного генератора 2 через автоматические выключатели 12, 13, 14, 15 подключены к входам преобразователей частоты 3, 4, 5, 6, выходы которых через автоматические выключатели 16, 17, 18, 19 подключены к статорным обмоткам гребного электродвигателя 7. Вспомогательный дизель-генератор 8 через автоматический выключатель 20 подключен к главному распределительному щиту 10, который через автоматические выключатели 21, 22, 23 соединен с входом преобразователя частоты 6, с выходом этого же преобразователя частоты 6 и с первичной обмоткой согласующего трансформатора 9 соответственно, вторичная обмотка которого соединена с вторичным распределительным щитом 11, к которому подключены потребители собственных нужд 24.

Электроэнергетическая установка судна, структурная схема которой представлена на фиг. 2, содержит мощные электродвигатели пожарного насоса 25, осушительного насоса 26, лебедки 27 и прочих мощных потребителей, причем к выходу одного из преобразователей частоты 5 через индивидуальные автоматические выключатели 28, 29, 30 могут быть подключены электродвигатели пожарного насоса 25, осушительного насоса 26, лебедки 27 и прочих мощных потребителей.

Электроэнергетическая установка судна, структурная схема которой представлена на фиг. 3, содержит обратимый преобразователь частоты 31 и статический источник постоянного тока 32, причем к главному распределительному щиту 10 через автоматический выключатель 33 и обратимый преобразователь частоты 31 подключен статический источник постоянного тока 32.

Предлагаемая электроэнергетическая установка судна работает следующим образом. Предлагаемая структура обеспечивает четыре режима работы электроэнергетической установки, отличающихся способом передачи электрической энергии от главного первичного теплового двигателя 1, вспомогательного дизель-генератора 8, статического источника постоянного тока 32 к движителю - гребному электродвигателю 7 и потребителям собственных нужд 24:

режим хода судна;

режим полного хода судна с максимально возможной скоростью;

швартовный или аварийный режим работы;

малошумный режим работы.

Режим хода судна характеризуется снабжением всех потребителей судна гребного электродвигателя 7 и потребителей собственных нужд 24 от главного первичного теплового двигателя 1, выступающего в роли источника энергии. При этом механическая энергия от главного первичного теплового двигателя 1 преобразуется в синхронном генераторе 2 в электрическую энергию и через автоматические выключатели 12-15, преобразователи частоты 3-6, автоматические выключатели 16, 17, 18 поступает для питания гребного электродвигателя 7 и через автоматический выключатель 22, главный распределительный щит 10, автоматический выключатель 23 и согласующий трансформатор 9 для питания вторичного распределительного щита 11 и последующего питания потребителей собственных нужд 24. При необходимости подзарядки статического источника постоянного тока 32 электрическая энергия через автоматический выключатель 33, обратимый преобразователь частоты 31 поступает на его подзарядку. Преобразователи частоты 3, 4, 5 работают согласовано с регулированием параметров частоты, действующего значения и фазы выходного напряжения в зависимости от требуемой частоты вращения гребного электродвигателя 7, преобразователь частоты 6 работает, независимо обеспечивая стабилизацию частоты и действующего значения выходного напряжения питающего потребители, подключенные к шинам главного распределительного щита 10. Данный режим является наиболее частым и продолжительным режимом работы гребной электрической установки. По статистике считается, что самым продолжительным режимом движения судна является его движение со скоростью порядка 70-80% от максимально возможной. Таким образом, в данном режиме предлагается использовать главный генераторный агрегат, состоящий из главного первичного теплового двигателя 1 и синхронного генератора 2 не только для питания гребного электродвигателя 7, но и для снабжения электроэнергией потребителей собственных нужд 24.

В случае необходимости работы мощных электродвигателей во время движения судна, таких как пожарного насоса 25, или осушительного насоса 26, или лебедки 27, либо прочих мощных потребителей один из преобразователей частоты 5 может быть использован в качестве привода одного из этих механизмов. Тогда этот преобразователь частоты 5 отключается автоматическим выключателем 18 от гребного электродвигателя 7 и подключается к электродвигателям пожарного насоса 25, или осушительного насоса 26, или лебедки 27 с помощью автоматических выключателей 28, или 29, или 30 соответственно. Преобразователь частоты 5 работает с регулированием параметров частоты, действующего значения и фазы выходного напряжения в зависимости от требуемой частоты вращения электродвигателя пожарного насоса 25, или осушительного насоса 26, или лебедки 27, либо прочих мощных потребителей.

Режим полного хода судна с максимально возможной скоростью является долевым режимом работы и используется очень редко. Суть этого режима заключается в питании гребного электродвигателя 7 через преобразователи частоты 3, 4, 5, 6, работающие согласованно от главного первичного теплового двигателя 1 и синхронного генератора 2, выступающих в роли источника электроэнергии, при этом автоматические выключатели 12-19 включены, а автоматические выключатели 21, 22 выключены. Потребители собственных нужд 24 получают питание по цепи вспомогательный дизель-генератор 8, автоматический выключатель 20, главный распределительный щит 10, автоматический выключатель 23, согласующий трансформатор 9, вторичный распределительный щит 11 и потребители собственных нужд 24.

Швартовный или аварийный режим работы характеризуется питанием гребного электродвигателя 7 и потребителей собственных нужд 24 от вспомогательного дизель-генератора 8. Швартовный режим характеризуется небольшой частотой вращения и частыми реверсами винта, при этом питание гребного электродвигателя 7 идет по цепи вспомогательный дизель-генератор 8, автоматический выключатель 20, главный распределительный щит 10, автоматический выключатель 21, преобразователь частоты 6, автоматический выключатель 19, гребной электродвигатель 7. При этом потребители собственных нужд 24 получают питание по цепи дизель-генератор 8, автоматический выключатель 20, главный распределительный щит 10, автоматический выключатель 23, согласующий трансформатор 9, вторичный распределительный щит 11 и потребители собственных нужд 24. Аварийный режим работы характеризуется той же комбинацией и соединением элементов в случае выхода из строя главного первичного теплового двигателя 1.

Малошумный режим работы гребной электрической установки судна характеризуется питанием гребного электродвигателя 7 и потребителей собственных нужд 24 от статического источника постоянного тока 32. Данный режим работы отличается небольшими частотами вращения гребного электродвигателя 7 и исключением элементов, создающих посторонние шумы - главного первичного теплового двигателя 1 и вспомогательного дизель-генератора 8. При этом электрическая энергия от статического источника постоянного тока 32 через обратимый преобразователь частоты 31 и автоматический выключатель 33 поступает на шины главного распределительного щита 10 для питания потребителей собственных нужд 24 через автоматический выключатель 23 и согласующий трансформатор 9, а через автоматический выключатель 21, преобразователь частоты 6 и автоматический выключатель 19 для питания гребного электродвигателя 7. Обратимый преобразователь частоты 31 осуществляет стабилизацию частоты и действующего значения выходного напряжения питающего потребители главного распределительного щита 10, а преобразователь частоты 6 работает с регулированием параметров частоты, действующего значения и фазы выходного напряжения в зависимости от требуемой частоты вращения гребного электродвигателя 7.

Предлагаемая электроэнергетическая установка позволяет использовать высокочастотный генераторный агрегат, тем самым уменьшая массогабаритные характеристики всей электроэнергетической системы, а также использовать в качестве преобразователей частоты более простые и обладающие высоким К.П.Д. непосредственные преобразователи частоты.

Преимуществом данной электроэнергетической установки является повышение энергетической эффективности и увеличения коэффициента загрузки первичных тепловых двигателей электроэнергетической установки и, как следствие, экономия топлива, а также повышение ресурса элементов системы. К достоинствам предлагаемой системы также следует отнести простоту структуры, отсутствие искажений напряжения на шинах главного распределительного щита, вызванные работой силовых преобразователей частоты, улучшение массогабаритных и виброшумовых характеристик, а также повышение надежности и живучести электроэнергетической установки.

1. Электроэнергетическая установка судна, содержащая главный первичный тепловой двигатель, механически соединенный с синхронным генератором, на статоре которого размещены изолированные друг от друга трехфазные обмотки, преобразователи частоты, гребной электродвигатель, вспомогательный дизель-генератор, согласующий трансформатор, главный распределительный щит, вторичный распределительный щит, автоматические выключатели и потребители собственных нужд, отличающаяся тем, что на статоре гребного электродвигателя размещены изолированные друг от друга трехфазные обмотки, число которых равно числу трехфазных обмоток синхронного генератора, причем трехфазные обмотки синхронного генератора через автоматические выключатели подключены к входам преобразователей частоты, выходы которых через автоматические выключатели подключены к статорным обмоткам гребного электродвигателя, вспомогательный дизель-генератор через автоматический выключатель подключен к главному распределительному щиту, который через автоматические выключатели соединен с входом преобразователя частоты, с выходом этого же преобразователя частоты и с первичной обмоткой согласующего трансформатора, вторичная обмотка которого соединена с вторичным распределительным щитом, к которому подключены потребители собственных нужд.

2. Электроэнергетическая установка судна по п.1, отличающаяся тем, что содержит мощные электродвигатели пожарного насоса, осушительного насоса и лебедки, причем к выходу одного из преобразователей частоты через индивидуальные автоматические выключатели подключены электродвигатели пожарного насоса, осушительного насоса и лебедки.

3. Электроэнергетическая установка судна по п.2, отличающаяся тем, что содержит обратимый преобразователь частоты и статический источник постоянного тока, причем к главному распределительному щиту через автоматический выключатель и обратимый преобразователь частоты подключен статический источник постоянного тока.



 

Похожие патенты:

Изобретение относится к электрическим тяговым системам транспортных средств с питанием от собственных источников энергоснабжения. Электрическая передача содержит первичный тепловой двигатель, механически соединенный с валом асинхронного генератора переменного тока с фазным ротором.

Изобретение относится к электрическим тяговым системам транспортных средств с питанием от собственных источников энергоснабжения. Единая электрическая передача содержит первичный тепловой двигатель механически соединенный с валом асинхронного генератора переменного тока с фазным ротором.

Изобретение относится к судостроению, а именно к движительному агрегату корабля, такому как азимутальный движительный агрегат корабля. Движительный агрегат содержит конструкцию оболочки, электрический двигатель, гребной винт, цилиндрическую секцию, поддерживающую секцию, поддерживающий металлический лист.

Изобретение относится к судостроению, а именно к движительному агрегату корабля. Движительный агрегат корабля содержит конструкцию (1) оболочки, электрический двигатель (3), замкнутую жидкостную систему (9) охлаждения, которая имеет внутреннее пространство (10).

Изобретение относится к судостроению, в частности к электроэнергетическим установкам судов. Электроэнергетическая установка судна содержит главный первичный тепловой двигатель, редуктор, разобщительную муфту, гребную электрическую машину, гребной винт, электрический преобразователь, главный распределительный щит, коммутационные элементы, вспомогательный дизель-генератор, статический источник постоянного тока и потребители собственных нужд.

Изобретение относится к компоновке для подачи электрической энергии к движительной системе морского судна. Компоновка для подачи электрической энергии к движительной системе морского судна содержит двигатель гребного винта, генератор переменного тока и преобразователь частоты.

Изобретение относится к судостроению, а именно к силовым установкам. Силовая установка включает в себя кожух, вал, гребной винт, кольцевой корпус и электродвигатель обращенного типа.

Изобретение относится к устройству для подачи движительной энергии к движительной системе с противоположно вращающимися гребными винтами в морском судне. Устройство содержит первый гребной винт, приводимый вращающимся силовым агрегатом, и второй гребной винт, приводимый двигателем переменного тока.

Изобретение относится к судостроению, в частности к судовым электроэнергетическим системам с комбинированными пропульсивными установками. Судовая пропульсивная валогенераторная установка содержит двигатель приводного вала, редуктор, валогенератор, шины, преобразователь частоты, трехфазные статорные обмотки, диоды, цепи управления, выпрямительные мосты.

Изобретение относится к судовым электроэнергетическим установкам с валогенераторами и полупроводниковыми преобразователями частоты. Судовая валогенераторная установка содержит главный двигатель, разъединительную муфту, валопровод, гребной винт, валогенератор, электрическую цепь, первый и второй датчики тока, входной дроссель, преобразователь частоты, выходной дроссель, LC-фильтр, первый и второй автоматические выключатели, шины судовых электропотребителей, дополнительный генератор, механически связанный с дополнительным двигателем, конденсаторный накопитель звена постоянного тока с датчиком напряжения.

Изобретение относится к судостроению, а именно к движительному агрегату корабля. Движительный агрегат корабля содержит конструкцию (1) оболочки, электрический двигатель (3), систему (12) охлаждения с замкнутой циркуляцией газа, замкнутую жидкостную систему (15) охлаждения, которая имеет внутреннее пространство и газожидкостный теплообменник (17).

Изобретение относится к судостроению, а именно к движительному агрегату корабля, такому как азимутальный движительный агрегат корабля. Движительный агрегат содержит конструкцию оболочки, электрический двигатель, гребной винт, цилиндрическую секцию, поддерживающую секцию, поддерживающий металлический лист.

Изобретение относится к судостроению, а именно к конструкциям силовых установок подводных аппаратов. Силовая установка подводного аппарата содержит высокооборотный электродвигатель переменного тока, который соединен с движителем аппарата через редуктор.

Изобретение относится к устройству для подачи движительной энергии к движительной системе с противоположно вращающимися гребными винтами в морском судне. Устройство содержит первый гребной винт, приводимый вращающимся силовым агрегатом, и второй гребной винт, приводимый двигателем переменного тока.

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам с комбинированным пропульсивным комплексом. Судовая электроэнергетическая установка имеет в своем составе главный тепловой двигатель, разъединительную муфту, дополнительный тепловой двигатель, соединенный с дополнительным генератором, главные шины, шины питания судовых электропотребителей, систему управления установки, автоматические выключатели, датчики тока и датчики напряжения, первый управляемый и обратимый преобразователь частоты, который имеет управляемые выпрямитель и инвертор, конденсаторный накопитель звена постоянного тока, локальный блок управления, также дополнительный гребной электродвигатель, подсоединенный к гребному винту и второй гребной электродвигатель кольцевой конструкции с встроенным вторым гребным винтом, второй преобразователь частоты, преобразователь напряжения и четыре силовые электрические цепи.

Изобретение относится к судостроению, в частности к электроэнергетическим установкам судов с преобразователями частоты и гребными электродвигателями. Судовая электроэнергетическая установка содержит главные дизели или турбины, главные синхронные генераторы, аварийный дизель-генератор, обмотки статора, главный распределительный щит, входы выпрямителей преобразования частоты.

Изобретение относится к области судостроения, в частности к судовым системам электродвижения с преобразователями частоты и гребными электродвигателями. Судовая система электродвижения содержит шины распределительного щита, подключенные через автоматический выключатель и дроссель к обратимому преобразователю частоты.

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам с валогенераторами. Судовая электроэнергетическая установка содержит первый тепловой двигатель, второй тепловой двигатель, валогенератор, генератор, первый, второй и третий валы, вариатор, который соединен с гребным винтом, систему управления, шины питания, датчики скорости вращения.

Изобретение относится к способу функционирования судового приводного двигателя (2), питаемого по меньшей мере одним импульсным инвертором (3), при котором элементы (5) переключения импульсного инвертора (3) переключаются с изменяемой частотой переключения.

Изобретение относится к области судостроения. Судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, и локальную систему управления.

Изобретение относится к области судостроения, в частности к конструкциям судовых электрических движителей систем электродвижения судов. Судовая движительная установка содержит заключенный в герметичный обтекаемый корпус приводной электродвигатель, трубу, которая соединяет корпус приводного электродвигателя с корпусом судна, тянущий и толкающий гребные винты. Приводной электродвигатель выполнен биротативным, с вращающимися в разных направлениях статором, который соединен с тянущим гребным винтом, и ротором, который соединен с толкающим гребным винтом. Валы статора и ротора расположены соосно и выходят из корпуса приводного электродвигателя в разные стороны. Статор приводного биротативного электродвигателя с наружной стороны содержит токосъемные кольца и подшипники, которые опираются на корпус приводного электродвигателя. К токосъемным кольцам прилегают щетки со щеточным механизмом, который закреплен на корпусе судна. С внутренней стороны статора между статором и ротором установлены подшипники, в которых вращается ротор. Достигается повышение КПД, снижение массы и габаритов гребного электродвигателя, увеличение вместимости и грузоподъемности судна. 1 з.п. ф-лы, 4 ил.
Наверх