Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления



Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления

 


Владельцы патента RU 2575454:

Затираха Александра Валерьевна (RU)
Шпигун Олег Алексеевич (RU)

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Общая формула заявленного сорбента соответствует формуле (1). Матрица выбрана из ряда: полимер на основе дивинилбензола, выступающего в качестве сшивающего агента для данного полимера, полиметакрилат, диоксид кремния, диоксид титана, диоксид циркония или оксид алюминия. Сорбент содержит удаленный от поверхности матрицы с помощью спейсера водорастворимый полимер, содержащий четвертичные аммониевые функциональные группы

где R=(CH2)n, n=2-8,

- четвертичный атом азота.

К матрице химически прививают спейсер на основе соединения из класса диглицидиловых эфиров, затем проводят модифицирование водорастворимым полимером, содержащим в цепи первичные, вторичные либо третичные аминогруппы до получения четвертичных аммониевых групп, химически привитых к оксирановому кольцу диглицидиловых эфиров. Полученный сорбент обладает высокими стабильностью, селективностью и эффективностью. 2 н. и 13 з.п. ф-лы, 1 ил., 1 табл., 13 пр.

 

Изобретение относится к новому анионообменному материалу на основе полимеров либо неорганических оксидов, который может быть использован в ионной хроматографии в качестве сорбента для одновременного определения органических и неорганических анионов с повышенной эффективностью, позволяющий произвести селективное разделение смеси свыше десяти анионов, в частности, для анализа воды, почвы и других объектов на содержание анионов.

Для анионообменных сорбентов удерживание функциональных ионогенных групп на матрице может осуществляться посредством различных механизмов: электростатического или гидрофобного взаимодействия, с использованием адгезионного прикрепления («приклеивания»). В известных из литературы способах модифицирования матриц водорастворимыми полимерами для получения так называемых полиэлектролитных сорбентов обычно реализуется вариант электростатического закрепления.

Известны полиэлектролитные анионообменные сорбенты на основе матриц, представляющих собой силикагель, модифицированных водорастворимым полимером, содержащим в цепи положительно заряженные четвертичные аммониевые группы (O.V. Krokhin, A.D. Smolenkov, N.V. Svintsova, O.N. Obrezkov, O.A. Shpigun, Modified silica as a stationary phase for ion chromatography. // J. Chromatogr. A. 1995. V.706. P.93-98). Для их приготовления матрицу - оксид кремния марки Silasorb C8 - смешивали с додецилбензилсульфоновой кислотой (для создания отрицательного заряда на поверхности матрицы). Затем проводили модифицирование водорастворимым полимером, содержащим положительно заряженные четвертичные аммониевые группы в цепи - например, раствором поли(N-этил-4-винилпиридиния бромида) или поли(диметилдиаллиламмония хлорида). Удерживание водорастворимого полимера осуществляется за счет электростатических взаимодействий между отрицательно заряженной поверхностью матрицы и положительно заряженными четвертичными аммониевыми группами в цепи полимера.

Одним из достоинств полиэлектролитных сорбентов является их высокая эффективность, обусловленная тем, что при таком подходе к синтезу отсутствует диффузия анионов вглубь частицы матрицы, что приводит к отсутствию размывания хроматографических пиков. Другим важным преимуществом является их хорошая селективность, которая зависит от структуры используемого водорастворимого полимера и может легко варьироваться при выборе подходящего ионена, то есть полимера, содержащего четвертичные атомы азота в цепи.

Однако существенным недостатком полиэлектролитных сорбентов является их невысокая стабильность, которая приводит к постепенному снижению ионообменной емкости в результате изменения конформации электростатически закрепленного водорастворимого полимера, а также его постепенного смывания с поверхности матрицы.

Известны полиэлектролитные анионообменные сорбенты на основе полимерных матриц, представляющих собой сополимер стирола и дивинилбензола, модифицированный водорастворимым полимером, содержащим в цепи положительно заряженные четвертичные аммониевые группы (Касьянова Т.Н., Смоленков А.Д., Пирогов А.В., Шпигун О.А. Полиэлектролитные сорбенты для ионной хроматографии на основе полистирол-дивинилбензольной матрицы. // Сорбционные и хроматографические процессы. 2007. Т.7. Вып.1. С.52-59). Способ их получения включает получение отрицательно зараженной поверхности матрицы сульфированием ее поверхности концентрированной серной или хлорсульфоновой кислотой, либо сульфоацилированием. Затем к полученной матрице с отрицательно заряженной поверхностью добавляют суспензию водорастворимого полимера, содержащего положительно заряженные четвертичные аммониевые группы в цепи, в водном растворе сульфита натрия. Удерживание водорастворимого полимера на поверхности происходит из-за сильных электростатических взаимодействий положительно заряженных атомов азота в молекуле полимера и отрицательно заряженных сульфогрупп на поверхности матрицы (образование полиэлектролитного комплекса). Избыточные положительные заряды и обеспечивают анионообменные свойства сорбента, позволяющие проводить разделение 6-8 анионов.

Получаемые анионообменные сорбенты на основе сополимера стирола и дивинилбензола обладают всеми как положительными, так и отрицательными свойствами полиэлектролитных сорбентов на основе силикагеля, проявляя невысокую стабильность, которая приводит к постепенному снижению ионообменной емкости в результате изменения конформации электростатически закрепленного водорастворимого полимера, а также его постепенного смывания с поверхности матрицы.

Предлагаемое изобретение решает задачу создания анионообменных сорбентов, технологии синтеза которых позволяет варьировать в широких пределах их селективность, и обладающих улучшенными эксплуатационными и хроматографическими характеристиками, такими как высокая стабильность, высокая эффективность и селективность.

Поставленная задача решается анионообменным сорбентом для ионохроматографического определения органических и неорганических анионов на основе аминированной матрицы, причем матрица выбрана из ряда: полимер на основе дивинилбензола, выступающего в качестве сшивающего агента для данного полимера, полиметакрилат, диоксид кремния, диоксид титана, диоксид циркония или оксид алюминия, с удаленным от ее поверхности с помощью спейсера водорастворимым полимером, содержащим четвертичные аммониевые функциональные группы в цепи, при этом общая формула сорбента соответствует формуле (1)

где R=(CH2)n, n=2-8,

- четвертичный атом азота.

В качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, наиболее оптимальные результаты дает использование сополимера стирола и дивинилбензола или сополимера этилвинилбензола и дивинилбензола.

При этом лучшие результаты получают, когда размер частиц полимера составляет 3-10 мкм, а степень сшивки не менее 25%.

При использовании в качестве матрицы полиметакрилата наиболее оптимальные результаты получают при размере частиц матрицы, составляющем 3-10 мкм.

А при использовании в качестве матрицы оксидов, выбранных из ряда диоксид кремния, диоксид титана, оксид алюминия или диоксид циркония, оптимальные результаты получают при размере частиц матрицы, составляющем 1-10 мкм.

Еще одним аспектом изобретения является способ получения анионообменного сорбента, соответствующего п.1, включающий следующую последовательность операций:

- в качестве исходного соединения берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксид циркония или оксида алюминия;

- химически прививают к ней спейсер на основе соединения из класса диглицидиловых эфиров;

модифицируют полученные соединения водорастворимым полимером, содержащим в цепи первичные, вторичные либо третичные аминогруппы до получения четвертичных аммониевых групп, химически привитых к оксирановому кольцу диглицидиловых эфиров.

В качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, оптимально использовать сополимер стирола и дивинилбензола или сополимер этилвинилбензола и дивинилбензола.

При использовании в качестве матрицы полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, оптимальный размер его частиц составляет 3-10 мкм, а степень сшивки не менее 25%.

А при использовании в качестве матрицы полиметакрилата оптимальный размер его частиц составляет 3-10 мкм.

В то время как при использовании в качестве матрицы диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия оптимальные размеры частиц оксидов составляют 1-10 мкм.

Модифицирование водорастворимым полимером, содержащим в составе первичные или вторичные аминогруппы, проводят с последующим алкилированием аминогрупп, которое можно проводить, в частности, галогеналканами или дигалогеналканами.

Техническим результатом предлагаемых изобретений является создание высокоселективного анионообменного сорбента, обладающего высокими стабильностью, селективностью и эффективностью, способ получения которого дает возможность варьирования селективности в широких пределах, является простым, быстрым и хорошо воспроизводимым, позволяя достигнуть селективное разделение смеси свыше десяти анионов с эффективностью порядка 30000-40000 тт/м, а также сохранять ионообменную емкость сорбента в течение длительного времени.

Стадия химической прививки полимера к матрице через диглицидиловый эфир является новой, неизвестной из уровня техники и тем самым сообщает всему изобретению соответствие критериям как «новизны», так и «изобретательскому уровню».

В таблице 1 приведены хроматографические характеристики полученных анионообменных сорбентов.

На Фиг.1 представлена хроматограмма смеси органических и неорганических анионов на анионообменнике, полученном в примере 1. Элюент - 5 мМ гидрофталата калия, pH=4, скорость потока - 1,5 мл/мин.

Приведенные ниже примеры подтверждают, но не ограничивают заявляемую совокупность признаков.

Пример 1. Получение сорбента с химически привитым разветвленным полиэтиленимином на основе аминированного диоксида кремния с диаметром частиц 10 мкм.

1) в качестве исходной матрицы берут аминированный диоксид кремния с диаметром частиц 10 мкм.

2) химическая прививка спейсера:

в колбу на 100 мл помещают 1 г аминированного диоксида кремния, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°C, затем отфильтровывают и промывают водой.

3) модификация полученного соединения водорастворимым полимером с третичными аминогруппами:

1 г разветвленного полиэтиленимина растворяют в 15 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии. Реакционную смесь перемешивают в течение 45 минут при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 2. Получение сорбента с химически привитым разветвленным полиэтиленимином на основе аминированного оксида алюминия с диаметром частиц 5 мкм.

1) в качестве исходной матрицы берут аминированный оксид алюминия с диаметром частиц 5 мкм.

2) химическая прививка спейсера:

в колбу на 100 мл помещают 1 г аминированного оксида алюминия, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°C, затем отфильтровывают и промывают водой.

3) модификация полученного соединения водорастворимым полимером с третичнами аминогруппами:

Аналогично примеру 1.

Пример 3. Получение сорбента с химически привитым разветвленным полиэтиленимином на основе аминированного диоксида титана с диаметром частиц 2 мкм.

1) в качестве исходной матрицы берут аминированный диоксид титана с диаметром частиц 2 мкм.

2) химическая прививка спейсера:

в колбу на 100 мл помещают 1 г аминированного диоксида титана, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°C, затем отфильтровывают и промывают водой.

3) модификация полученного соединения водорастворимым полимером с третичными аминогруппами:

Аналогично примеру 1.

Пример 4. Получение сорбента с химически привитым разветвленным полиэтиленимином на основе аминированного диоксида циркония с диаметром частиц 7 мкм.

1) в качестве исходной матрицы берут аминированный диоксид циркония с диаметром частиц 7 мкм.

2) химическая прививка спейсера:

в колбу на 100 мл помещают 1 г аминированного диоксида циркония, добавляют 15 мл воды и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 30 минут при температуре 60°C, затем отфильтровывают и промывают водой.

3) модификация полученного соединения водорастворимым полимером с третичными аминогруппами:

Аналогично примеру 1.

Пример 5. Получение сорбента с химически привитым разветвленным полиэтиленимином на основе аминированного полиметакрилата с диаметром частиц 6 мкм.

1) в качестве исходной матрицы берут аминированный полиметакрилат с диаметром частиц 6 мкм.

2) химическая прививка спейсера:

в колбу на 100 мл помещают 1 г аминированного полиметакрилата, добавляют 10 мл воды, 10 мл этанола и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

3) модификация полученного соединения водорастворимым полимером с третичными аминогруппами:

1 г разветвленного полиэтиленимина растворяют в 10 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии, суспензированного в 10 мл этанола. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 6. Получение сорбента с химически привитым разветвленным полиэтиленимином на основе аминированного сополимера стирола и дивинилбензола со степенью сшивки 50% и диаметром частиц 3 мкм.

1) в качестве исходной матрицы берут аминированный сополимер стирола и дивинилбензола со степенью сшивки 50% и диаметром частиц 3 мкм.

2) химическая прививка спейсера:

в колбу на 100 мл помещают 1 г аминированного сополимера стирола и дивинилбензола, добавляют 10 мл воды, 10 мл этанола и 1 мл (1,4-бутандиол)диглицидилового эфира. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

3) модификация полученного соединения водорастворимым полимером с третичными аминогруппами:

Аналогично примеру 5.

Пример 7. Получение сорбента с химически привитым поливинилпиридином на основе аминированного сополимера стирола и дивинилбензола со степенью сшивки 25% и диаметром частиц 7 мкм.

1) в качестве исходной матрицы берут аминированный сополимер стирола и дивинилбензола со степенью сшивки 25% и диаметром частиц 7 мкм.

2) химическая прививка спейсера:

как в примере 5.

3) модификация полученного соединения водорастворимым полимером с третичными аминогруппами:

1 г поливинилпиридина растворяют в 10 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии, суспензированного в 10 мл этанола. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 8. Получение сорбента с химически привитым поливинилпиридином на основе аминированного диоксида кремния с диаметром частиц 10 мкм.

1) в качестве исходной матрицы берут аминированный диоксид кремния с диаметром частиц 10 мкм.

2) химическая прививка спейсера:

как в примере 1.

3) модификация полученного соединения водорастворимым полимером с третичными аминогруппами:

1 г поливинилпиридина растворяют в 15 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 9. Получение сорбента с химически привитым поливиниламином на основе аминированного диоксида кремния с диаметром частиц 6 мкм.

1) в качестве исходной матрицы берут аминированный диоксид кремния с диаметром частиц 6 мкм.

2) стадия прививки спейсера - как в примере 8.

3) модификация полученного соединения водорастворимым полимером с первичными аминогруппами:

1 г поливиниламина растворяют в 15 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 1-й стадии. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

4) Алкилирование

К 1 г продукта, полученного на 3-й стадии, добавляют 15 мл воды и 5 мл йодистого метила. Реакционную смесь перемешивают в течение 6 часов при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 10. Получение сорбента с химически привитым поливиниламином на основе аминированного сополимера стирола и дивинилбензола со степенью сшивки 50% и диаметром частиц 3 мкм.

1) в качестве исходной матрицы берут аминированный сополимер стирола и дивинилбензола со степенью сшивки 50% и диаметром частиц 3 мкм.

2) стадия прививки спейсера - как в примере 6.

3) модификация полученного соединения водорастворимым полимером с первичными аминогруппами:

1 г поливиниламина растворяют в 10 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии, суспензированного в 10 мл этанола. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

4) Алкилирование

К 1 г продукта, полученного на 3-й стадии, добавляют 10 мл этанола, 10 мл воды и 5 мл йодистого метила. Реакционную смесь перемешивают в течение 8 часов при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 11. Получение сорбента с химически привитым поливиниламином на основе аминированного сополимера этилвинилбензола и дивинилбензола со степенью сшивки 55% и диаметром частиц 5 мкм.

1) в качестве исходной матрицы берут аминированный сополимер этилвинилбензола и дивинилбензола со степенью сшивки 55% и диаметром частиц 5 мкм.

2) стадия прививки спейсера - как в примере 6.

3) модификация полученного соединения водорастворимым полимером с первичными аминогруппами:

1 г поливиниламина растворяют в 10 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 1-й стадии, суспензированного в 10 мл этанола. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

4) алкилирование.

Как в примере 10.

Пример 12. Получение сорбента с химически привитым линейным полиэтиленимином на основе аминированного диоксида кремния с диаметром частиц 5 мкм.

1) в качестве исходной матрицы берут аминированный диоксид кремния с диаметром частиц 5 мкм.

2) стадия прививки спейсера - как в примере 1

3) модификация полученного соединения водорастворимым полимером со вторичными аминогруппами:

1 г линейного полиэтиленимина растворяют в 15 мл дистиллированной воды, затем раствор добавляют к 1 г продукта, полученного на 2-й стадии. Реакционную смесь перемешивают в течение 60 минут при температуре 60°C, затем отфильтровывают и промывают водой.

4) алкилирование.

К 1 г продукта, полученного на 3-й стадии, добавляют 15 мл воды и 8 мл йодистого метила. Реакционную смесь перемешивают в течение 6 часов при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 13. Получение сорбента с химически привитым линейным полиэтиленимином на основе аминированного диоксида кремния с диаметром частиц 6 мкм.

1) в качестве исходной матрицы берут аминированный диоксид кремния с диаметром частиц 6 мкм.

2) стадия прививки спейсера - как в примере 1.

3) модификация полученного соединения водорастворимым полимером со вторичными аминогруппами: как в примере 12.

4) алкилирование.

К 1 г продукта, полученного на 3-й стадии, добавляют 15 мл воды и 10 мл 1,3-дибромпропана. Реакционную смесь перемешивают в течение 6 часов при температуре 60°C, затем отфильтровывают и промывают водой.

Пример 14. Ионохроматографическое определение органических и неорганических анионов с помощью анионообменных сорбентов, полученных в примерах 1-8 и 11.

Полученные в примерах 1-8 и 11 анионообменные сорбенты набивают в хроматографические колонки размером 4×50 мм под давлением 200 бар и проводят ионохроматографическое разделение смеси органических и неорганических анионов в варианте одноколоночной ионной хроматографии с УФ-детектированием для анионообменников, полученных в примерах 1-4, 8 и в варианте двухколоночной хроматографии с кондуктометрическим детектированием для анионообменников, полученных в примерах 5-7, 11. В качестве подвижных фаз при работе в одноколоночном режиме используют растворы гидрофталата калия с pH=4 и pH=6, а в двухколоночном варианте - растворы карбоната, гидрокарбоната и гидроксида натрия.

Хроматографические характеристики полученных анионообменных сорбентов представлены в таблице 1.

Как видно из таблицы 1, полученные сорбенты обладают высокой эффективностью (30000-40000 тт/м), селективностью (позволяют проводить одновременное определение 8-12 анионов) и стабильностью (минимальный срок эксплуатации без изменения ионообменной емкости составляет 4 месяца). Кроме того, предложенный способ получения дает возможность варьирования селективности анионообменников путем выбора водорастворимого полимера - например, при переходе от полиэтиленимина к поливинилпиридину количество разделяемых анионов возрастает от 10 до 12 в случае использования в качестве матрицы диоксида кремния.

Хроматограмма разделения модельной смеси анионов на анионообменнике, полученном в примере 1, представлена на фиг.1.

Как видно из фиг.1, полученный анионообменник, в качестве матрицы которого использовали диоксид кремния, обеспечивает селективное разделение 9 анионов: органических анионов ацетата и формиата, а также неорганических анионов - бромата, хлорида, нитрита, бромида, нитрата, иодида, сульфата и роданида. При этом стоит отметить отсутствие размывания и малую ширину пиков, что свидетельствует о высокой эффективности анионообменника (20000-30000 тт/м для разных анионов из представленного ряда).

Таким образом, предлагаемый способ получения сорбентов прост в исполнении и не требует использования высокотоксичных реагентов.

Предложенные нами анионообменные сорбенты сочетают в себе как достоинства полиэлектролитных сорбентов, такие как высокая эффективность и селективность, так и высокую стабильность, обусловленную химическим закреплением (химической прививкой) водорастворимого полимера, что исключает возможность изменения его конформации и смывания слоя с поверхности матрицы. Кроме того, предложенный способ синтеза позволяет расширить круг используемых водорастворимых полимеров (до содержащих в цепи первичные, вторичные или третичные атомы азота), что позволяет существенного улучшить селективность и варьировать ее в более широких пределах, увеличивая возможное число определяемых анионов более чем в 1,5 раза по сравнению с прототипом.

Предлагаемый подход к модифицированию прост в реализации, а благодаря высокой реакционной способности эпоксидных колец спейсера их реакции с аминогруппами, принадлежащими как матрице, так и водорастворимому полимеру, протекают легко, быстро и количественно при довольно мягких условиях (30-60 минут на одну стадию при температуре 50-60°C). Таким образом, дополнительным преимуществом данного подхода будет являться хорошая воспроизводимость синтеза с точки зрения получения необходимой ионообменной емкости.

Таблица 1
Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления.
Пример получения 8 1 2 3 4 5 6 7 11
Матрица Диоксид кремния Оксид алюминия Диоксид титана Диоксид циркония Полиметакрилат Сополимер стирола и дивинилбензола Сополимер этилвинилбензола и дивинилбензола
Диаметр частиц, мкм 10 10 5 2 7 6 3 7 5
Водорастворимый полимер Поливинилпиридин Разветвленный полиэтиленимин Полиинилпиридин Поливинил мин
Максимальное количество 12 10 9 8 8 11 8 9 9
разделяемых анионов
Максимальная эффективность, тт/м 35000 30000 45000 35000
Минимальный срок эксплуатации, мес. 4 4 4 4 4 5 5 5 5

1. Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов на основе аминированной матрицы, причем матрица выбрана из ряда: полимер на основе дивинилбензола, выступающего в качестве сшивающего агента в данном полимере, полиметакрилат, диоксид кремния, диоксид титана, диоксид циркония или оксид алюминия, с химически привитой к ней с помощью спейсера четвертичной аммониевой функциональной группой, входящей в основную или боковую цепь водорастворимого полимера, при этом общая формула сорбента соответствует формуле (1)

где R=(СН2)n, n=2-8,
- четвертичный атом азота.

2. Анионообменный сорбент по п.1, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер стирола и дивинилбензола.

3. Анионообменный сорбент по п.1, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер этилвинилбензола и дивинилбензола.

4. Анионообменный сорбент по п.1, отличающийся тем, что при использовании в качестве матрицы полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, размер частиц полимера составляет 3-10 мкм, а степень сшивки не менее 25%.

5. Анионообменный сорбент по п.1, отличающийся тем, что при использовании в качестве матрицы полиметакрилата размер частиц матрицы составляет 3-10 мкм.

6. Анионообменный сорбент по п.1, отличающийся тем, что при использовании в качестве матрицы оксидов, выбранных из ряда диоксид кремния, диоксид титана, оксид алюминия или диоксид циркония, размер частиц матрицы составляет 1-10 мкм.

7. Способ получения анионообменного сорбента, соответствующего п.1, для ионохроматографического определения органических и неорганических анионов, включающий следующую последовательность операций:
- в качестве исходного соединения берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксид циркония или оксида алюминия;
- химически прививают к ней спейсер на основе соединения из класса диглицидиловых эфиров;
- модифицируют полученные соединения водорастворимым полимером, содержащим в цепи первичные, вторичные либо третичные аминогруппы до получения четвертичных аммониевых групп, химически привитых к оксирановому кольцу диглицидиловых эфиров.

8. Способ по п.7, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер стирола и дивинилбензола.

9. Способ по п.7, отличающийся тем, что в качестве полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, используют сополимер этилвинилбензола и дивинилбензола.

10. Способ по п.7, отличающийся тем, что при использовании в качестве матрицы полимера на основе дивинилбензола, выступающего в качестве сшивающего агента, размер его частиц составляет 3-10 мкм, а степень сшивки не менее 25%.

11. Способ по п.7, отличающийся тем, что при использовании в качестве матрицы полиметакрилата размер его частиц составляет 3-10 мкм.

12. Способ по п.7, отличающийся тем, что при использовании в качестве матрицы диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия размеры частиц оксидов составляют 1-10 мкм.

13. Способ по п.7, отличающийся тем, что модифицирование водорастворимым полимером, содержащим в составе первичные или вторичные аминогруппы, проводят с последующим алкилированием аминогрупп.

14. Способ по п.13, отличающийся тем, что алкилирование аминогрупп проводят галогеналканами.

15. Способ по п.13, отличающийся тем, что алкилирование аминогрупп проводят дигалогеналканами.



 

Похожие патенты:

Изобретение относится к аналитической химии, в частности к созданию адсорбентов для разделения энантиомеров методом газовой хроматографии. Адсорбент состоит из инертного носителя Chromaton NAW и оптически активного соединения, представляющего собой супрамолекулярную структуру меламина, нанесенную на носитель в количестве 1% от массы носителя.

Изобретение относится к созданию неподвижных фаз для разделения энантиомеров методом газовой хроматографии и может быть использовано в химической и фармацевтической промышленности для анализа энантиомеров.

Настоящее изобретение относится к материалу для разделения, содержащему осажденный диоксид кремния, высушенный во вращающейся или распылительной сушилке. Диоксид кремния имеет площадь P поверхности пор, при которой log10 P>2,2, и отношение площади поверхности по BET к площади поверхности по СТАВ, измеренное до какого-либо модифицирования поверхности диоксида кремния, составляющее по меньшей мере 1,0.

Изобретение относится к синтезу сорбентов с химически закрепленными функциональными группами. Сорбент содержит 3-глицидилоксипропил-силикагель, который обработан тиосемикарбазидом при катализе хлорной кислотой в среде кипящего метанола в течение 8 часов.

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Сорбент общей формулы (1) содержит химически привитую с помощью спейсера четвертичную аммониевую функциональную группу, содержащую по крайней мере один 2-гидроксипропильный радикал. При этом R1 - (СН2)n, где n=2-8, R2 выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал). В качестве исходного материала при получении берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия.
Изобретение относится к получению сорбентов. Способ получения основан на использовании комплексов ионов никеля с аминометилфосфоновыми кислотами, образующимися в результате взаимодействия уротропина, гипофосфита кальция, йодоводородной кислоты и йодида никеля.

Изобретение относится к никелевому комплексу 5,10,15,20-тетракис [3′,5′-ди-(2″-метилбутилокси)фенил]-порфина формулы: Изобретение позволяет получить никелевый комплекс, проявляющий свойство стационарной фазы для газовой хроматографии.

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота.

Настоящее изобретение относится к способу получения катализатора для селективного каталитического восстановления NOx в топочном газе, содержащем щелочной металл, с использованием аммиака в качестве восстанавливающего агента, причем катализатор содержит поверхность с каталитически активными центрами кислот Бренстеда или Льюиса, причем поверхность, по меньшей мере, частично покрыта покрытием, содержащим, по меньшей мере, один оксид металла, причем этот способ включает предоставление носителя, импрегнирование носителя первым водным раствором, содержащим ванадиевый компонент, сушку и прокаливание импрегнированного носителя, покрытие импрегнированного носителя второй водной суспензией, содержащей, по меньшей мере, один оксид основного металла, представляющий собой MgO, и сушку и прокаливание покрытого носителя второй раз.

Изобретение относится к области охраны окружающей среды, ликвидации аварий, катастроф и может быть использовано для очистки грунта от нефти и нефтепродуктов. Проводят обработку загрязненной поверхности сорбентом.
Настоящее изобретение относится к химически модифицированным полым волокнистым материалам для экстракорпорального удаления экзотоксинов, вырабатываемых патогенной Escherichia coli, из содержащих белок жидкостей.

Изобретение относится к фильтрам для очистки воды, содержащим активированный уголь с полимерным покрытием, и способам их изготовления. Способ получения активированного угля с покрытием включает получение частиц активированного угля со средним размером примерно до 100 мкм и нанесение покрытия на частицы активированного угля путем распыления капель раствора катионного полимера на поверхность частиц активированного угля, причем раствор катионного полимера включает от примерно 2 до примерно 4 мас.% катионного полимера, размер капель составляет от примерно 15 до примерно 55 мкм, при этом катионный полимер содержит полидиаллилдиметиламмоний хлорид (pDADMAC), имеющий среднемассовую молекулярную массу (Mw) до примерно 200000 г/моль и среднечисленную молекулярную массу (Мn) до примерно 100000 г/моль.
Изобретение относится к технологиям производства сорбентов. Cорбент для очистки от радионуклидов содержит смесь глауконита и полиметилсилоксана полигидрата в массовом соотношении от 5:95 до 95:5.

Изобретение относится к способам получения хемосорбционных элементов. Готовят исходную композицию путём смешивания порошкообразных гидроксидов щелочных и/или щелочноземельных металлов с органическим полимером и растворителем.
Изобретение относится к области получения биоспецифического гидрогелевого сорбента для выделения протеиназ. Сорбент получают путем радикальной полимеризации под действием окислительно-восстановительного катализатора при комнатной температуре.

Изобретение относится к способам получения адсорбента диоксида углерода, предназначенного для использования в средствах защиты органов дыхания. Способ включает образование дисперсии оксидов щелочноземельных и/или гидроксидов щелочных и/или щелочноземельных металлов и нанесение дисперсии на листовую основу.
Изобретение относится к области промышленной экологии и может быть использовано для очистки сточных вод от тяжелых металлов и органических веществ. Предложен способ получения ионообменного сорбента, представляющего собой сополимер лигносульфоната натрия и полиметилакрилата.

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Сорбент общей формулы (1) содержит химически привитую с помощью спейсера четвертичную аммониевую функциональную группу, содержащую по крайней мере один 2-гидроксипропильный радикал. При этом R1 - (СН2)n, где n=2-8, R2 выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал). В качестве исходного материала при получении берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия.

Изобретение относится к области ионного обмена и может быть использовано для извлечения индия из растворов и при получении веществ особой чистоты. Предложены два варианта способа получения комплексообразующего сорбента.
Изобретение относится к области биологии и медицины и может быть использовано в клинической практике для терапии заболеваний, связанных с нарушениями липидного и липопротеинного обмена.

Изобретение может быть использовано при обработке разливов нефти и в производстве бумаги. Для изготовления содержащего карбонат кальция материала с обработанной поверхностью исходный материал приводят в контакт с по меньшей мере одной солью жирной кислоты С5-С28, выбранной из группы, включающей соли первичных алканоламинов одноатомных спиртов, соли полиэтиленимина и их смеси.
Наверх