Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к созданию высокопрочной коррозионно-стойкой стали, используемой для изготовления изделий, работающих при высоких растягивающих и изгибающих нагрузках, преимущественно проволоки малого диаметра, используемой в авиационной промышленности и машиностроении. Сталь содержит углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, празеодим, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,21, хром 15,0-16,5, никель 6,0-7,2, молибден 2,7-3,2, азот 0,04-0,09, марганец не более 1,0, кремний не более 0,6, иттрий не более 0,002, лантан не более 0,002, церий не более 0,002, празеодим не более 0,002, железо и неизбежные примеси - остальное. Повышается кратковременная прочность до значений не менее 2550 МПа и относительное удлинение до значений не менее 35%. 2 з.п. ф-лы, 2 табл., 1 пр.

 

Изобретение относится к области металлургии, а именно к созданию высокопрочной коррозионно-стойкой стали для изделий, работающих при высоких растягивающих и изгибающих нагрузках, преимущественно проволоки малого диаметра (не более 0,36 мм), для торсионов несущего винта вертолета, и может быть использовано в авиационной промышленности и машиностроении.

Известна высокопрочная сталь следующего химического состава, масс. %:

Углерод 0,064-0,069
Кремний 0,60-0,65
Марганец 0,19-1,30
Фосфор 0,018-0,021
Сера 0,010-0,014
Хром 17,1-17,2
Никель 8,9-9,0
Молибден 0,13-0,16
Азот 0,034
Алюминий 0,82-1,06
Титан 0,09-0,10
Железо остальное

(Европейский патент №ЕР 0031800 В1, опубл. 14.12.1983 г.).

Данная сталь принадлежит к аустенитному классу сталей, которые обладают хорошими пластическими свойствами.

Для увеличения прочностных характеристик стали используют ее обработку давлением. Проволока диаметром 1,83 мм из данной стали после термической обработки и обработки давлением обладает прочностью σв=2525 МПа, что является недостаточным. Дальнейшая обработка давлением приводит к разрушению проволоки.

Известна высокопрочная коррозионно-стойкая сталь следующего химического состава, масс. %:

Углерод 0,04-0,07
Кремний не более 0,6
Хром 15,5-16,5
Никель 4,8-5,8
Азот 0,11-0,18
Ниобий 0,03-0,08
Ванадий 0,03-0,08
Марганец 0,5-1,0
Кальций 0,02-0,03
Железо и неизбежные примеси остальное,

при выполнении условий

и

[Cr]-1,5[Ni]+2[Si]-0,75[Mn]-30[C+N]+1,5[V]+0,9[Nb]=1÷4 (Патент РФ №2318068, опубл. 27.02.2008 г.).

Недостатком указанной стали является низкая кратковременная прочность изделий из нее после холодной деформации, σв=1813-1880 МПа.

Наиболее близким аналогом, принятым за прототип, является высокопрочная коррозионно-стойкая сталь аустенитно-мартенситного класса, полученная в открытой печи с последующим электрошлаковым переплавом, следующего химического состава, масс. %:

Углерод 0,18-0,21
Хром 13-14
Никель 4-4,5
Молибден 2,3-2,8
Кремний 1,7-2,5
Кобальт 3,5-4,5
Азот 0,06-0,09
Марганец 0,1-1,0
Иттрий 0,001-0,05
Церий 0,001-0,05
Лантан 0,001-0,05
Железо остальное,

при этом сумма Y+Се+La примерно равна 0,1% (патент РФ №2164546, опубл. 27.03.2001 г.). Недостатком указанной стали являются ее недостаточная прочность, менее 2500 МПа и недостаточная пластичность, ввиду чего при волочении проволоки из данной стали ее обрыв происходит уже при достижении диаметра 1,6 мм.

Техническим результатом настоящего изобретения является повышение кратковременной прочности (временного сопротивления разрыву) σв изделий, в том числе проволоки, изготовленных из предлагаемой высокопрочной коррозионно-стойкой стали, до значений не менее 2550 МПа и технологической пластичности полуфабриката проволоки, характеризующейся относительным удлинением δ, до значений не менее 35%, что позволяет при последующем процессе волочения получить проволоку диаметром не более 0,36 мм.

Для достижения заявленного технического результата предложена высокопрочная коррозионно-стойкая сталь, содержащая углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, железо и

неизбежные примеси, которая дополнительно содержит празеодим, при следующем соотношении компонентов, масс. %:

Углерод 0,21
Хром 15,0-16,5
Никель 6,0-7,2
Молибден 2,7-3,2
Азот 0,04-0,09
Марганец не более 1,0
Кремний не более 0,6
Иттрий не более 0,002
Лантан не более 0,002
Церий не более 0,002
Празеодим не более 0,002
Железо и неизбежные примеси остальное.

Общее количество иттрия, лантана, церия и празеодима в составе стали может не превышать 0,005 масс. %. Соотношение компонентов, определяющих фазовый состав стали, может быть охарактеризовано следующими формулами:

где Км - эквивалент мартенситообразования;

Кф - эквивалент ферритообразования.

Празеодим, обладающий высокой термодинамической активностью, является сильным раскислителем и способствует повышению пластичности стали. Заявленное содержание церия и лантана оптимально для связывания серы, являющейся неизбежной примесью, в тугоплавкие сульфиды, исключая образование строчечных выделений серы, снижающих пластичность стали. Редкоземельные элементы в предлагаемых соотношениях также обеспечивают мелкозеренную структуру стали и чистоту межзеренных границ, что, в свою очередь, приводит к повышению механических свойств стали до заявленных значений.

Подобранное соотношение легирующих элементов (Км и Кф) позволяет получить минимальное количество δ-феррита, менее 1,5 об.%, и соотношение мартенсита и аустенита, близкое к заданному. Оптимальное процентное содержание углерода и азота, а также хрома, обеспечивающего коррозионную стойкость стали, и никеля, повышающего пластичность, в заявленной концентрации также повышают механические свойства высокопрочной коррозионно-стойкой стали.

Для достижения вышеуказанного технического результата важным является также способ выплавки стали.

Известен способ получения стали, включающий расплавление металла, введение редкоземельных элементов, термообработку, закалку стали (патент США №7662247, опубл. 16.02.2010 г.). Недостатком данного способа является то обстоятельство, что он не предусматривает стадии получения требуемого фазового состава стали (соотношение содержания аустенита и мартенсита), что в свою очередь не обеспечивает возможности холодной деформации (волочения) проволоки до диаметра 0,36 мм.

Известен способ производства (выплавки) стали, включающий завалку шихты с добавлением углеродсодержащих материалов в количестве, превышающем расчетное содержание углерода в 1,1-1,5 раза, последующее введение кислорода с различной интенсивностью подачи, плавление и рафинирование металла (авторское свидетельство СССР №937520, опубл. 23.06.1982 г. ). Указанный способ принят за прототип предлагаемого способа выплавки стали. Способ выплавки стали по прототипу позволяет получить содержание азота в стали, составляющее 0,009-0,010 масс. %, тогда как предлагаемая группа изобретений обеспечивает содержание азота в готовой стали 0,04-0,09 масс. %. Недостаточное количество азота в способе по прототипу приводит к понижению прочности стали. Кроме того, отсутствие в способе по прототипу стадии получения требуемого фазового состава стали не позволяет при последующей холодной деформации получить проволоку требуемого диаметра.

Для достижения вышеуказанного технического результата разработан способ выплавки предлагаемой стали, включающий завалку шихты, плавление, рафинирование и электрошлаковый переплав. В процессе рафинирования расплава осуществляют доводку его фазового состава до следующего соотношения: 6-10% мартенсита, 90-94% аустенита. В способе доводку фазового состава могут осуществлять с помощью легирования расплава металлическим никелем и азотированным марганцем или электротехническим железом. Добавление металлического никеля и азотированного марганца позволяет получить большее количество аустенита в стали, в то время как добавление электротехнического железа позволяет снизить количество аустенита.

Авторами установлено, что вышеуказанные параметры обеспечивают при последующем волочении достижение заявленных механических свойств изделия из предлагаемой стали. Кроме того, оптимальное количество аустенита как пластичной фазы и мартенсита как упрочняющей фазы обеспечивает высокую технологическую пластичность изделий наряду с высокой прочностью, что в свою очередь обеспечивает возможность применения повышенных степеней деформации при волочении проволоки. Дополнительное легирование расплава стали металлическим никелем и азотированным марганцем или электротехническим железом упрощает процесс получения требуемого фазового состава стали.

Таким образом, предлагаемые высокопрочная коррозионно-стойкая сталь и способ ее выплавки позволяют повысить кратковременную прочность и технологическую пластичность изделий из данной стали, что, в свою очередь, приводит к уменьшению стоимости изготовления таких изделий вследствие уменьшения количества промежуточных термических обработок, экономии металла из-за уменьшения количества обрывов проволоки на последних стадиях волочения.

Пример осуществления изобретения

Выплавку предлагаемой высокопрочной коррозионно-стойкой стали различных составов осуществляли в индукционной печи, всего с использованием разработанного способа было произведено три плавки предлагаемой стали и плавка стали по патенту РФ №2164546. Составы выплавленной стали с различным соотношением компонентов приведены в таблице 1.

Соотношение фазового состава стали фиксировали по намагниченности насыщения литой магнитной пробы на приборе МКЛ-3М. После этого осуществляли доводку фазового состава до оптимальных значений при помощи дополнительного легирования расплава металлическим никелем и азотированным марганцем. Для первой плавки фазовый состав составил 93% аустенита и 7% мартенсита, для второй плавки - 94% аустенита и 6% мартенсита, для третьей - 90% аустенита и 10% мартенсита. Электрошлаковый переплав нечищеных электродов производили в кристаллизатор. Вес слитков составлял 730-750 кг.

Из полученной стали была изготовлена проволока-полуфабрикат диаметром 6 мм, а затем путем холодной деформации (волочения) была изготовлена готовая проволока диаметром 0,36 мм. Механические характеристики проволоки определяли в соответствии с ГОСТ 10446. Результаты измерений приведены в таблице 2.

1. Высокопрочная коррозионно-стойкая сталь, содержащая углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит празеодим при следующем соотношении компонентов, мас.%:

Углерод 0,21
Хром 15,0-16,5
Никель 6,0-7,2
Молибден 2,7-3,2
Азот 0,04-0,09
Марганец не более 1,0
Кремний не более 0,6
Иттрий не более 0,002
Лантан не более 0,002
Церий не более 0,002
Празеодим не более 0,002
Железо и неизбежные примеси остальное

2. Высокопрочная коррозионно-стойкая сталь по п. 1, отличающаяся тем, что общее количество иттрия, лантана, церия и празеодима не превышает 0,005 мас.%.

3. Высокопрочная коррозионно-стойкая сталь по п. 1 или 2, отличающаяся тем, что соотношение компонентов, определяющих фазовый состав стали, характеризуется следующими выражениями:


где Км - эквивалент мартенситообразования;
Кф - эквивалент ферритообразования.



 

Похожие патенты:

Изобретение относится к области черной металлургии, а именно к низколегированным сталям повышенной жаропрочности и хладостойкости, применяемым при производстве корпусов и внутренних элементов аппаратуры нефтеперерабатывающих заводов и крекинговых труб, задвижек, деталей насосов, спецкрепежа труб, трубопроводной арматуры, деталей трубопроводов, коммуникационных и печных труб, используемых в тепловых сетях и энергомашиностроении.

Изобретение относится к области металлургии, а именно к составам коррозионно-стойких немагнитных (аустенитных) сталей повышенной прочности и к изделиям, выполненным из нее, для работы в окислительных и восстановительных средах средней и высокой агрессивности.

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,37-0,43, кремний 0,17-0,37, марганец 0,50-0,80, хром 0,60-0,90, никель 0,70-1,10, молибден 0,15-0,25, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа.

Изобретение относится к высокопрочной высокопластичной легированной стали и изделиям, изготавливаемым из нее. Сталь содержит компоненты в следующем соотношении, мас.%: С 0,30-0,47, Mn 0,8-1,3, Si 1,5-2,5, Cr 1,5-2,5, Ni 3,0-5,0, Mo+½W 0,7-0,9, Cu 0,70-0,90, Со до 0,01, V+(5/9)×Nb 0,10-0,25, Ti до 0,005, Al до 0,015, Fe и примеси остальное.

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,18-0,23, кремний 0,17-0,37, марганец 0,70-1,10, хром 0,40-0,70, никель 0,40-0,70, молибден 0,15-0,25, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа.

Изобретение относится к области металлургии, а именно к двухслойному листовому прокату толщиной 10-50 мм, состоящему из слоя износостойкой стали и слоя свариваемой стали, для изготовления сварных конструкций, подвергающихся ударно-абразивному износу и работающих при температуре до -40°C.
Сталь // 2532661
Изобретение относится к металлургии, а именно к высококачественным легированным конструкционным сталям для изготовления силовых деталей, шестерен и валов, поверхности которых упрочняют цементацией или нитроцементацией.
Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям для высоконагруженных деталей, используемых в машиностроении, приборостроении.
Изобретение относится к области металлургии, а именно к высокопрочной броневой листовой стали. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,28-0,40, кремний 0,80-1,40, марганец 0,50-0,80, хром 0,10-0,70, никель 1,50-2,20, молибден 0,30-0,80, алюминий 0,005-0,05, медь не более 0,30, сера не более 0,012, фосфор не более 0,015, железо - остальное.

Изобретение относится к области металлургии, а именно к высокопрочной нержавеющей стали для нефтяных скважин. Сталь содержит, в мас.%: С: максимум 0,05, Si: максимум 1,0, Mn: максимум 0,3, P: максимум 0,05, S: менее 0,002, Cr: более 16 и максимум 18, Мо: от 1,5 до 3,0, Cu: от 1,0 до 3,5, Ni: от 3,5 до 6,5, Al: от 0,001 до 0,1, N: максимум 0,025 и О: максимум 0,01, Fe и примеси остальное.

Изобретение относится к области металлургии, а именно к низколегированным сталям повышенной теплоустойчивости, применяемым при производстве плавниковых труб, предназначенных для паровых котлов, труб пароперегревателей, трубопроводов и коллекторных установок высокого давления, деталей цилиндров газовых турбин, различных деталей, работающих при температуре до +480-500°C, воротниковых фланцев, штуцеров, колец, патрубков, тройников для энергооборудования и трубопроводов тепловых электростанций. Получают сляб из стали, имеющей химический состав, в мас.%: углерод 0,15-0,22, кремний 0,15-0,50, марганец 0,60-1,00, алюминий 0,01-0,06%, хром не более 0,3, никель не более 0,3, медь не более 0,3, молибден 0,20-0,50, сера не более 0,007, фосфор не более 0,020, азот не более 0,012, железо и неизбежные примеси - остальное. Осуществляют нагрев слябов под прокатку до температуры 1200-1250°C. Выполняют многопроходную реверсивную черновую и чистовую прокатку. Черновую прокатку завершают при температуре не более 1100°C, а чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°C с относительным обжатием в последнем проходе от 10% до 15%. После прокатки и охлаждения листы подвергают термообработке при температуре 900-930°C с последующим охлаждением на воздухе. Обеспечивается высокий уровень теплоустойчивости и ударной вязкости. 3 табл.

Изобретение относится к области металлургии, а именно к составам высокопрочных нержавеющих сталей, используемых для изготовления бесшовных труб для нефтяных скважит. Сталь содержит, мас.%: С: 0,05 или меньше, Si: 0,5 или меньше, Mn: 0,15 или больше и 1,0 или меньше, Cr: 13,5 или больше и 15,4 или меньше, Ni: 3,5 или больше и 6,0 или меньше, Мо: 1,5 или больше и 5,0 или меньше, Cu: 3,5 или меньше, W: 2,5 или меньше, N: 0,15 или меньше, Fe и неизбежные примеси остальное. Для компонентов стали выполняется следующее условие: -5,9×(7,82+27C-0,91Si+0,21Mn-0,9Cr+Ni-1,1Mo-0,55W+0,2Cu+11N)≥13,0. Сталь обладает высокой стойкостью к сульфидному коррозионному растрескиванию под напряжением. 2 н. и 18 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к плакирующему материалу для стального листа, используемого в морских конструкциях, устройствах опреснения морской воды. Плакирующий материал содержит, мас.%: 0,03 или менее углерода, 1,5 или менее кремния, 2,0 или менее марганца, 0,04 или менее фосфора, 0,03 или менее серы, от 22,0 до 25,0 никеля, от 21,0 до 25,0 хрома, от 2,0 до 5,0 молибдена, от 0,15 до 0,25 азота, остальное железо и неизбежные примеси. Критическая температура питтинговой коррозии (СРТ) плакирующего материала после нормализации, определяемая в соответствии с ASTM G48-03 Method E, составляет 45°С или выше, а потери от коррозии в зоне сварки, определенные посредством коррозионного испытания в соответствии со стандартом NORSOK M-601, составляют 1,0 г/м2 или менее. Плакирующий материал для стального листа обладает высокой коррозионной стойкостью к морской воде, обеспечивает целостность соединения с улучшенной надежностью при одновременном поддержании высоких коррозионных и механических свойств основного и плакирующего материалов. 5 н. и 4 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к получению аустенитной нержавеющей нанодвойникованной TWIP стали. Выплавляют аустенитную нержавеющую сталь, содержащую, мас.%: не более чем 0,018 C, 0,25-0,75 Si, 1,5-2 Mn, 17,80-19,60 Cr, 24,00-25,25 Ni, 3,75-4,85 Mo, 1,26-2,78 Cu, 0,04-0,15 N, остальное – Fe и неизбежные примеси. Доводят сталь до температуры ниже 0°C и подвергают воздействию пластической деформации со степенью деформации по меньшей мере 30% для образования нанодвойников со средним расстоянием между ними менее 1000 нм и плотностью более 35%. Обеспечивается получение стали, обладающей высокой прочностью. 2 н. и 11 з.п. ф-лы, 9 ил., 5 табл.

Изобретение относится к области металлургии, а именно к способам производства высокопрочного износостойкого биметаллического конструкционного материала с основным слоем из низколегированной стали и плакирующим слоем из коррозионно-стойкой стали, предназначенного для применения в изделиях нефтяного и химического машиностроения, а также других отраслях, где необходимо применение коррозионно-стойких в агрессивных средах элементов конструкций и аппаратов. На основной слой наносят плакирующий слой из коррозионно-стойкой износостойкой аустенитно-ферритной стали электрошлаковой наплавкой расходуемыми электродами. Электроды изготовлены из стали следующего состава, мас.%: углерод 0,010-0,035, кремний 0,5-1,0, марганец 0,7-2,0, хром 21-25, никель 4,5-7,5, молибден 2,5-4,5, титан не более 0,005, алюминий не более 0,03, азот 0,01-0,20, сера 0,0025-0,0035, фосфор 0,010-0,020, железо и неизбежные примеси остальное, а глубина проплавления основного слоя при наплавке составляет не более 5 мм. Затем осуществляют горячую прокатку и термическую обработку. Повышается коррозионная стойкость, в том числе стойкость к питтинговой коррозии, прочностные характеристики и износостойкость биметаллических конструкционных материалов, а также снижается себестоимость биметалла. 1 табл.

Изобретение относится к области черной металлургии. Для повышения прочности, ударной вязкости и относительного сужения в направлении толщины проката при низких температурах получают горячекатаный прокат толщиной 8-50 мм с повышенным уровнем хладостойкости, выплавляют сталь, содержащую, мас. %: углерод 0,07-0,12, марганец 0,20-0,70, кремний 0,10-0,50, хром 1,00-1,40, никель 1,50-2,00, молибден 0,10-0,30, медь 0,20-0,50, ниобий 0,02-0,05, алюминий 0,01-0,06, азот не более 0,008, сера не более 0,005, фосфор не более 0,010, железо – остальное, получают слябы, нагревают их до 1240-1260°C в печах и прокатывают на толстолистовом стане в листы до конечной толщины при температуре конца прокатки не более 890°C, охлаждают на воздухе, затем осуществляют нагрев листов до 920-940°C с общей выдержкой 2,0-3,0 мин/мм с последующей закалкой в воду и проводят отпуск при 690-740°C с выдержкой 1,5-2,8 мин/мм в зависимости от толщины с охлаждением на воздухе. 3 табл.

Изобретение относится к области металлургии, в частности к способам получения листовой плакированной стали, и может быть использовано для строительства железнодорожных мостов, а также для оборудования нефтехимической промышленности. Способ производства листовой плакированной стали включает получение заготовки с поверхностным слоем из коррозионно-стойкой стали и основным слоем из углеродистой стали и горячую прокатку заготовки, при этом нагрев заготовки перед горячей прокаткой осуществляют в диапазоне температур от 1250 до 1300°С, охлаждение после прокатки ведут со скоростью не менее 7°С/с, причем температура конца ускоренного охлаждения составляет не выше 600°С, а заготовку получают из стали с плакирующим слоем из нержавеющей стали с ферритомартенситной структурой, содержащей, мас.%: углерод 0,01-0,15, кремний 0,30-0,70, марганец 0,50-2,7, хром 14-17, никель 1,0-2,5, молибден 0,01-2,5, титан 0,01-0,1, ванадий 0,01-0,1, ниобий 0,01-0,1, азот 0,1-0,3, фосфор 0,002-0,003, сера не более 0,005, железо и неизбежные примеси остальное. Изобретение направлено на повышение прочности и износостойкости стали с плакирующим слоем, а также на снижение затрат на производство при сохранении высокой прочности и сплошности соединения слоев, пластичности слоистого материала, а также высоких коррозионных свойств плакирующего слоя и хладостойкости стали основного слоя. 3 табл., 1 пр.
Изобретение относится к химическому, нефтехимическому, нефтеперерабатывающему машиностроению, а именно к составам для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред. Коррозионно-стойкое покрытие для защиты внутренней поверхности технологического оборудования, подвергаемого износу под действием среды с содержанием сероводорода до 20% содержит, мас. %: Cr 13-22, С 0,01-0,1, Мо 1,0-3,0, Ni 10,0-14,0, Fe - остальное, или Cr 20-28,5, С 0,1-1,5, Si 1,0-2,0, Mn 0,5-1,1, Мо 3,0-5,0, Ni 14,5-17,0, Fe - остальное. Коррозионно-стойкое покрытие для защиты внутренней поверхности технологического оборудования, подвергаемого износу под действием среды с содержанием сероводорода более 20%, содержит, мас.%: Cr 16,0-18,0, С 0,01-0,1, Мо 1,0-3,0, Ti 0,5-1,2, Ni 12,0-14,0, Fe - остальное, при углеродном эквиваленте Сэкв. в диапазоне от 4,50 до 5,3 и коэффициенте питтингостойкости PREN в диапазоне от 22,6 до 30,2, или Cr 20-24,0, С 0,01-0,02, Fe 3,0-5,0, Мо 13,0-15,0, W 2,0-4,0, Ni - остальное, при углеродном эквиваленте Сэкв. в диапазоне от 9,5 до 11,2, а коэффициенте питтингостойкости PREN в диапазоне от 60,25 до 76,4. Изобретение позволяет повысить адгезию с материалом основы, коррозионно-механические свойства: износостойкость, абразивную стойкость, коррозионную стойкость. 4 н.п. ф-лы, 4 пр.
Наверх