Способ определения угла поворота мобильного робототехнического комплекса при преодолении препятствий

Для реализации задачи обнаружения препятствий, возникающих на пути движения мобильного робототехнического комплекса, используют ультразвуковые датчики, установленные по периметру комплекса. Перед началом движения в системе управления задают предельную дальность обнаружения препятствия и вводят зону гистерезиса, когда расстояние до препятствия находится на границе зоны обнаружения. После выбора основного направления движения и начала движения осуществляют непрерывную обработку данных с ультразвуковых датчиков. После обнаружения препятствия определяют угол поворота комплекса для выполнения маневра по объезду препятствия, для чего в состав комплекса введен аналоговый датчик угловой скорости - микромеханический гироскоп. Для исключения влияния на точность вычисления угла поворота перед использованием комплекса проводят калибровочные работы, складывающиеся из двух частей. Первая - калибровка «нуля» датчика и принятие постоянной поправки X к значению угловой скорости. Вторая - нахождение масштабных коэффициентов К1, К2 для вычисления значений угла поворота. Для получения требуемой точности выполняют предварительную фильтрацию оцифрованного сигнала угловой скорости по методу скользящего среднего. Для получения значения угла - численное интегрирование значения угловой скорости с учетом коэффициента К. Достигается определение с высокой точностью угла поворота для выбора дальнейшего направления движения. 5 ил.

 

Изобретение относится к дистанционно-управляемым боевым роботизированным комплексам, предназначенным для решения задач силовых структур РФ, в частности к способам их алгоритмического и программного обеспечения при управлении движением.

Известна автоматическая система управления движением мобильного объекта и способ автоматического управления движением мобильного объекта (см. патент RU 2451593 C2, МПК B25J 5/00, опубл. 27.05.2012 г.), принятый за прототип. Автоматическая система управления движением мобильного объекта содержит блок обработки цифровых параметрических сигналов, установленный на мобильном объекте, блок с нечеткой логикой, включающий базу правил нечетких продукций и систему нечеткого вывода, блок с реализованными на нем программно или аппаратно-нейронными сетями, корректирующими графики функций принадлежностей, и коммутирующий контроллер. Система снабжена блоком обработки видеосигналов, вход которого соединен с камерами системы технического зрения, установленными на мобильном объекте, блоком анализа и кластеризации, входы которого соединены с блоком обработки цифровых параметрических сигналов и блоком обработки видеосигналов, блоком с программно или аппаратно-реализованным первым генетическим алгоритмом, настраивающим базы правил нечетких продукций, вход и выход которого связаны с блоком с нечеткой логикой, блоком с программно или аппаратно-реализованным вторым генетическим алгоритмом, настраивающим нейронные сети, вход и выход которого связаны с блоком с нейронными сетями, при этом вход и выход блока с нейронными сетями связан с блоком с нечеткой логикой.

Способ автоматического управления движением мобильного объекта включает создание исходных баз правил нечетких продукций для множества сценариев развития ситуаций, предварительное обучение автоматической системы управления выполнению задач, связанных с движением мобильного объекта в условиях изменяющейся окружающей среды, и выработку управляющих сигналов для исполнительных органов мобильного объекта, при этом предварительное обучение системы управления осуществляют с применением первого генетического алгоритма, который вырабатывает наилучший вариант базы правил нечетких продукций для каждого сценария развития ситуации, и второго генетического алгоритма, который для каждого сценария развития ситуации вырабатывает наилучший вариант нейронной сети для каждой выходной лингвистической переменной, причем данные с выработанным наилучшим вариантом базы правил передают в блок с нечеткой логикой и заменяют исходный вариант базы правил для данного сценария, данные с выработанным наилучшим вариантом нейронной сети для каждой выходной лингвистической переменной передают в блок с нейронными сетями и заменяют исходную нейронную сеть для данной выходной лингвистической переменной для данного сценария, а выработку управляющих сигналов для исполнительных органов в зависимости от ситуации осуществляют блоком с нечеткой логикой на основе измененных баз правил и откорректированных графиков функций принадлежности.

Недостатками прототипа являются:

- недостаточная точность отработки комплексом управляющих сигналов при движении;

- высокая вероятность возникновения аварийных ситуаций при преодолении препятствий при движении;

- отсутствие возможности введения в систему управления объектом поправочных коэффициентов;

- высокая сложность системы управления, в которой реализуется способ.

Предлагаемым изобретением решается задача по повышению живучести подвижных роботизированных комплексов за счет оптимизации алгоритмов управления движением.

Технический результат, получаемый при осуществлении изобретения, заключается в создании способа определения угла поворота мобильного робототехнического комплекса при преодолении препятствий, обеспечивающего обнаружение и определение дальности до препятствия, возникающего на пути движения мобильного роботизированного комплекса, определение с высокой точностью угла поворота для выбора дальнейшего направления движения.

Указанный технический результат достигается тем, что в предлагаемом способе определения угла поворота мобильного робототехнического комплекса при преодолении препятствий, включающем работу системы управления по выполнению задач, связанных с движением мобильного объекта в условиях изменяющейся окружающей среды, обработку данных с датчиков, выработку управляющих сигналов для исполнительных органов мобильного объекта, новым является то, что для реализации задачи обнаружения препятствий, возникающих на пути движения мобильного робототехнического комплекса, используются ультразвуковые датчики, установленные по периметру комплекса, для которых перед началом движения в системе управления задается предельная дальность обнаружения препятствия и вводится зона гистерезиса, когда расстояние до препятствия находится на границе зоны обнаружения, после выбора основного направления движения и начала движения осуществляется непрерывная обработка данных с ультразвуковых датчиков, после обнаружения препятствия выполняется решение задачи определения угла поворота комплекса для выполнения маневра по объезду препятствия, для чего в состав комплекса введен аналоговый датчик угловой скорости - микромеханический гироскоп, для исключения влияния на точность вычисления угла поворота перед использованием комплекса проводятся калибровочные работы, складывающиеся из двух частей: первой - калибровка «нуля» датчика и принятие постоянной поправки X к значению угловой скорости, второй - нахождение масштабных коэффициентов К1, К2 для вычисления значений угла поворота, для получения требуемой точности выполняется предварительная фильтрация оцифрованного сигнала угловой скорости по методу скользящего среднего, а для получения значения угла - численное интегрирование значения угловой скорости с учетом коэффициента К.

Использование для реализации задачи обнаружения препятствий ультразвуковых дальномеров, установленных по периметру комплекса, позволяет:

- обеспечить максимальный «захват» возникающих при движении препятствий в зону контроля;

- обеспечить обнаружение препятствий любой конфигуративной сложности;

- предотвратить столкновение комплекса с обнаруженными препятствиями;

- обеспечить обнаружение объектов при наличии атмосферных осадков.

Введение перед началом движения в систему управления предельной дальности обнаружения препятствия и зоны гистерезиса позволяет:

- обеспечить оптимальные размеры контролируемой зоны, что снижает вероятность возникновения аварийных ситуаций и позволяет своевременно выполнить маневр по объезду препятствия;

- исключить эффект «дребезга» при изменении направления движения, когда расстояние до препятствия находится на границе зоны обнаружения.

Выполнение задачи определения угла поворота комплекса с использованием аналогового датчика угловой скорости - микромеханического гироскопа - позволяет:

- провести определение угла поворота и дальнейшую его отработку без чрезмерного усложнения конструкции комплекса;

- получить достаточно высокие точностные характеристики.

Проведение калибровки «нуля» датчика и принятие постоянной поправки X к значению угловой скорости позволяет снизить влияние на точность вычисления угла поворота погрешности датчика угловой скорости.

Нахождение масштабных коэффициентов К1, К2 для вычисления значений угла поворота позволяет:

- выполнить привязку реального угла поворота датчика к вычисленному;

- устранить ошибку масштабных коэффициентов шкалы датчика.

Выполнение предварительной фильтрации оцифрованного сигнала угловой скорости и численного интегрирования с учетом коэффициента К позволяет получить окончательное значение угловой скорости.

Технические решения с признаками, отличающими заявляемое решение от прототипа, не известны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на фиг. 1 показан алгоритм работы ультразвуковых датчиков; на фиг. 2 - подпрограмма 1; на фиг. 3 - алгоритм калибровки «нуля» датчика; на фиг. 4 - алгоритм нахождения масштабных коэффициентов; на фиг. 5 - алгоритм вычисления угла поворота.

Способ определения угла поворота мобильного робототехнического комплекса при преодолении препятствий реализуется следующим образом.

1. Для реализации задачи обнаружения препятствий, возникающих на пути движения мобильного робототехнического комплекса (МРК), используются ультразвуковые дальномеры (УЗД), установленные по периметру МРК.

Получение и обработка данных УЗД заключается в измерении электрических сигналов с датчиков (TTL, ШИМ-сигнал с частотой 50 Гц и скважностью 1000-2000 мкс) и переводе значения скважности в метры.

2. Перед началом движения МРК в его системе управления задается предельная дальность обнаружения препятствия исходя из условий местности и технических возможностей УЗД.

3. Далее вводится зона гистерезиса. Введение зоны гистерезиса необходимо для исключения эффекта «дребезга», когда расстояние до препятствия находится на границе зоны обнаружения препятствия.

4. Перед началом движения выбирается основное направление движения: «вперед/назад». При движении «вперед» используются данные 3-х носовых УЗД, при движении «назад» - 3-х кормовых УЗД, которые обрабатываются посредством подпрограммы 1.

5. После обнаружения препятствия возникает необходимость решения задачи определения угла поворота для выполнения маневра по объезду препятствия. Для этого используются аналоговый датчик угловой скорости (ДУС), плата обработки данных (ПОД), поворотное устройство (ПУ), установленные на подвижной части МРК. Поворотное устройство состоит из редуктора, электродвигателя, датчика обратной связи и платы управления, размещенных в едином корпусе, что позволяет поворачивать выходной вал на точный заданный угол.

ДУС представляет собой микромеханический гороскоп с аналоговым выходным сигналом, пропорциональным угловой скорости вращения датчика вдоль оси чувствительности. Причем при использовании аналогового ДУС имеют место следующие недостатки:

- зашумленность аналогового сигнала с датчика;

- при неподвижном положении датчика его выходное напряжение, соответствующее значению нулевой угловой скорости («ноль» датчика), равно фиксированному значению 2,5 В. Однако, в зависимости от условий окружающей среды (непостоянство температуры, давления и др.), напряжение может изменяться в некотором диапазоне. При вычислении угла поворота ошибка значения «нуля» датчика дает значительную ошибку значения угла, нарастающую со временем;

- при вращении датчика с одинаковыми угловыми скоростями, но в разных направлениях, значения выходного напряжения датчика отличаются по амплитуде, что означает разные масштабные коэффициенты для знака угловой скорости.

Для исключения влияния вышеперечисленных недостатков на точность вычисления угла поворота перед использованием МРК проводятся калибровочные работы, складывающиеся из двух частей.

6. Первая часть калибровки - калибровка «нуля» датчика. Она включает в себя последовательное вычисление поправки X к значению угловой скорости V во время неподвижного положения МРК.

7. Вторая часть калибровки - нахождение масштабных коэффициентов К1, К2 при вычислении угла поворота датчика. ДУС, установленный на поворотной платформе МРК, поворачивается на углы ±180 градусов. При этом сам МРК находится в неподвижном состоянии. Вращая датчик на ПУ (в обе стороны), осуществляют привязку значения реального угла поворота к вычисленному α0, тем самым устраняется ошибка масштабных коэффициентов шкалы датчика.

8. Для получения требуемой точности при ограниченной вычислительной мощности системы для предварительной фильтрации оцифрованного сигнала угловой скорости используется метод скользящего среднего, а для получения значения угла - численного интегрирования методом трапеций. Вычисление масштабных коэффициентов происходит параллельно с вычислением относительного угла поворота.

Таким образом, в предлагаемом изобретении решена задача по достижению технического результата, заключающегося в создании способа определения угла поворота мобильного робототехнического комплекса при преодолении препятствий, обеспечивающего обнаружение и определение дальности до препятствия, возникающего на пути движения мобильного роботизированного комплекса, определение с высокой точностью угла поворота для выбора дальнейшего направления движения.

Способ определения угла поворота мобильного робототехнического комплекса при преодолении препятствий, включающий работу системы управления по выполнению задач, связанных с движением мобильного объекта в условиях изменяющейся окружающей среды, обработку данных с датчиков, выработку управляющих сигналов для исполнительных органов мобильного объекта, отличающийся тем, что для реализации задачи обнаружения препятствий, возникающих на пути движения мобильного робототехнического комплекса, используются ультразвуковые датчики, установленные по периметру комплекса, для которых перед началом движения в системе управления задается предельная дальность обнаружения препятствия и вводится зона гистерезиса, когда расстояние до препятствия находится на границе зоны обнаружения, после выбора основного направления движения и начала движения осуществляется непрерывная обработка данных с ультразвуковых датчиков, после обнаружения препятствия выполняется решение задачи определения угла поворота комплекса для выполнения маневра по объезду препятствия, для чего в состав комплекса введен аналоговый датчик угловой скорости - микромеханический гироскоп, плата обработки данных, поворотное устройство, установленные на подвижной части МРК, поворотное устройство состоит из редуктора, электродвигателя, датчика обратной связи и платы управления, размещенных в едином корпусе, что позволяет поворачивать выходной вал на точный заданный угол, для исключения влияния на точность вычисления угла поворота перед использованием комплекса проводятся калибровочные работы, складывающиеся из двух частей: первой - калибровка «нуля» датчика и принятие постоянной поправки X к значению угловой скорости, второй - нахождение масштабных коэффициентов К1, К2 для вычисления значений угла поворота, для получения требуемой точности выполняется предварительная фильтрация оцифрованного сигнала угловой скорости по методу скользящего среднего, а для получения значения угла - численное интегрирование значения угловой скорости с учетом коэффициента К.



 

Похожие патенты:

Изобретение относится к области робототехники, а именно к робототехническим средствам, предназначенным для работы в дистанционном режиме в особо опасных условиях без участия человека.

Изобретение относится к робототехнике, а именно к робототехническим комплексам, предназначенным для дистанционной работы в труднодоступных и опасных для присутствия человека местах.

Изобретение относится к области робототехники и предназначено для построения колесных андроидных роботов, используемых внутри помещений. Шасси колесного робота содержит прямоугольную раму, два ведущих колеса, выполненные большего диаметра и с жестко закрепленными осями, два пассивных колеса, выполненные меньшего диаметра и свободно вращающимися вокруг вертикальной оси, и пятое пассивное колесо, выполненное большего диаметра и с жестко закрепленной осью.

Изобретение относится к области робототехники и предназначено для построения колесных андроидных роботов. Устройство для подъема и пускания торса андроидного робота содержит основание, на котором закреплен двигатель, и гайку, навинченную на винт, опирающийся на подшипник.

Робототехнический комплекс содержит самоходное управляемое транспортное средство, пульт дистанционного управления, систему управления движением, систему навигации, систему связи и передачи данных, комплект специального оборудования, систему технического зрения, исполнительные механизмы.

Изобретение относится к робототехнике и может найти применение в качестве мобильного робота и самодвижущейся транспортной тележки для использования в цехах промышленных предприятий с высокими градиентами окружающей температуры.

Изобретение относится к сканирующей зондовой микроскопии, микромеханике, робототехнике и нанотехнологии. Шагающий робот-нанопозиционер предназначен для прецизионного перемещения зонда микроскопа или исследуемого под микроскопом образца и содержит перемещаемую платформу, более трех опор и несущую поверхность, его конструктивные элементы изготовлены из материалов с малыми коэффициентами теплового расширения.

Изобретение относится к военной технике, а именно к способам применения многофункциональных робототехнических комплексов, предназначенных для дистанционной работы, и может быть использовано для решения задач обеспечения боевых действий сухопутных войск.

Изобретение относится к военной и специальной технике а именно к робототехническим комплексам, предназначенным для дистанционной работы в условиях боевых действий, а также в труднодоступных и опасных для присутствия человека местах.
В способе перед началом выполнения работ устанавливают значения параметров для управления машиной. Далее оператор указывает направление на объект с одновременным измерением, по меньшей мере, одного угла направления на объект относительно базового направления, с последующим автоматизированным управлением движениями машины и/или ее подвижных частей.

Изобретение относится к сельскому хозяйству и может быть использовано для транспортировки и заливки воды в баки на фермы. Технический результат - повышение скорости доставки воды на фермы. Электроробот-водовоз содержит цистерну, двигатель, люк с автоматическим люкозатворным механизмом, насос, датчик уровня воды в баке, электрифицированную платформу, кабину. Также он содержит пантограф для питания электроробота-водовоза по контактной сети постоянного тока, манипулятор со шлангом для слива воды в бак, две веб-камеры внешнего вида с адаптером, две веб-камеры для контроля работы манипулятора, wi-fi передатчик для связи с центром управления и систему управления. Система управления содержит микроконтроллер, блок синхронизации для контроля места остановки электроробота-водовоза, регулятор скорости и блок диагностики электрических и механических узлов. 2 ил.

Изобретение относится к модулю обнаружения препятствий и роботу-уборщику, включающему упомянутый модуль. Робот-уборщик содержит корпус, приводное устройство для приведения в движение корпуса, модуль обнаружения препятствий для обнаружения препятствий вокруг корпуса и устройство управления для управления приводным устройством на основании результатов, полученных модулем обнаружения препятствий. Модуль обнаружения препятствий содержит по меньшей мере один излучатель света и приемник света. Излучатель света включает в себя источник света и широкоугольную линзу для преломления или отражения света от источника света для рассеивания падающего света в виде плоского света. Приемник света содержит отражающее зеркало для повторного отражения отраженного света, отражаемого препятствием, для генерации отраженного света, оптическую линзу, отнесенную от отражающего зеркала на заданное расстояние, чтобы позволить отраженному свету проходить через оптическую линзу, и датчик изображений и схему обработки изображений. Изобретение позволяет повысить точность обнаружения препятствий без использования множества датчиков или отдельного сервомеханизма. 2 н. и 13 з.п. ф-лы, 52 ил.

Изобретение относится к использованию роботизированных устройств для обработки объемных объектов и может найти применение в области сельского хозяйства, в промышленности, строительстве, а также в дефектоскопии. Способ включает использование роботизированного устройства для обработки, манипулятор которого удерживает съемный рабочий инструмент. Способ характеризуется тем, что включает этапы, на которых: а) последовательно перемещают роботизированное устройство для обработки на заранее рассчитанные или произвольно выбранные дискретные рабочие места в непосредственной близости от объемного объекта, б) на каждом занятом роботизированным устройством для обработки рабочем месте с помощью системы позиционирования определяют реальные координаты и ориентацию роботизированного устройства для обработки, в) для каждого занятого рабочего места с учетом размеров рабочего инструмента и мобильного шасси и определенных на этапе б) реальных координат и ориентации определяют возможность достижения рабочим инструментом из данного занятого рабочего места по крайней мере части области обработки объемного объекта. При отсутствии такой области перемещают роботизированное устройство для обработки в новое рабочее место, этапы а)-в) повторяют для нового рабочего места, рассчитывают траекторию движения рабочего инструмента для части области обработки объемного объекта, достижимой из занятого рабочего места, и осуществляют обработку части области обработки объемного объекта. При определении возможности достижения рабочим инструментом по крайней мере части области обработки из данного занятого рабочего места и расчете траектории движения рабочего инструмента исключают ранее обработанные части области обработки. Способ обеспечивает точную и полную автоматизированную обработку объемных объектов сложной формы в реальных условиях на месте их расположения. 5 з.п. ф-лы, 2 ил.

Группа изобретений относится к орбитальной заправке космических аппаратов (КА), например искусственных спутников. Система дозаправки содержит обслуживаемый (14) и обслуживающий (12) КА со средствами транспортировки топлива из баков КА (12) в баки КА (14). Она также содержит клапанный инструмент (30) для соединения и отсоединения заправочного трубопровода (25) с отверстием (23) для горючего и с отверстием (27) для окислителя на соответствующих баках КА (12). Имеется механизм (16) позиционирования инструмента (рука-манипулятор, например, с двумя степенями свободы) с концевым исполнительным элементом (18). С помощью матрицы (26) датчиков определяются смещения между инструментом и отверстиями (23) и (27). Механизм (16) может захватывать, кроме (30), и другие инструменты, которые хранятся в контейнере (20). Система может быть автономной и/или дистанционно управляться оператором, находящимся в космосе или на Земле. Техническим результатом группы изобретений является обеспечение роботизированной (дистанционно контролируемой) дозаправки заранее не подготовленных спутников. 4 н. и 86 з.п. ф-лы, 12 ил.

Изобретение относится к робототехнике, а именно к устройствам, с помощью которых осуществляют испытания мобильных роботов, в том числе, в рамках игровых мероприятий и соревнований. Конструктивные узлы, выполняющие роль препятствий для прохождения роботов, установлены на общем основании и соединены между собой с образованием единой сборно-разборной конструкции. Конструктивные узлы включают соединенные друг с другом платформу, выполненную в виде объемного элемента с плоским верхним основанием, пандус, выполненный в виде объемного элемента, имеющего наклонную верхнюю поверхность, башню, предназначенную для перемещения внутри нее робота. Башня включает полую трубчатую конструкцию с входным проемом, внутри которой смонтирована винтообразная лестница, содержащая лестничные марши, выполненные в виде настилов. Техническим результатом изобретения является повышение уровня сложности перемещений робота для оценки характеристик его работы. 15 з.п. ф-лы, 2 ил.

Изобретение относится к герметизации трещины в стенке бассейна атомной электростанции, а именно способу герметизации шва и мобильному роботу, оснащенному размотчиком клейкой ленты, который содержит головку, прижимающую клейкую ленту к стенке. Для осуществления герметизации шва управляют множеством отсасывающих систем робота, содержащих присоски, причем указанное множество отсасывающих систем содержит первую отсасывающую систему и по меньшей мере вторую отсасывающую систему. При этом размотчик механически интегрирован с первой отсасывающей системой, выполненной с возможностью перемещения относительно второй отсасывающей системы для регулирования положения головки размотчика и клейкой ленты, которую наносят на шов. И управляют перемещением первой отсасывающей системы относительно второй отсасывающей системы. При этом клейкую ленту размотчика наносят на шов при перемещении первой отсасывающей системы относительно второй отсасывающей системы. Изобретение позволяет наклеивать ленту в труднодоступных местах, на острых краях и при этом на протяженных участках. 3 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к области робототехники, а именно к мобильному робототехническому комплексу МРК с автономным питанием и системой дистанционного управления, предназначенному для поиска, эвакуации или разрушения подозрительных предметов на месте их обнаружения. МРК содержит мобильный робот, состоящий из манипулятора с навесным оборудованием, устанавливаемым на гусеничное шасси в сборе, включающее соединенный с ходовой частью корпус, на который с обоих бортов внутри замкнутого гусеничного обвода установлены приводные мотор-звездочки. Внутри каждого замкнутого гусеничного обвода на корпус устанавливают по нижнему краю два опорных катка и балансирную тележку с катками, по верхнему краю - поддерживающий каток и механизм изменения геометрии гусеничного обвода. С наружной стороны гусеничного обвода на корпусе шасси устанавливают кронштейн с прижимным катком, обеспечивающим сцепление гусеничного обвода с приводной мотор-звездочкой. Механизм изменения геометрии гусеничного обвода состоит из линейного привода с подвижным штоком, соединенным с ленивцем, на одном конце которого установлена роликовая опора, а на другом - механизм натяжения с опорным катком, которые постоянно находятся в контакте с гусеничным обводом. МРК обладает повышенной проходимостью и устойчивостью. 2 ил.

Изобретение относится к области робототехники, в частности к вариантам движущегося робота, и может быть использовано для дистанционного беспилотного исследования труднодоступных или опасных для человека участков земной и инопланетной поверхностей. Движущийся робот состоит из трех или шести приводов поступательного движения, состоящих из неподвижно соединенных цилиндров под углом 90° между их осями и выдвигающихся штоков-опор, и корпуса, расположенного вокруг места соединения упомянутых приводов с размещенными внутри источником энергии и узлом управления. Робот выполнен с возможностью поочередного отталкивания штоков-опор от поверхности перемещения. Два штока-опоры при движении служат опорами робота, находящимися на поверхности перемещения, с возможностью выдвижения из цилиндра третьего штока-опоры и его отталкиванием от поверхности перемещения с обеспечением смещения центра тяжести робота и опрокидывания его корпуса через два штока-опоры, находящихся на поверхности перемещения. 2 н.п. ф-лы, 11 ил.

Изобретение относится к области робототехники и может быть использовано для управления мобильным роботом. Посредством камеры, установленной на подвижном роботе, получают изображение местности. С помощью мыши или сенсорного дисплея указывают конечную точку, в которой должен оказаться робот, на полученном изображении, отображенном на мониторе посредством приложения или веб-сайта через интерфейс, запущенный на программируемом устройстве управления, показывающем видео с камеры робота, с использованием оптических параметров камеры вычисляют координаты конечной точки в системе координат, связанной с роботом. Осуществляют обнаружение препятствий с помощью установленного на подвижном роботе сканирующего лазерного дальномера и осуществляют автоматическое перемещение робота в конечную точку по спланированной траектории с объездом им статических и динамических препятствий. При этом рассчитывают требуемые угловую и поступательную скорости движения робота с минимальным отклонением от спланированной траектории. Изобретение обеспечивает повышение точности позиционирования положения робота при его перемещении. 2 з.п. ф-лы, 3 ил.

Изобретение относится к использованию роботизированных устройств для обработки объемных объектов и может найти применение в области сельского хозяйства при обрезке и фигурной стрижке фруктовых и декоративных деревьев и кустарников, цветов, живых изгородей, в промышленности - при окрашивании сложных трехмерных поверхностей. Способ включает использование роботизированного устройства для обработки, манипулятор 2 которого удерживает съемный рабочий инструмент 5, устройства визуального отображении. Способ включает этапы, на которых последовательно перемещают роботизированное устройство для обработки на заранее рассчитанные или произвольно выбранные дискретные рабочие места в непосредственной близости от объемного объекта. На каждом занятом роботизированным устройством для обработки рабочем месте с помощью системы позиционирования определяют реальные координаты и ориентацию роботизированного устройства для обработки относительно объекта обработки и координаты поверхности объекта. Для каждого занятого рабочего места определяют возможность достижения рабочим инструментом 5 из данного занятого рабочего места по крайней мере части области обработки объемного объекта, определяемой в соответствии с известной моделью обработки. Рассчитывают траекторию движения рабочего инструмента для части области обработки объемного объекта. Осуществляют обработку части области обработки объемного объекта. При определении возможности достижения рабочим инструментом по крайней мере части области обработки из данного занятого рабочего места и расчете траектории движения рабочего инструмента исключают ранее обработанные части области обработки. Устройство визуального отображения в каждый момент времени отображает графическое изображение поверхности объекта обработки, совмещенное с моделью обработки для возможности визуального контроля за процессом обработки. Способ обеспечивает точность и полную автоматизированную обработку объемных объектов сложной формы в реальных условиях и контроль за процессом обработки. 5 з.п. ф-лы, 2 ил.
Наверх