Термоэлектрическое устройство с тонкопленочными полупроводниковыми ветвями и увеличенной поверхностью теплоотвода


 


Владельцы патента RU 2575618:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (ДГТУ) (RU)

Изобретение относится к термоэлектрическим устройствам теплообмена. Технический результат: повышение эффективности устройства за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями. Сущность: полупроводниковые ветви p-типа расположены в одной плоскости, а все ветви n-типа - в другой параллельной плоскости. Ветви р- и n-типа выполнены в виде тонких пленок для уменьшения джоулевых тепловыделений и имеют разную толщину. Материал для металлических спаев подбирается различным для входящего и выходящего тока между спаями и полупроводниковыми ветвями с учетом контактных явлений между металлом и полупроводником. Также используются поверхности теплообмена внутри термоэлектрического устройства. 1 ил.

 

Изобретение относится к системам теплообмена.

Известно термоэлектрическое устройство с высоким градиентом температур [1], в котором нагретые спаи пространственно отдалены от холодных спаев для уменьшения паразитных кондуктивных потерь между спаями в двух параллельных плоскостях. Однако в полупроводниковых ветвях p-типа и n-типа сохраняется высокий уровень джоулевых тепловыделений. Электрические и теплофизические параметры в полупроводниковых ветвях p- и n-типа отличаются. Кроме того, необходимо снизить уровень паразитных термоэлектрических тепловыделений на границах полупроводник - металл за счет оптимального выбора материала металлического спая.

Для повышения эффективности термоэлектрического устройства и уменьшения уровня кондуктивного теплопереноса целесообразно снизить сопротивление полупроводниковых ветвей, подбирать материалы металлических спаев для границы полупроводник - металл индивидуально для входящих и выходящих токов, а также дополнить систему отвода тепла в окружающую среду новыми поверхностями теплообмена.

Цель изобретения - создание высокоэффективного термоэлектрического устройства с тонкопленочными полупроводниковыми ветвями и увеличенной поверхностью теплоотвода.

Это достигается тем, что полупроводниковые ветви p- и n-типа для уменьшения джоулевых тепловыделений выполняются в виде тонких пленок с минимальным сопротивлением протекающему току. Чем меньше толщина пленки по отношению к ее поперечному сечению, тем меньше оказывается сопротивление протекающему току. Для ветвей p- и n-типа толщина пленки будет индивидуальна и зависеть от теплофизических свойств материала. В существующих термоэлектрических устройствах высота полупроводниковых ветвей p- и n-типа одинакова [2]. Это ограничение наложено конструкторско-технологическими требованиями в производстве. Однако полупроводниковые ветви p- и n-типа имеют различные сопротивления электрическому току, падения напряжений, теплопроводность и другие параметры, что ограничивает оптимизацию режимов работы термоэлектрического устройства в целом. Размещение полупроводниковых ветвей p- и n-типа на разных уровнях позволяет независимо друг от друга изменять высоту ветвей p- и n-типа. Это позволяет достичь одинаковых падений напряжений и токов в полупроводниковых ветвях различного типа.

В существующих термоэлектрических устройствах горячие и холодные спаи изготавливаются из одного металла [2]. Однако между спаем и полупроводником при протекании тока возникают термоэлектрические явления с выделением или поглощением тепла. В зависимости от энергии электронов в металле и полупроводниках p- и n-типа, а также направлений протекания тока меняется режим теплообмена. Электроны в различных металлах могут обладать большей или меньшей энергией по сравнению с энергией электронов в полупроводниках p- и n-типа [3].

Металлические спаи для контакта с полупроводником целесообразно подбирать таким образом, что при протекании тока от металла к полупроводнику происходит поглощение тепловой энергии за счет того, что в металле электроны имели меньшую энергию, чем в полупроводнике. А на втором спае выбирается металл с энергией электронов большей, чем в полупроводнике, поэтому при протекании тока из полупроводника в такой спай электроны также будут приобретать дополнительную энергию, отбирая тепло у кристаллической решетки. Таким образом, рациональный выбор материалов для металлических спаев с учетом контактных явлений между металлом и полупроводником позволяет как при протекании тока от металла к полупроводнику, так и при протекании тока от полупроводника к металлу получить охлаждающий термоэффект в обоих случаях. Чем больше разница энергий электронов в металлических спаях, тем больше будет охлаждающий эффект на обоих спаях и меньше паразитный кондуктивный теплоперенос.

Так как металлические спаи контактируют с полупроводниковыми ветвями p- и n-типа, то обеспечить одновременно оптимальные условия для термоэффекта для обоих типов ветвей невозможно. Но в этом нет необходимости при использовании конструкции термоэлектрического устройства с топологически раздельным размещением в пространстве на разных уровнях ветвей p- и n-типа. Достаточно обеспечить оптимальный режим формирования охлаждающего термоэффекта только у полупроводниковых ветвей того типа (например, n-типа), который находится в кондуктивном контакте с объектом охлаждения для обеспечения максимально эффективного режима теплоотвода. Тогда полупроводниковые ветви p-типа можно расположить на значительном расстоянии от объекта охлаждения (уменьшив паразитный кондуктивный теплоперенос обратно к объекту охлаждения) и обеспечить отвод тепла не только с одной внешней поверхности ветвей p-типа, но и с противоположной внутренней стороны этих ветвей p-типа. Также можно осуществить отвод тепла с внутренней стороны охлаждающих полупроводниковых ветвей n-типа и с соединительных металлических проводников, которые могут быть выполнены в виде плоских пластин. В этом случае по сравнению с традиционными схемами охлаждения увеличивается поверхность отвода тепла как минимум в три раза. Помимо одной внешней поверхности ветвей p-типа добавляются внутренние поверхности ветвей p- и n-типа, а также эффективная поверхность соединительных металлических проводников.

На фиг.1 представлена структура термоэлектрического устройства с тонкопленочными полупроводниковыми ветвями и увеличенной поверхностью теплоотвода.

Структура термоэлектрического устройства представляет собой тонкопленочные полупроводниковые ветви p-типа (2, 4, 6, 8, 10, 12, 14, 16, 18) и n-типа (1, 3, 5, 7, 9, 11, 13, 15, 17), расположенные в разных плоскостях, таким образом, что при пропускании тока возникает чередование горячих и холодных зон, причем за счет разных материалов металлических спаев, например, для ветви n-типа поглощение тепла происходит как на первом спае, так и на втором. Ток протекает последовательно от первой ветви до восемнадцатой. Отвод тепла осуществляется воздушным или водным потоками не только с верхних спаев ветви p-типа (V1), но также с внутренних нижних спаев ветви p-типа (V2), верхних спаев ветви n-типа (V4) и соединительных металлических проводников (V3) между ветвями p- и n-типа.

Использование представленного устройства позволит создать более эффективные термоэлектрические устройства за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями.

Литература

1. Термоэлектрическое устройство с высоким градиентом температур: патент РФ 2335825, МПК H01L 35/28. Исмаилов Т.А., Гаджиев Х.М., Гаджиева С.М.; заявитель и патентообладатель ГОУ ВПО «Дагестанский государственный технический университет». - Заявл. 25.04.2007, опубл. 10.10.2008, Бюл. №28.

2. Исмаилов Т.А. Термоэлектрические полупроводниковые устройства и интенсификаторы теплопередачи. - СПб.: Политехника, 2005.

3. Анатычук Л.И. Термоэлектричество, Т.2. - Киев: Букрек, 2003. - 386 с.

Термоэлектрическое устройство с тонкопленочными полупроводниковыми ветвями и увеличенной поверхностью теплоотвода, выполненное из полупроводниковых ветвей p- и n-типа таким образом, что все ветви p-типа расположены в одной плоскости, а все ветви n-типа в другой параллельной плоскости, отличающееся тем, что полупроводниковые ветви изготовлены в виде тонких пленок различной толщины для p- и n-типа, а также применением различных материалов металлических спаев для входящего и выходящего тока между спаями и полупроводниковыми ветвями и использованием дополнительного теплоотвода от внутренних поверхностей термоэлектрического устройства.



 

Похожие патенты:

Изобретение относится к области термоэлектричества и может быть использовано в термоэлектрических генераторах. Технический результат: повышение эффективности за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями, уменьшением паразитных джоулевых тепловыделений и использованием контактных явлений между металлическими спаями и полупроводниковыми ветвями.

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических устройств.

Изобретение относится к термоэлектрическому преобразованию энергии, например, в выпускных системах отработавших газов автомобилей для эффективного использования энергии.

Изобретение относится к термоэлектрическому преобразованию энергии. Сущность: термоэлектрический модуль (1) имеет внутреннюю периферийную поверхность (2), ось (3) и внешнюю периферийную поверхность (4).

Изобретение может быть использовано в термоэлектрическом генераторе, предназначенном для автомобиля. Термоэлектрический модуль (1) имеет внутреннюю (2) и внешнюю (4) краевые поверхности, соответствующие горячей (18) и холодной (19) сторонам модуля или наоборот, расположенное между ними промежуточное пространство (17), геометрическую ось (3) и по меньшей мере один уплотнительный элемент (7), который по меньшей мере частично образует внутреннюю краевую поверхность (2) или отделен от расположенной там горячей стороны (18) или холодной стороны (19) только электрическим изоляционным слоем (16).

Изобретение относится к области термоэлектрического преобразования энергии. Сущность: термоэлектрический материал содержит полупроводниковую подложку, полупроводниковую оксидную пленку, образованную на полупроводниковой подложке, и термоэлектрический слой, выполненный на полупроводниковой оксидной пленке.

Изобретение относится к термоэлектрическому преобразованию энергии. Сущность: способ изготовления структуры, используемой для производства термоэлектрогенератора, включает совместное формирование по меньшей мере одной полосы из материала n-типа и по меньшей мере одной полосы из материала p-типа за одну технологическую операцию и формирование соединений по меньшей мере между одной полосой из материала n-типа и по меньшей мере одной полосой из материала p-типа с помощью полос из проводящего материала.

Изобретение относится к термоэлектрическому преобразованию энергии. Сущность: термоэлектрический модуль (1) имеет внутреннюю периферийную поверхность (2), ось (3) и внешнюю периферийную поверхность (4).

Изобретение относится к термоэлектричеству. Сущность: термоэлектрический элемент по меньшей мере с одной термопарой (1), которая имеет n-легированный и р-легированный термоэлектроды (3а, 3b) из полупроводникового материала.

Изобретение относится к термоэлектрическому генератору. Сущность: термоэлектрическое устройство (1) содержит один модуль (2) с первым несущим слоем (3) и вторым несущим слоем (4), промежуточное пространство (5) между первым несущим слоем (3) и вторым несущим слоем (4), электроизолирующий слой (6) на первом несущем слое (3) и втором несущем слое (4) с их обращенной к промежуточному пространству (5) стороны и множество легированных примесями p-типа и легированных примесями n-типа полупроводниковых элементов (7), которые расположены в чередующейся последовательности в промежуточном пространстве (5) между электроизолирующими слоями (6) и попеременно электрически соединены между собой.

Изобретение относится к термоэлектрическим устройствам и их изготовлению. Сущность: термоэлектрический модуль (1), который простирается в продольном направлении (9), с внешней трубкой (2) и расположенной внутри внешней трубки (2) внутренней трубкой (3). Модуль содержит по меньшей мере одну первую полосовидную структуру (5) и одну вторую полосовидную структуру (7). Первая полосовидная структура (5), начиная от первого соединения (6) на внутренней трубке (3), а вторая полосовидная структура (7), начиная от второго соединения (12) на внешней трубке (2), простираются в соответственно противоположных направлениях (11) наклонно к поверхности трубки и по меньшей мере, частично образуют перекрытие (10). В области перекрытия (10) расположена по меньшей мере одна пара полупроводниковых элементов (13). Технический результат: повышение термостойкости и усталостной прочности термоэлектрического модуля за счет компенсации тепловых расширений отдельных компонентов термоэлектрического модуля. 4 н. и 4 з.п. ф-лы, 10 ил.

Изобретение относится к термоэлектрическому преобразованию энергии и может быть использовано для построения термоэлектрических батарей. Сущность: термоэлектрическая батарея содержит цельное металлическое основание, на котором размещены полупроводниковые стержни одного типа проводимости с образованием спаев. Выводы полупроводниковых стержней через ключи соединены с общей электрической шиной. Технический результат: упрощение конструкции. 3 ил.
Наверх