Способ измерения диэлектрической проницаемости жидкости в емкости

Изобретение используется для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. Сущность изобретения заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, аппроксимируют полученные данные суммой двух синусоид путем подбора амплитуды, частоты и фазы каждой из них до максимального совпадения с полученными данными, по частотам полученных синусоид и известному расстоянию от антенн до дна емкости определяют диэлектрическую проницаемость жидкости. Технический результат: обеспечение возможности повышения точности измерения. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. В частности, это может быть применено для контроля качества нефтепродуктов, сжиженных газов, спирта, кислот и др.

Известны радиоволновые способы измерения расстояний до отражающей поверхности, использующие в работе линейную частотную модуляцию несущей волны (ЛЧМ) сверхвысокочастотного диапазона радиоволн (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Этот сигнал разностной частоты (СРЧ) выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности сигнала отличается от частоты зондирующего сигнала на величину частоты сигнала СРЧ:

где L - расстояние до отражающей поверхности, ΔfМ - максимальный диапазон перестройки частоты, TМ - период линейной модуляции, с - скорость света в вакууме, ε - диэлектрическая постоянная среды распространения радиоволн. Способ позволяет измерять расстояние:

Точность измерения расстояния целиком зависит от точности измерения частоты сигнала СРЧ. Очевидно, что если измерять частоту с помощью счетчика числа переходов через 0, то абсолютная точность будет достигнута при расстоянии, когда на периоде ТМ размещается целое число периодов сигнала СРЧ, однако такое положение возникает только через каждую полуволну этого сигнала, поэтому ошибка будет дискретной и равной:

С другой стороны, если L задано, а ε отлично от 1, то при отсутствии поглощения электромагнитных волн в среде распространения согласно (3) можно измерять диэлектрическую проницаемость:

.

Поскольку измерение основано на вычислении частоты сигнала СРЧ f, которое имеет методическую дискретную ошибку, такая же ошибка будет характерна и при измерении ε:

.

Кроме этого следует отметить, что в реальной ситуации электромагнитные волны проходят путь через воздух до поверхности жидкости, где часть волны отражается и возвращается обратно с временной задержкой τ1, а вторая часть проходит сквозь жидкость, отражается от дна и возвращается опять через жидкость и воздушный промежуток обратно с временной задержкой τ2. То есть сигнал СРЧ будет состоять из двух частот, измерить которые из-за наличия ошибок (3) и (5) сложно при ограниченных возможностях в повышении диапазона перестройки частоты ΔfМ.

Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра сигнала разностной частоты в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принятое в качестве прототипа (Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970. 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделение сигнала СРЧ на выходе смесителя между падающими и отраженными электромагнитными волнами и вычисление расстояния по разностной частоте сигнала СРЧ, определяемой по максимальному значению его частотного спектра. Этот способ также можно использовать для измерения ε. Однако при этом методическая дискретная ошибка (2) сохраняется, поскольку спектральный анализ основан на разложении сигнала по целому числу гармоник, в то время как реальный максимум при измерении расстояния может располагаться и между гармониками. Чтобы измерить частоту СРЧ на минимальном расстоянии 0.3 м, надо иметь такую ΔfМ, чтобы можно было наблюдать хотя бы один период сигнала СРЧ. Тогда это будет первая гармоника в спектре СРЧ. Из формулы (1) следует, что ΔfМ в этом случае равна 500 МГц, а ошибка δ равна 0.15 м при диапазоне измерения свыше 0.3 м. Поэтому, чтобы обеспечить приемлемую точность, приходится увеличивать ΔfМ; обычно эта величина для промышленных уровнемеров составляет 1÷2 ГГц, что соответствует δ=7,5÷3,75 см. Дальнейшее увеличение точности достигается путем использования сглаживающих процедур (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005. №2. С. 21-25). Однако использование больших значений ΔfМ приводит к увеличению дополнительных погрешностей из-за паразитной частотной модуляции от влияния дополнительных элементов в емкостях и стенок, от неравномерности амплитудно-частотной характеристики трактов, нелинейности модуляции задающего генератора и т.п. Все это вкупе с увеличением стоимости широкополосного устройства приводит к снижению функциональных характеристик уровнемера. Данное техническое решение можно использовать для определения ε при наличии второй частоты в сигнале СРЧ в результате отражения от дна резервуара. Однако в силу указанных выше факторов точность измерения будет недостаточна, особенно в условиях ограничения на возможность увеличения ΔfМ.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения диэлектрической проницаемости жидкости в емкости достигается тем, что сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, аппроксимируют полученные данные суммой двух синусоид путем подбора амплитуды, частоты и фазы каждой из них до максимального совпадения с полученными данными, по частотам полученных синусоид и известному расстоянию от антенн до дна емкости судят о диэлектрической проницаемости жидкости.

На фиг. 1 приведена структурная схема устройства для реализации способа.

На фиг. 2 приведены графики смоделированного сигнала СРЧ.

На фиг. 1 показаны модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, смеситель 6, вычислительное устройство 7.

Способ реализуется следующим образом. Генератор линейно-изменяющегося напряжения модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучаются в сторону поверхности жидкости 8. Отраженные от поверхности жидкости и от дна емкости электромагнитные волны принимаются антенной 5 и поступают на смеситель 6, куда также поступает часть мощности падающей волны от направленного ответвителя 3. На выходе смесителя 6 формируется сигнал разностной частоты, который поступает в вычислительное устройство 7, где происходит его запись в массив данных за период частотной модуляции. Из двух частотных компонент сигнала СРЧ более высокочастотная компонента соответствует общему времени задержки распространения электромагнитной волны τ через первый слой - воздух, толщиной L1, и второй слой - контролируемую среду с диэлектрической проницаемостью ε, толщиной L2, - τ1 и τ2 соответственно. Формула (1) в нашем случае примет вид:

.

Если выражение для L1 из формулы (1) подставить в формулу (6), то после преобразования можно записать выражение для определения толщины слоя среды L2:

.

При известном общем расстоянии от датчика до дна емкости - D, L2=D-L1, из формулы (7) с учетом выражения для L1 из формулы (2) можно выписать выражение для ε:

.

На фиг. 2 приведены графики смоделированного сигнала СРЧ с ΔfМ=150 МГц, с периодом модуляции ТМ=1 с и 256 выборок, составленного из суммы двух синусоид с добавлением шума на уровне 0,1 от амплитуды основной синусоиды (точки) и результат аппроксимации двумя синусоидами (сплошная линия). При указанных данных согласно формуле (1) расстояние в метрах при ε=1 численно равно частоте СРЧ f в Герцах. Амплитуды первого и второго сигнала, отраженные от поверхности жидкости и от дна, - 10 и 1, а фазы - π/4 и - π/2 соответственно. Частоты f1=0,65 Гц, f2=4 Гц. В этом случае для моделирования используем вариант с подбором параметров двух синусоид:

,

где a1, b1, c1, а2, b2, с2 - соответственно амплитуда, частота и фаза первой и второй синусоиды модельного сигнала, аппроксимирующего реальный сигнал СРЧ, х - индекс массива временных равномерных выборок на интервале TM - 0, 1, 2…N, где N - число выборок, х - индекс массива выборок из 256 точек. Частоты сигнала СРЧ можно определить из соотношения: fi=biN/2πTM, i=1,2. По результатам оптимизационной процедуры имеем для этих примеров соответственно: а1=10.02, b1=0.016, c1=0.7662, f1=0.6523 Гц, ошибка равна -0.0023 Гц; а2=-0.09392, b2=0.09799, с2=-4.778, f2=3.9925 Гц, ошибка равна 0.0075 Гц. Степень совпадения результатов аппроксимации и выборки сигналов - 0.9986. Диэлектрическая проницаемость ε вычисляется по формуле (8), используя вычисленные значения f1, f2 и известное расстояние D.

Способ измерения диэлектрической проницаемости жидкости в емкости, характеризующийся тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, отличающийся тем, что аппроксимируют полученные данные суммой двух синусоид путем подбора амплитуды, частоты и фазы каждой из них до максимального совпадения с полученными данными, по частотам полученных синусоид и известному расстоянию от антенн до дна емкости определяют диэлектрическую проницаемость жидкости.



 

Похожие патенты:

Изобретение относится к животноводству, в частности к системам очистки вытяжного и рециркуляционного воздуха в животноводческих и птицеводческих помещениях, и направлена на создание системы, позволяющей постоянно в автономном режиме контролировать степень загрязненности омывающей жидкости.

Изобретение относится к системам нефтепродуктообеспечения. Изобретение касается способа замера объема нефтепродукта в резервуаре, в котором мерной линейкой замеряют высоту нефтепродукта в резервуаре, имеющем форму цилиндра круглого горизонтально расположенного, и при известных величинах радиуса и длины резервуара объем нефтепродукта определяют по безразмерной диаграмме, единой для всех горизонтально расположенных резервуаров и которая представляет функцию V/(R2*L)=f(h/R), где V - объем нефтепродукта в резервуаре, R - радиус резервуара, L - длина резервуара, h - высота нефтепродукта в резервуаре.

Изобретение относится к эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтедобывающей промышленности.
Изобретение относится к области водоотведения. Способ включает установку на каждом исследуемом участке канализационной сети датчика, выполненного с возможностью измерения параметра, характеризующего состояние канализационной сети, определение для каждого исследуемого участка сети зависимости измеряемого датчиком параметра от времени, а также анализ зависимости, полученной для каждого исследуемого участка, позволяющий определить наличие дефекта на исследуемом участке канализационной сети.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости.

Изобретение относится к области радиолокации, а именно к устройствам для определения дальности до водной поверхности и может быть использовано для определения уровня водоемов.

Изобретение относится к контролю среды в резервуарах для хранения, в частности к способу и устройству для обнаружения разделения фаз в резервуарах для хранения. По меньшей мере один поплавок имеет плотность, откалиброванную таким образом, чтобы обнаруживать различие в плотности между окружающими текучими средами.

Изобретение относится к криогенной технике, а именно к измерителям уровня криогенной жидкости, и может быть использовано в автоматизированных системах управления технологическими процессами в криогенных воздухоразделительных установках.

Изобретение относится к измерительной технике и может быть использовано для измерения уровня жидкостей, преимущественно в резервуарах. Уровнемер содержит чувствительный элемент из не менее чем трех катушек индуктивности.

Настоящая группа изобретений предлагает устройство (100) и способ для управления объемом жидкости в емкости. Устройство (100) содержит детектор (101) для регистрирования изменений объема жидкости в упомянутой емкости в течение первого заданного периода, первый детерминатор (102) для определения, являются ли упомянутые изменения ниже упомянутого первого заданного порогового значения, и презентатор (103) для представления первой оперативной информации в случае, если упомянутые изменения ниже заданного порогового значения.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов, например телекоммуникационных спутников. СТР содержит жидкостный контур теплоносителя с электронасосным агрегатом (ЭНА) и компенсатором объема (КО). Жидкостная полость КО соединена с контуром вблизи входа в ЭНА, а сильфонная газовая полость КО заправлена двухфазным рабочим телом. На подвижном днище сильфона установлен постоянный магнит, а снаружи корпуса КО равномерно установлены герконы с шагом, обеспечивающим одновременное замыкание до 2-4 рядом расположенных герконов. Герконы сообщены с системой телеметрии космического аппарата. В жидкостной полости КО предусмотрен запас теплоносителя в количестве, соответствующем половине его объема между соседними герконами. КО с герконами может быть покрыт экранно-вакуумной теплоизоляцией. Техническим результатом изобретения является обеспечение диагностики и прогнозирования наличия в жидкостном контуре требуемого количества теплоносителя при эксплуатации СТР (на орбите и при наземных испытаниях) в текущий и последующий периоды. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области беспроводного измерения количества жидкости. Заявлены способ измерения количества жидкости и система для измерения количества жидкости. Особенностью заявленного способа является расчет количества жидкости на основании измеренной передаточной функции посредством определения временной задержки между передачей конкретной падающей электромагнитной волны из указанных падающих электромагнитных волн и приемом соответствующей отраженной электромагнитной волны; сравнения определенной временной задержки с набором известных временных задержек, соответствующих падающей электромагнитной волне, имеющей те же самые характеристики, что и указанная конкретная падающая электромагнитная волна; определения совпадения определенной временной задержки с временной задержкой из набора известных временных задержек и определения количества жидкости, соответствующего совпавшей временной задержке, после определения совпадения определенной временной задержки с временной задержкой из набора известных временных задержек. Заявленная система содержит блок запросов, содержащий передатчик, приемник, модуль передаточной функции и вычислительный модуль; и блок индукционной энергии и данных. Техническим результатом является повышение общей безопасности воздушного судна. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к устройству для обеспечения жидкой добавки для автомобиля. Устройство (1) для обеспечения жидкой добавки для автомобиля (2), имеющее бак (3) для хранения жидкой добавки и узел (4) подачи для подачи жидкой добавки из бака (3) и датчик (6), который излучает и принимает волны и выполнен для того, чтобы посредством измерения времени прохождения волн вдоль измерительного участка (7) до поверхности (8) жидкости в баке (3) и обратно к датчику (6) измерять уровень жидкой добавки в баке (3), причем измерительный участок (7), по меньшей мере частично, проходит через измерительный канал (9), и, кроме того, в измерительном канале (9) оканчивается, по меньшей мере, один трубопровод (5) обратной промывки, так что может происходить промывка измерительного канала (9) к баку (3). Также раскрыт автомобиль (2), имеющий устройство (1). Техническим результатом изобретения является простота и прочность конструкции устройства для точного, длительного применения в автомобиле. 2 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике и предназначено для измерения уровня диэлектрических жидкостей, находящихся в баках ракет-носителей (РН). Устройство для измерения уровня топлива в баках РН включает в себя емкостный датчик в виде электродов и элементы его крепления. Устройство выполнено в виде трубы, жестко закрепленной к днищу бака. По высоте трубы установлены дополнительные емкостные датчики. Электроды каждого емкостного датчика выполнены в виде медных пластинок, установленных на расстоянии друг от друга на шпильках. Четные медные пластинки припаяны к шпилькам, расположенным по диагонали, а нечетные медные пластинки - к оставшимся шпилькам. Концы шпилек закреплены в колодках, жестко установленных в трубе, а на одной из колодок выполнены отверстия под электропровода, взаимодействующие с двумя четными и двумя нечетными медными пластинками, выводы которых выведены за пределы трубы, что обеспечивает электрическую связь всех емкостных датчиков. Концы медных пластинок жестко зафиксированы. Провода электрической связи емкостных датчиков защищены кожухом, а верхняя часть трубы крышкой. Техническим результатом изобретения является повышение точности измерения уровня топлива в баках РН. 2 з.п. ф-лы, 3 ил.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности датчика содержит блок приема, блок памяти, блок анализа и блок контроля. Блок приема выполнен с возможностью приема сигналов от датчика и сохранения в блоке памяти. Блок памяти выполнен с возможностью хранения сигналов от датчика. Блок анализа выполнен с возможностью выявления шумового компонента в сохраненных сигналах от датчика и вычисления значения СКО (среднеквадратического отклонения) шумового компонента и записи этого значения в блок памяти. Блок контроля выполнен с возможностью определения изменений в принимаемых сигналах от датчика как разности между двумя последовательными сигналами от датчика и выдачи сигнала неисправности, если изменения сигналов от датчика не выходят за 6 СКО в течение предварительно определенного времени Тконт. Причем вышеуказанные блоки функционально связаны друг с другом непосредственно или опосредовано посредством линий связи. Также заявлен способ контроля работоспособности датчика. Технический результат заключается в повышении надежности и точности определения неисправности датчика. 2 н. и 12 з.п. ф-лы.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности беспроводного датчика содержит блок опроса, блок памяти, блок анализа и блок контроля. Блок опроса выполнен с возможностью запрашивания показаний от беспроводного датчика и сохранения их в блоке памяти. Блок памяти выполнен с возможностью хранения сигналов от датчика. Блок анализа выполнен с возможностью выявления шумового компонента в сохраненных сигналах от датчика и вычисления значения СКО (среднеквадратического отклонения) шумового компонента и записи этого значения в блок памяти. Блок контроля выполнен с возможностью определения изменений в принимаемых сигналах от датчика, как разности между двумя последовательными сигналами от датчика, и выдачи сигнала неисправности, если изменения сигналов от датчика не выходят за 6 СКО в течение предварительно определенного времени Тконт. Причем вышеуказанные блоки функционально связаны друг с другом непосредственно или опосредовано посредством линий связи. Также заявлен способ контроля работоспособности беспроводного датчика. Технический результат заключается в повышении надежности и точности определения неисправности датчика. 2 н. и 9 з.п. ф-лы.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам для бесконтактного контроля наличия и измерения уровня твердых веществ и жидкостей в замкнутых объемах. Техническим результатом изобретения является обеспечение бесконтактного удаленного измерения и контроля положения рабочего органа внутри замкнутого пространства (например, внутри реактора). Система содержит корпус замкнутого пространства, расположенный в агрессивной среде, с установленным на нем оптическим блоком и электронный блок для управления и обработки информации, связанный с оптическим блоком посредством оптического волокна, проходящего через раздел агрессивной и безопасной сред и выполненного с возможностью обеспечения взрывобезопасности. Внутри корпуса замкнутого пространства расположен рабочий орган с закрепленным на нем ретроотражателем. В состав электронного блока для управления и обработки информации входят: процессор, оптический передатчик, оптический приемник, аналого-цифровой преобразователь и оптический циркулятор. Между коллиматором оптического блока и ретроотражателем формируется коллимированный световой поток, состоящий из падающих и отраженных от ретроотражателя лучей света, который обеспечивает процесс измерения и контроля положения рабочего органа внутри замкнутого пространства. 2 ил.

Изобретение относится к устройству для загрузки сыпучего материала, содержащему устройство для определения количества сыпучего материала, содержащее датчик (80), выполненный для контакта с поверхностью конуса (22, 22') сыпучего материала; соединенный с датчиком (80) поворотный механизм (8), выполненный с возможностью перемещения в различные угловые положения вокруг оси (24) поворота, и угломер (10), выполненный с возможностью измерения углового положения поворотного механизма (8) вокруг оси (24) поворота. Кроме того, изобретение относится к соответствующей очистной машине, предназначенной для очистки сыпучего материала. Кроме того, изобретение относится к соответствующему способу. Отличительной особенностью заявленного решения является наличие устройства для управления величиной зазора между впускной пластиной и подпорной пластиной или для управления подъемно-опускным устройством на основании измеренного углового положения. Технический результат - улучшение подачи сыпучего материала за счет устранения ручной регулировки ширины зазора. 4 н. и 2 з.п. ф-лы, 6 ил.
Наверх