Способ лазерного 3d сканирования оперативного определения степени деформированности панельного сооружения

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрирующий соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели панельного сооружения, представляющей рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения. Технический результат заключается в расширении эксплуатационных возможностей для оперативного определения степени деформации сооружения. 6 ил.

 

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ.

Наиболее близким по сущности к предлагаемому способу является способ лазерного 3D сканирования, который обеспечивает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности объекта и регистрирующий соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели объекта, представляющей рой точек {Χi, Υi, Ζi, i=1, n}.

Способ лазерного 3D сканирования обеспечивает:

возможность определения пространственных координат точек объекта в полевых условиях;

трехмерную визуализацию в режиме реального времени исследуемого объекта;

неразрушающий метод получения информации;

высокую точность измерений;

безопасность исполнителя при съемке труднодоступных и опасных районах, т.к. применяется принцип дистанционного получения информации;

высокую производительность выполнения работы, сокращает время полевых работ при создании цифровых моделей объектов;

работы можно выполнять при любых условиях освещения, то есть днем и ночью, так как сканеры являются активными съемочными системами;

высокую степень детализации

[см. Середович В.А., Комиссаров А.В., Комиссаров Д.В., Широкова Т.А. и др. Наземное лазерное сканирование. Новосибирск, СГГА, 2009, 261 с. - прототип].

Данный способ не дает возможности определять степень деформированности конструкций панельного сооружения.

Технический результат, достигаемый предлагаемым изобретением, заключается в расширении эксплуатационных возможностей способа лазерного 3D сканирования для оперативного определения степени деформации панельного сооружения.

Поставленный технический результат достигается тем, что способ лазерного 3D сканирования, включающий выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрирующий соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели панельного сооружения, представляющей рой точек {Xi, Yi, Zi, i=1, n}, для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадины - от темно-синего до голубого, выпуклости - от желтого до темно-коричневого, вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм, при этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения.

Перечень графических иллюстраций применения предлагаемого способа:

на фиг. 1 изображена трехмерная модель (облако точек) панельного дома по результатам лазерного сканирования;

на фиг. 2 - цветотоновая карта отклонений торцевой стены панельного дома от идеальной вертикальной плоскости;

на фиг. 3 - трехмерная блок-диаграмма деформаций панелей 6-13 этажей;

на фиг. 4 - трехмерная блок-диаграмма деформаций панелей 1-7 этажей,

на фиг. 5 - отрыв торцевых панелей на уровне 9-10 этажей,

на фиг. 6 - торцевая сторона панельного дома с многочисленными трещинами.

Способ лазерного 3D сканирования оперативного определения степени деформированности панельного сооружения включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрирующий соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели панельного сооружения, представляющей рой точек {Xi, Yi, Zi, i=1, n}, для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадины - от темно синего до голубого, выпуклости - от желтого до темно-коричневого, вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм, при этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения.

Суть способа лазерного 3D сканирования оперативного определения степени деформированности панельного сооружения заключается в следующем.

Сканирование панельного сооружения выполняется с произвольного числа и расположения позиций, обеспечивающих полный обзор изучаемого объекта, с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрирующий соответствующие направления (вертикальные и горизонтальные углы). Минимально по одному сканированию с каждой стороны панельного сооружения.

По проведенным измерениям формируется 3D-модель панельного сооружения, представляющая рой точек {Xi, Yi, Zi. i=1, n} (фиг. 1). При сшивке сканов в единую модель достигается точность 1 мм.

По результатам отдельных сканирований с применением стандартных сферических отражателей или бумажных марок, или характерных угловых точек объекта.

Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модель панельного сооружения.

Строится карта отклонений и графики отклонений стен от идеальной стеновой вертикальной плоскости. При этом используется априорно задаваемый допуск максимального отклонения и размер ячеек карты отклонения. В каждую ячейку матрицы карты отклонений заносится фактическое отклонение 3D-модель панельного сооружения от идеальной плоскости.

По сформированной числовой карте отклонений выполняется построение:

карты изолиний;

цветотоновой карты;

графиков поверхности;

теневой карты.

Изучение 3D-модели панельного сооружения для выявления деформаций выполняется построением ряда горизонтальных и вертикальных сечений модели, а затем, с учетом геометрических параметров и координат определенных по этим сечениям, строится карта отклонений и графики отклонений торцевой стороны дома от идеальной вертикальной плоскости.

При построении цветотоновых карт отклонений используется шкала раскраски типа «атлас» (впадины - от темно-синего до голубого, выпуклости - от желтого до темно-коричневого). Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены. Сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм.

На фиг. 2 видно, что максимальные отклонения в периферических частях составляют до 8 см. На уровне 2-3 этажа и 8-9 этажа с левой стороны имеется отрыв панели от конструкции.

Проводится анализ графиков отклонений от идеальной вертикальной плоскости. На фиг. 3 и 4 приведены примеры такого анализа, периферические края панелей оторваны от общей конструкции, а панели имеют характерную параболическую форму.

На фиг. 5 показаны места наиболее значительного отрыва панелей от общей конструкции. На фиг. 6 представлена общая трещиноватость панелей, которая возникла из-за деформаций.

Применение способа лазерного 3D сканирования оперативного определения степени деформированности панельного сооружения позволяет эффективно и быстро выявлять количественные деформации различных элементов панельного сооружения и оценить изгибные деформации стеновых панелей.

Способ лазерного 3D сканирования оперативного определения степени деформированности панельного сооружения, включающий выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрирующий соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели панельного сооружения, представляющей рой точек {Xi,Yi,Zi, i=1,n}, отличающийся тем, что для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадины - от темно-синего до голубого, выпуклости - от желтого до темно-коричневого, вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм, при этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения.



 

Похожие патенты:

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ.

Изобретение относится к деревообрабатывающей промышленности, в частности к распиловке круглого леса. Продольно-распиловочный станок для распиловки бревен содержит пильный инструмент с механизмом его перемещения и устройство отображения на экране монитора торца бревна и предполагаемой карты распила, выполненное в виде устройства дополненной реальности.

Изобретение относится к оптическим датчикам, предназначенным для измерения линейных перемещений объекта наблюдения. Датчик линейных перемещений содержит источник света и подложку.

Заявленное изобретение относится к устройству и способу изготовления аккумуляторной батареи, а именно к устройству, укладывающему электроды стопкой, и способу укладывания электродов стопкой.

Изобретение относится к способу определения положения детали в процессе сборки. Деталь 1 захватывают с помощью зажимного патрона 2 в положении захвата, которое зарегистрировано как положение А начала отсчета при измерении.

Изобретение может быть использовано для автоматического измерения объема пучка лесоматериалов, находящегося на движущемся объекте. В способе движущийся объект пропускают через измерительное устройство - измерительную рамку, оснащенную лазерными сканерами, которые измеряют внешний контур пучка, его длину и суммарную площадь торцов лесоматериалов.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий.

Изобретение относится к области видеонаблюдения, в частности к видеонаблюдению с использованием поворотных (PTZ) камер. Техническим результатом является уменьшение ошибки позиционирования камеры и увеличение повторяемости позиционирования. Предложен способ уменьшения ошибки позиционирования PTZ-камеры, характеризующийся тем, что получают целевую позицию поворота камеры, затем определяют по крайней мере одну промежуточную позицию камеры и ее координаты на основе данных о целевой позиции поворота камеры, после чего последовательно поворачивают камеру в целевую позицию через вышеупомянутые промежуточные позиции. 2 н. и 19 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для определения положения трубопровода в пространстве при эксплуатации и строительстве магистральных и технологических нефте-, нефтепродуктопроводов. Способ состоит в том, что измерения производятся с помощью лазерного построителя плоскости, а далее с помощью тахометра и рулетки. При этом, если геодезические измерения содержат ошибки, то для горизонтального радиуса кривизны трубопровода определяют значения дистанций для выбранных точек li и соответствующие значения координат xi и yi, i=1…N, где N - количество точек измерения, а для горизонтального радиуса кривизны трубопровода - соответствующие высоты zi. Техническим результатом изобретения является повышение точности определения радиуса кривизны трубопровода в вертикальной и горизонтальной плоскостях. 1 ил.

Способ измерения линейных перемещений объекта основан на том, что лучи двух лазерных дальномеров направляют параллельно на плоскую поверхность, находящуюся на объекте измерений. Линейное перемещение объекта определяют на основании определенных двумя указанными дальномерами расстояний с учётом угла между линией ожидаемого перемещения объекта и плоской поверхностью, а также с учётом расстояния между линиями визирования дальномеров. Технический результат заявленного решения заключается в повышении точности измерения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способу калибровки камеры. Техническим результатом является обеспечение эффективной калибровки камеры. Предложен способ и система калибровки камеры, содержащая источник энергии и калибруемую камеру, при этом по меньшей мере источник энергии или камера установлены на механическом приводе с возможностью перемещения относительно друг друга. Процессор соединен с источником энергии, механическим приводом и камерой, и процессор запрограммирован на управление механическим приводом с целью перемещения по меньшей мере источника энергии или камеры относительно друг друга через множество дискретных точек целевой модели калибровки. Процессор дополнительно управляет камерой в каждой из дискретных точек с целью получения цифрового изображения и определяет параметры дисторсии объектива на каждом изображении. Определяют фокусное расстояние камеры, содержащей любой соединенный с камерой объектив, а затем определяют постороннее положение камеры для каждого изображения. 2 н. и 18 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам автоматического учета, контроля и обработки данных, используемых в области торговли, и направлено на расширение функциональных возможностей такого устройства. Устройство контроля накопителей для автоматического сбора, обработки и передачи информации о состоянии накопителей с товаром в местах продаж, состоящее из линейки с периодически расположенными на ней оптическими датчиками, а также контроллером линейки, расположенным непосредственно на самой линейке, где все линейки соединены посредством соединительных кабелей с центральным контроллером с GSM/GPRS модулем и другими центральными контроллерами без GSM/GPRS модуля, где каждая линейка установлена под накопителем при хранении товаров упорядоченным образом так, чтобы оптические датчики находились под последним товаром, где оптические датчики работают в режиме «на отражение», то есть излучают в инфракрасном диапазоне и принимают отраженный от поверхности товара сигнал, что позволяет определить наличие или отсутствие товара в накопителе, а также короткие по времени события установки и извлечения товара из накопителя так, что когда товара нет в накопителе, излученный светоизлучателем оптического датчика сигнал не отражается от товара и на фотоприемник воздействует энергия только окружающей среды, а когда товар находится в накопителе, излученный сигнал отражается от товара и на фотоприемник воздействует энергия отраженного сигнала. 9 з.п. ф-лы, 2 ил.

Изобретение относится к точной механике и измерительной технике и может быть использовано в оборудовании для прецизионного линейного перемещения объектов. Заявленное устройство для линейного перемещения объекта с нанометровой точностью в большом диапазоне возможных перемещений включает опорную (неподвижную) часть и подвижную часть с установленным на ней объектом, привод, перемещающий подвижную часть Кроме того, заявленное устройство содержит источник монохроматического излучения, формирующий точечный источник излучения, совмещенный с передним фокусом оптической системы, формирующей параллельный пучок света с оптической осью, параллельной направлению перемещения. За оптической системой последовательно по ходу лучей установлены перпендикулярно оси пучка и параллельно друг другу две прозрачные пластины с высокоотражающими покрытиями на рабочих поверхностях, обращенных друг к другу, одна из пластин закреплена на объекте, установленном на подвижной части, а другая пластина установлена на неподвижной части, в периферийной части пластины, закрепленной на объекте, с ее нерабочей поверхностью соединены три актюатора. за пластинами по ходу пучка расположен фотоприемный модуль, сигналы с которого поступают на вход компьютера, сигналы с выхода компьютера поступают на привод, соединенный с подвижной частью, и актюаторы, соединенные с пластиной, закрепленной на объекте, устройство дополнительно содержит объектив, в качестве фотоприемного модуля используется двумерный матричный фотоприемник, на объекте перемещения укреплена пластина, первая по ходу пучка, рабочая поверхность по крайней мере одной из пластин выполнена в виде криволинейной поверхности с перепадом высот, монотонно изменяющимся от центра пластины к ее краю и составляющим не менее половины длины волны зондирующего излучения. Технический результат - повышение точности перемещения объекта в большом диапазоне расстояний. 4 з.п. ф-лы, 2 ил.

Способ измерения для определения положения омега-профильного компонента (2), установленного на оболочковом компоненте (1) летательного аппарата, в котором фактическое положение омега профильного компонента (2) относительно оболочкового компонента (1) определяют оптически бесконтактным образом, чтобы потом сравнивать его с заданным положением. При измерении образуют несколько соседних расположенных с промежутками друг от друга точек (6; 6') замера на двух взаимно противоположных боковых сторонах (7а, 7b; 7а', 7b') профильного поперечного сечения омега-профильного компонента (2), через которые проводят линии (8а, 8b; 8а', 8b') регрессии в соответствии с принципом измерения пути на основании координат, точка (9; 9') пересечения которых определяет ортогональное положение омега-профильного компонента (2) относительно оболочкового компонента (1). Измерительное устройство реализует способ. Вычислительный блок входит в измерительное устройство. 3 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к способу сканирования трубы, предназначенной для обработки на станке для лазерной резки. Способ включает этапы, на которых: а) излучают посредством режущей головки (50) станка для лазерной резки сфокусированный лазерный луч таким образом, чтобы не происходила резка или вытравливание материала трубы (Т); b) передвигают режущую головку (50) вдоль заданного направления (х) сканирования; и с) во время перемещения режущей головки (50) вдоль направления (х) сканирования детектируют посредством соответствующих датчиков (56) излучения, отраженное или излучаемое трубой (Т), и устанавливают последовательно точка за точкой, на основе сигнала, предоставляемого датчиками (56), присутствие или отсутствие материала трубы (Т). Изобретение позволяет измерять положение точки реза на поверхности трубы независимо от положения трубы на станке для лазерной резки и от формы трубы. 5 з.п. ф-лы, 8 ил.

Изобретение относится к области контрольно-измерительной техники и может быть использовано в устройствах по определению возникновения перемещений конструкций сооружения относительно друг друга. Технический результат – определение возникновения относительного перемещения конструкций сооружения. Устройство контроля возникновения перемещения частей конструкций сооружения, включающее лазер, отражающие зеркала, фиксированные на контролируемых частях конструкции сооружения, корректирующий отражатель, параллельно расположенные зеркала, фокусирующую линзу, светочувствительную матрицу, аналого-цифровой преобразователь, компьютер, при этом в качестве чувствительного элемента появления перемещения частей сооружения используется система зеркал и светочувствительная матрица, изменение взаимного расположения любого элемента системы приводит к изменению положения светлого пятна на светочувствительной матрице, что и свидетельствует об изменении пространственного положения контролируемых частей конструкции. 1 ил.

Способ измерения компонентов сложных перемещений объекта заключается в использовании связанного с контролируемым объектом тестового объекта, формировании изображения последнего в приемнике изображения, где создается шкала в виде виртуальных меток, фиксируемых в начальный такт измерения на поверхности приемника изображения в определенных заранее точках изображения тестового объекта, по перемещениям изображения относительно которых судят о перемещениях контролируемого объекта. В качестве тестового объекта используют трехмерный тестовый объект в виде шара известного диаметра D, который совмещают с тестовым объектом, выполненным в виде отрезка прямой, таким образом, что отрезок пересекает центр шара. По четырем расстояниям от соответствующих виртуальных меток до выбранных точек изображения тестового объекта определяют информативные компоненты перемещений контролируемого объекта, характеризующие его линейные перемещения вдоль осей OX и OZ и поворот вокруг оси OY. Технический результат - повышение информативности и точности измерения за счет обеспечения селективности к компонентам перемещения, характеризующим поворот и приближение-удаление объекта относительно соответствующих координатных осей, расширение функциональных возможностей. 2 з.п. ф-лы, 3 ил.
Наверх