Способ производства низкоуглеродистой стали

Изобретение относится к черной металлургии и может быть использовано для получения низкоуглеродистых сталей с использованием установок вакуумирования стали в сталеплавильных цехах металлургических заводов. В способе осуществляют выплавку металла в сталеплавильном агрегате, выпуск плавки в сталеразливочный ковш, ввод раскислителей, вакуумирование в два этапа. Перед вакуумированием металла производят его электронагрев до температуры 1630…1640°С, на первом этапе вакуумирования устанавливают разрежение в вакуум-камере от 150 до 100 мбар и производят продувку металла кислородом с расходом 1000…1500 м3/ч, причем продолжительность первого этапа вакуумирования составляет 15 мин при начальном содержании углерода в стали не более 0,05% и 18 минут при содержании углерода более 0,06%, на втором этапе после окончания продувки кислородом устанавливают расход аргона для перемешивания металла 1500 л/мин и продолжают вакуумирование до достижения разрежения в вакуум-камере не более 1,2 мбар, при данном разрежении выдерживают металл не менее 10 мин. Изобретение позволяет получить сталь с содержанием углерода не более 0,0020%. 1 табл.

 

Изобретение относится к черной металлургии, конкретно к способам получения низкоуглеродистых сталей с использованием установок вакуумирования стали, и может быть использовано в сталеплавильных цехах металлургических заводов.

Известен способ выплавки ниобийсодержащей стали, включающий завалку шихты, содержащей углерод и марганец, расплавление, нагрев металла в сталеплавильном агрегате и его последующее окислительное рафинирование с продувкой кислородом сверху, вакуумирование, введение ниобийсодержащего ферросплава [Патент РФ №2243268, кл. С21С 7/10].

К недостатками данного способа следует отнести невозможность получения ультранизкого содержания углерода в стали (не более 0,0020%).

Наиболее близким аналогом является способ производства стали, включающий выплавку металла в сталеплавильном агрегате, выпуск плавки в сталеразливочный ковш, ввод раскислителей, вакуумирование, при этом выплавку металла осуществляют с рафинированием ванны кислородом до получения содержания углерода в металле не более 0,03%, во время выпуска плавки в сталеразливочный ковш добавляют высокоуглеродистый ферромарганец в количестве не более 3,0 кг/т, вакуумирование металла осуществляют в два этапа: на первом этапе устанавливают разрежение в вакуум-камере не более 150 мбар и расход аргона для перемешивания 1000 л/мин, причем продолжительность первого этапа вакуумирования составляет 5…8 мин, на втором этапе устанавливают разрежение в вакуум-камере не более 10 мбар и расход аргона для перемешивания 1500 л/мин при содержании {СО} в отходящих газах не менее 10%, при меньшем содержании {СО} - 2000 л/мин, причем продолжительность второго этапа вакуумирования составляет 13…16 мин, микролегирование стали ниобием, титаном, алюминием осуществляется в процессе вакуумирования не менее чем за 2 минуты до окончания второго этапа присадкой ниобий- и титансодержащих кусковых ферросплавов и алюминиевой дроби [Патент РФ №2437942, кл. С21С 7/10].

Существенными недостатками данного способа являются невозможность получения в стали после вакуумной обработки ультранизкого содержания углерода (не более 0,0020%) - ввиду частичного раскисления металла до вакуумирования, а также вероятность прироста содержания углерода после вакуумирования при проведении электродугового нагрева стали на агрегате печь-ковш.

Задача, решаемая изобретением, состоит в получении стали с содержанием углерода не более 0,0020%.

Желаемым техническим результатом изобретения является увеличение степени обезуглероживания стали путем применения рациональной технологии вакуумирования и внепечной обработки стали.

Поставленная задача решается тем, что в способе производства низкоуглеродистой стали, включающем выплавку металла в сталеплавильном агрегате, выпуск плавки в сталеразливочный ковш, ввод раскислителей, вакуумирование в два этапа, в отличие от ближайшего аналога перед вакуумированием металла производят его электронагрев до температуры 1630…1640°С, на первом этапе вакуумирования устанавливают разрежение в вакуум-камере от 150 до 100 мбар и производят продувку металла кислородом с расходом 1000…1500 м3/ч, причем продолжительность первого этапа вакуумирования составляет 15 мин при начальном содержании углерода в стали не более 0,05% и 18 минут при содержании углерода более 0,06%, на втором этапе после окончания продувки кислородом устанавливают расход аргона для перемешивания металла 1500 л/мин и продолжают вакуумирование до достижения разрежения в вакуум-камере не более 1,2 мбар, при данном разрежении выдерживают металл не менее 10 мин.

Заявленные пределы подобраны экспериментальным путем. Нагрев металла перед вакуумной обработкой до 1630…1640°С позволяет исключить необходимость проведения дополнительного нагрева металла после вакуумирования. Снижение температуры металла менее 1630°С приведет к необходимости дополнительного нагрева металла после вакуумирования, а следовательно, к приросту содержания углерода в металле из электродов. Увеличение температуры металла более 1640°С приведет к необходимости охлаждения металла в сталеразливочном ковше путем продувки аргоном или погружения в металл сляба, что способствует приросту содержания углерода в металле из огнеупорной футеровки сталеразливочного ковша, содержащей углерод.

На первом этапе вакуумирования при увеличении разрежения в вакуум-камере более 150 мбар, интенсивности продувки кислородом менее 1000 м3/ч и сокращении времени вакуумирования менее 15 мин при начальном содержании углерода в стали не более 0,05% и 18 минут при содержании углерода 0,06% и более, не будет достигнуто требуемое содержание углерода в конце первого этапа (не более 0,003%).

На втором этапе при увеличении разрежения в вакуум-камере более 1,2 мбар, снижении расхода аргона менее 1500 л/мин и сокращении времени вакуумирования менее 10 мин не будет достигнуто требуемое содержание углерода в конце вакуумирования (не более 0,0020%). Увеличение времени вакуумирования на первом этапе более 15 мин при начальном содержании углерода в стали не более 0,05% и 18 минут при содержании углерода более 0,06% и на втором этапе более 10 мин является нецелесообразным в связи с чрезмерным износом футеровки вакуум-камеры. При увеличении расхода аргона более 1500 л/мин резко возрастает интенсивность процесса барботажа и возникает риск выплесков металла и зарастания газоотводящего тракта.

Заявленный способ производства низкоуглеродистой стали был реализован в кислородно-конвертерном цехе при производстве более 50 плавок IF-стали на установке вакуумирования стали.

Выплавка металла осуществлялась в 370-т кислородных конвертерах. Обработка металла осуществлялась в установке вакуумирования стали №2. Содержание углерода в металле после вакуумирования составило 0,0012…0,0020%. Перед вакуумированием производили электронагрев металла до температуры 1630…1640°С. На первом этапе разрежение в вакуум-камере составляло от 150 до 100 мбар, продолжительность вакуумирования составила 15…18 мин и расход аргона 1000…1500 л/мин. На втором этапе разрежение в вакуум-камере составляло не более 1,2 мбар, продолжительность вакуумирования при данном разрежении составила 10…12 мин и расход аргона 1500 л/мин.

Примеры конкретного осуществления способа приведены в таблице.

Из данных, представленных в таблице, видно, что решение поставленной задачи в части обеспечения содержания углерода после вакуумирования не более 0,002% обеспечивается на плавках №4, 5, 6. На плавках, где технологические параметры не соответствуют формуле изобретения, конечный результат по содержанию углерода не обеспечивается.

Предложенный способ производства низкоуглеродистой стали позволил гарантированно получать сталь с содержанием углерода не более 0,0020%.

Способ производства низкоуглеродистой стали
№ п/п Температура металла до вакуумирования, °С Разрежение на первом этапе, мбар Разрежение на втором этапе, мбар Расход аргона, л/мин Продолжительность вакуумирования на первом этапе, мин Продолжительность вакуумирования на втором этапе, мин Содержание углерода после вакуумирования, %
1 1615 120 1,3 500 14 9 0,0025
2 1620 126 1,4 700 13 10 0,0024
3 1625 155 1,3 900 13 11 0,0022
4 1630 140 1,1 1100 15 10 0,0019
5 1635 135 1,1 1300 16 11 0,0015
6 1640 139 1,1 1500 18 12 0,0012
7 1645 194 1,4 1700 19 14 0,0022
8 1650 183 1,5 1900 20 13 0,0024

Способ производства низкоуглеродистой стали, включающий выплавку металла в сталеплавильном агрегате, выпуск плавки в сталеразливочный ковш, ввод раскислителей и вакуумирование в два этапа, отличающийся тем, что перед вакуумированием металла производят его электронагрев до температуры 1630…1640°С, на первом этапе вакуумирования устанавливают разрежение в вакуум-камере от 150 до 100 мбар и производят продувку металла кислородом с расходом 1000…1500 м3/ч, причем продолжительность первого этапа вакуумирования составляет 15 мин при начальном содержании углерода в стали не более 0,05% и 18 минут при содержании углерода более 0,06%, а на втором этапе после окончания продувки кислородом устанавливают расход аргона для перемешивания металла 1500 л/мин и продолжают вакуумирование до достижения разрежения в вакуум-камере не более 1,2 мбар, при данном разрежении выдерживают металл не менее 10 мин.



 

Похожие патенты:

Изобретение относится к области черной металлургии, в части производства особонизкоуглеродистых сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали.

Изобретение относится к области металлургии и может быть использовано при производстве нержавеющей мартенситной стали. Перед этапом электрошлакового переплава слиток подвергают дегазации в вакууме в состоянии жидкого металла в течение времени, достаточного для получения содержания водорода в упомянутом слитке после упомянутого этапа электрошлакового переплава менее чем 3 ppm.

Изобретение относится к области металлургии и может быть использовано при внепечном производстве металлов и сплавов в оксидных металлотермических процессах, протекающих за счет выделения тепла в химических реакциях восстановления металлов из оксидов или концентратов.

Изобретение относится к металлургическому оборудованию и может быть использовано на металлургических предприятиях при внепечном вакуумировании стали. Патрубок погружной состоит из металлической конструкции, футерованной огнеупорными кольцами и облицованной огнеупорным бетоном.

Изобретение относится к области металлургии, в частности к облицовке стенки металлургической печи, выполненной в виде системы. Система содержит первую холодильную плиту и соседнюю вторую холодильную плиту.

Предлагаемое изобретение относится к металлургии, конкретно - к оборудованию для внепечного вакуумирования жидкой стали. Вакуум-камера содержит три погружных патрубка.

Изобретение относится к черной металлургии, в частности к производству сталей с низким содержанием углерода, преимущественно для нужд энергетики и создания оборудования, работающего в условиях сверхкритических параметров пара.

Изобретение относится к области металлургии и может найти применение при выплавке и внепечной обработке конструкционных сталей различных марок. Способ включает выплавку в дуговой печи полупродукта, выпуск расплава в ковш, присадку твердо-шлаковой смеси и легирующих, обработку расплава основным шлаком, усреднительную продувку аргоном, контроль окисленности расплава, раскисление алюминием, вакуум-шлаковую обработку и разливку в вакууме, причем выпуск расплава в ковш ведут без отсечения шлака, а обработку расплава в ковше ведут шлаком с основностью (СаО+Аl2O3)SiO2 равной 4,5…16, при этом вакуум-шлаковую обработку проводят дважды при условии, что первую вакуум-шлаковую обработку начинают при активности кислорода в расплаве 0,01…0,05 мас.% и суммарном содержании в шлаке оксидов железа и марганца в диапазоне 15…25 мас.%, а вторую вакуум-шлаковую обработку - при активности кислорода в расплаве не более 0,01 мас.% и суммарном содержании в шлаке оксидов железа и марганца не более 5 мас.%, а перед второй вакуум-шлаковой обработкой проводят дополнительную присадку шлакообразующих и легирующих.
Изобретение относится к черной металлургии, в частности к способам производства низкоуглеродистой стали. В способе во время выпуска стали в сталеразливочный ковш производят предварительное раскисление и легирование марганецсодержащими ферросплавами, внепечную обработку металла проводят на установке циркуляционного вакуумирования стали, причем устанавливают разрежение в вакуумкамере не более 10 мбар и расход аргона для перемешивания от 0,8 до 1,1 л/(т*мин), после чего производят окончательное раскисление и легирование металла в вакуумкамере алюминиевой дробью в количестве 1,5…2,5 кг/т из расчета получения требуемого содержания алюминия в металле, при этом общую продолжительность вакуумирования устанавливают от 10 до 15 мин.

Изобретение относится к области металлургии, в частности к устройству для дегазации стального расплава. .

Изобретение относится к области металлургии и может быть использовано для вакуумной обработки металлических расплавов с помощью продувочной фурмы. Продувочная фурма имеет наружную боковую поверхность, которая расположена вдоль продольной оси продувочной фурмы и внутри которой проходит кислородный канал, имеющий на конце выпуск для выхода кислорода. Внутри наружной боковой поверхности проходит канал для горючего газа, который на конце имеет выпуски для выхода горючего газа. В фурме установлено запальное устройство с запальным наконечником для воспламенения горючей газовой смеси. Запальное устройство выполнено с возможностью перемещения между выдвинутым положением и убранным положением. В выдвинутом положении запальный наконечник воздействует на область смешивания, в которой подаваемый к выпуску для кислорода кислород и выходящий через выпуски для горючего газа горючий газ смешиваются с получением воспламеняющейся газовой смеси. В убранном положении запальное устройство убрано в защитную область для защиты от брызг металлического расплава. Изобретение обеспечивает возможность надежным образом осуществлять воспламенение горючей смеси, образующейся на конце для выхода продувочного газа. 12 з.п. ф-лы, 16 ил.

Изобретение относится к черной металлургии, в частности к производству стали с применением методов ее внепечной обработки. В способе осуществляют отсечку печного шлака, выпуск металла в ковш, подогрев металла в печи-ковше и наведение высокоосновного шлака, десульфурацию металла, наведение низкоосновного шлака, вакуумирование, непрерывную разливку металла и непрерывное перемешивание металла аргоном. При выпуске металла в ковш присаживают 10-12 кг/т стали шлакообразующих материалов в виде извести, алюмокорундовой смеси и карбида кремния при их соотношении (1,0-1,5):(0,20-0,25):(0,10-0,15) соответственно и чушковый алюминий в количестве 1,3-1,4 кг/т стали. Изобретение позволяет гарантированно осуществлять комплексное рафинирование металла от серы до 0,002-0,005% с последующим легированием ею до 0,020-0,035%, водорода до 0,0002% и оксидных неметаллических включений в металле глиноземистой природы до 0,0030-0,0035% объемных, а также снизить общую длительность внепечной обработки до уровня, не превышающего длительности непрерывной разливки. 4 з.п. ф-лы, 2 пр., 1 табл.

Изобретение относится к области металлургии и может быть использовано при металлургической обработке металла в ковше вакуумного плавильного агрегата. С помощью по меньшей мере одного датчика корпусного шума, опосредствованно или непосредственно акустически связанного с ковшом, в котором помещается стальной расплав, принимают создаваемые в ковше акустические сигналы и используют в устройстве управления и аналитической обработки, имеющем реализованный в нем алгоритм для определения высоты или толщины и/или дифференциального отношения к времени высоты или, соответственно, толщины вспененного шлака, находящегося в ковше над ванной стального расплава. В устройстве управления и аналитической обработки дополнительно реализован алгоритм, с помощью которого по акустическим сигналам обнаруживается наличие неплотности в вакуумном плавильном агрегате. Изобретение позволяет контролировать рабочее состояние вакуумного плавильного агрегата за счет использования акустических сигналов при вдувании технологических газов в ковш, при изменении верхнего уровня вспененного шлака и для обнаружения неплотностей в вакуумном плавильном агрегате. 2 н. и 17 з.п. ф-лы, 1 ил.

Изобретение относится к области черной металлургии, в частности к производству низкоуглеродистых демпфирующих сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. Способ включает выплавку металла в сталеплавильном агрегате, выпуск металла в сталь-ковш, внепечную обработку, включающую вакуумное обезуглероживание, и разливку стали. Во время или после вакуумного обезуглероживания осуществляют присадку алюминия до его содержания в стали не менее 2,5%, при этом обеспечивают основность шлака более 5. Изобретение позволяет получить низкоуглеродистую сталь с низким содержанием неметаллических включений и высокими демпфирующими свойствами с разливкой на установках непрерывной разливки стали и обеспечением стабильности процесса разливки для исключения затягивания погружных разливочных стаканов. 2 н. и 9 з.п. ф-лы, 2 табл.
Изобретение относится к области металлургии, а именно к производству углеродсодержащих высококачественных сталей, таких как корпусные, роторные, высокопрочные, броневые, подшипниковые, инструментальные, специальные. Способ включает выплавку металла с содержанием углерода более 0,03 мас. %, выпуск расплава в ковш с отсечкой шлака, присадку шлакообразующих и легирующих материалов, вакуумную обработку расплава в ковше, раскисление, присадку легирующих материалов и разливку. При выплавке металла в процессе вакуумной обработки и перед разливкой определяют содержание водорода, серы, активность кислорода в расплаве и степень окисленности шлака по оксиду железа, а выпуск расплава в ковш ведут после достижения содержания водорода ≤5 ppm, серы ≤0,005 мас. %, активности кислорода 200-500 ppm в расплаве и степени окисленности шлака по оксиду железа 3-20%, раскисление ведут после достижения содержания водорода ≤1,5 ррm, серы ≤0,005 мас. %, активности кислорода ≤100 ррm в расплаве и степени окисленности шлака по оксиду железа ≤0,2-0,8% и разливку ведут после достижения содержания водорода ≤1,2 ррm, серы ≤0,005 мас. %, активности кислорода ≤5 ррm в расплаве и степени окисленности шлака по оксиду железа ≤0,2%. Изобретение позволяет повысить чистоту металла по неметаллическим включениям, а также снизить склонность стали к флокенообразованию.
Наверх