Буровое долото для твердых пород с лабиринтным устройством защиты уплотнения/подшипника

Группа изобретений относится к буровым инструментам, а именно к буровым долотам для твердых пород с лабиринтным устройством защиты уплотнения/подшипника. Технический результат заключается в повышении надежности защиты от проникновения абразивных частиц к уплотнению и подшипниковому устройству из внешней окружающей среды. Буровой инструмент содержит головку бура с радиально проходящей базовой поверхностью; по меньшей мере один вал подшипника, проходящий из головки бура и содержащий поверхность под подшипник; конус, установленный с возможностью вращения на валу подшипника и содержащий радиально проходящую базовую поверхность; первый кольцевой паз, образованный в радиально проходящей базовой поверхности конуса; второй кольцевой паз, образованный в радиально проходящей базовой поверхности головки бура, причем первый кольцевой паз совмещен, по меньшей мере, с частью второго кольцевого паза; и кольцо устройства защиты, характеризующееся такими размерами и формой, чтобы оно было плотно вставлено в первый и второй кольцевые пазы между конусом и головкой бура. 3 н. и 30 з.п. ф-лы, 12 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится, в общем, к буровому инструменту для твердых пород. Изобретение, в частности, касается бурового инструмента с шарошечным долотом и устройств защиты, предназначенных для защиты уплотнения подшипника, используемого в таких буровых инструментах с шарошечным долотом.

Предпосылки к созданию изобретения

Шарошечное буровое долото для твердых пород представляет собой обычный режущий инструмент, используемый на нефтяных месторождениях, газовых месторождениях и месторождениях твердых полезных ископаемых для прохождения сквозь толщи пород и профилирования стволов буровых скважин. Частичный вид типичного шарошечного бурового долота для твердых пород представлен на фиг.1. На фиг.1 подробно показано устройство одного сборного узла врубовой головки и шарошки. Общее устройство и работа такого долота хорошо известны специалистам в области техники, к которой относится изобретение.

Головка 1 долота содержит вал 2 подшипника. На валу 2 подшипника, который может действовать как опора скольжения, установлен с возможностью вращения режущий конус 3. Корпус 4 долота содержит верхнюю часть, снабженную, как правило, резьбой для образования замкового соединения с буровым инструментом, которое облегчает соединение долота с бурильной колонной (не показана). Для подачи смазки в подшипник между конусом 3 и валом 2 подшипника и удержания ее в этом подшипнике предусмотрено наличие системы 6 смазки. Конструктивное исполнение и работа системы 6 хорошо известны специалистам в области техники, к которой относится изобретение.

В подшипниках, используемых в шарошечных буровых долотах, в качестве элемента, воспринимающего нагрузку, в основном использованы или опоры качения, или опоры скольжения (как показано на фиг.1). Применительно к подшипнику, способствующему вращению конуса 3 вокруг вала 2 подшипника, предусмотрен целый ряд систем подшипников. Эти системы подшипников содержат первый цилиндрический подшипник 10 скольжения (также упоминаемый как главный подшипник скольжения), шариковые подшипники 12, второй цилиндрический подшипник 14 скольжения, первый радиальный (упорный) подшипник 16 скольжения и второй радиальный (упорный) подшипник 18 скольжения.

Первый цилиндрический подшипник (главный подшипник скольжения) 10 скольжения системы подшипников образован наружной цилиндрической поверхностью 20 на валу 2 подшипника и внутренней цилиндрической поверхностью 22 вкладыша 24, запрессованного в конус 3. Вкладыш 24 представляет собой кольцеобразную корпусную деталь, обычно изготавливаемую из бериллиево-медного сплава, хотя в данной области техники известно использование и других материалов. Движение шариковых подшипников 12 осуществляется по кольцевой дорожке 26 качения, образованной на области сопряжения между валом 2 подшипника и конусом 3. Второй цилиндрический подшипник 14 скольжения системы подшипников образован наружной цилиндрической поверхностью 30 вала 2 подшипника и внутренней цилиндрической поверхностью 32 конуса 3. Наружная цилиндрическая поверхность 30 смещена радиально внутрь от наружной цилиндрической поверхности 20. Первый радиальный подшипник 16 скольжения образован первой радиальной поверхностью 40 на валу 2 подшипника и второй радиальной поверхностью 42 на конусе 3 и расположен между первым и вторым цилиндрическими подшипниками 10, 14 скольжения. Второй радиальный подшипник 18 скольжения расположен рядом со вторым цилиндрическим подшипником 14 скольжения на оси вращения конуса и образован третьей радиальной поверхностью 50 на валу 2 подшипника и четвертой радиальной поверхностью 52 на конусе 3.

Смазка, осуществляемая с помощью системы 6 между противолежащими цилиндрическими и радиальными поверхностями, предусмотрена в первом цилиндрическом подшипнике 10 скольжения, втором цилиндрическом подшипнике 14 скольжения, первом радиальном подшипнике 16 скольжения и втором радиальном подшипнике 18 скольжения. Важно удерживать смазку в местах между противолежащими поверхностями системы подшипников. Для удерживания смазки необходимо, чтобы между системой подшипников и окружающей средой долота было образовано скользящее уплотнение.

Для удерживания смазки и исключения возможности проникновения инородных частиц извне в сальник 64 между конусом 3 шарошки и валом 2 подшипника установлено кольцевое уплотнение 60. На валу подшипника предусмотрен уплотнительный прилив 62 с цилиндрической поверхностью. В рассматриваемой конструкции эта поверхность уплотнительного прилива 62 смещена радиально наружу (на толщину вкладыша 24) от наружной цилиндрической поверхности 20 первого подшипника 10 скольжения. Очевидно, что при необходимости уплотнительный прилив может не образовывать уступ относительно поверхности главного подшипника скольжения (см., например, фиг.3). Кольцевой сальник 64 образован в конусе 3. Сальник 64 и уплотнительный прилив 62 совмещены друг с другом, когда конус 3 шарошки установлен с возможностью вращения на валу подшипника. Кольцевое уплотнение 60 зажато между поверхностью (поверхностями) сальника 64 и уплотнительного прилива 62, при этом кольцевое уплотнение 60 скользит по поверхности 62 уплотнительного прилива и действует таким образом, что удерживает смазку в опорной зоне вокруг системы подшипников. Это уплотнение к тому же противодействует проникновению в опорную область содержащихся в скважине веществ (бурового раствора и инородных частиц).

Раньше уплотнения для буровых долот проектировались с металлической тарельчатой пружиной, плакированной эластомером, обычно бутадиен-акрилонитрильным каучуком (NBR). С внедрением кольцевых уплотнений уплотнения буровых долот были в значительной степени усовершенствованы (см. Galle, патент США №3397928 изобретателя, описание которого включено настоящим документом посредством ссылки). Эти кольцевые уплотнения были выполнены из бутадиен-акрилонитрильного каучука и имели кольцевую форму поперечного сечения. Уплотнение было плотно вставлено в радиальный сальник, образованный цилиндрическими поверхностями между подшипниками конуса и головки, причем образованный кольцевой зазор был меньше, чем начальный размер, замеренный по поперечному сечению уплотнения. В документе Schumacher (патент США №3765495, описание которого включено настоящим документом путем ссылки) предложен вариант этого уплотнения путем удлинения в радиальном направлении, позволяющего сформировать эффективное уплотнение при меньшей степени сдавливания, чем при использовании уплотнения, предложенного Galle.

Известно использование нескольких других незначительных вариантов данной концепции уплотнения, хорошо известных специалистам в данной области техники, каждая из которых основана на сдавливании уплотнения из эластомера в радиальном направлении в сальнике, образованном цилиндрическими поверхностями между двумя элементами подшипника. Со временем в промышленности буровых долот для твердых пород стали использовать для изготовления уплотнительного кольца вместо бутадиен-акрилонитрильного материала высоконасыщенный нитрильный эластомер в целях достижения более стабильных свойств (термостойкости, стойкости к химическому воздействию).

За последние пятьдесят лет значительно увеличился срок службы подшипников буровых долот для твердых пород за счет использования в этих подшипниках уплотнительных средств. Чем дольше уплотнение предохраняет подшипник от попадания загрязнений, тем больше срок службы подшипника и бурового долота. Таким образом, уплотнение является важным компонентом бурового долота для твердых пород. Срок службы уплотнения фактически ограничен износом и повреждением уплотнения. Уплотнение 60 удержано в сальнике 64 и скользит по валу подшипника (на поверхности 62), и при этом оно действует так, что отделяет консистентную смазку подшипника от внешней окружающей среды (бурового раствора, воздуха, бурового шлама и т.д.). Присутствие абразивных частиц (известных как детрит), проникающих к уплотнению из внешней окружающей среды, имеет тенденцию ускорять износ уплотнения 60. Например, присутствие абразивных частиц довольно большого размера (или в довольно большом количестве) способно вызвать разрыв уплотнения 60.

Специалистам в области техники, к которой относится изобретение, известно решение этой проблемы путем создания какого-либо искривления 80 пути прохождения потока текучей среды между сальником и внешней окружающей средой. Это искривление может быть создано за счет геометрии головки и конуса. На фиг.1 показан один пример использования в герметичном подшипнике такого искривления 80, образованного посредством придания головке и конусу такой конфигурации, чтобы на пути прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84 можно было ввести изгиб 82 (сформированный в данном случае в виде прямого угла). На фиг.2 показан другой пример создания в герметичном подшипнике такого искривления 80 за счет придания головке и конусу такой конфигурации, чтобы на пути прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84 можно было ввести два изгиба 86 и 88 (каждый из которых в данном случае образован тупым углом, хотя возможно использование прямых или комбинированных углов). На пути прохождения текучей среды предусмотрен также дополнительный изгиб 82 (образованный в данном случае тупым углом, хотя возможно использования прямого угла и так, что он расположен аналогично единственному изгибу, показанному на фиг.1). На фиг.3 показан другой пример выполнения такого искривления 80, созданного посредством придания головке и конусу такой конфигурации, чтобы на пути прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84 можно было ввести два изгиба 86 и 88 (каждый из которых в данном случае образован тупым углом, хотя возможно использование прямых или комбинированных углов). Введенное в конструкцию искривление 80 действует так, что препятствует прохождению абразивных частиц (детрита) из внешней окружающей среды 84 к уплотнению 60.

На фиг.4 показано введение искривления 80 на пути прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84 посредством использования в герметичном подшипнике лабиринтного устройства 90 защиты уплотнения. Лабиринтное устройство 90 защиты уплотнения представляет собой кольцевой конструктивный элемент Г-образной формы (в поперечном сечении). В радиальной базовой поверхности 91 конуса 3 образован кольцевой паз 92. Кольцевой паз 92 смещен в радиальном направлении от сальника на величину протяженности поверхности 94. Короткое плечо Г-образного кольца лабиринтного устройства 90 защиты уплотнения вставлено в кольцевой паз 92, а длинное плечо Г-образного кольца лабиринтного устройства 90 защиты уплотнения расположено между конусом 3 (поверхностью 91) и радиальной базовой поверхностью 93 головки 1 рядом с валом 2. Сведения взяты из Shotwell, патент США №4613004, включенного в описание изобретения путем ссылки.

Дополнительно рассмотрим фиг.5. Лабиринтное устройство 90 защиты уплотнения делит путь прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84 на первый путь 300 текучей среды, проходящий вокруг поверхностей кольцевого паза 92 и поверхности 94 (проходя изгибы 95, 96, 97 и 98), и второй путь 302 текучей среды, проходящий вдоль радиальной базовой поверхности 93 головки 1 рядом с валом 2 и цилиндрической поверхности 62 (проходя изгиб 82). На фиг.5 пунктирными линиями в общих чертах показаны поверхности головки, вала и конуса, расположенные рядом с устройством 90 защиты и уплотнением 60. Первый путь 300 и второй путь 302 текучей среды параллельны друг другу на участках обхода Г-образного кольца лабиринтного устройства 90 защиты уплотнения. Несмотря на наличие искривления 80 в первом пути 300 текучей среды, в котором текучая среда должна проходить по четырем изгибам (95, 96, 97 и 98), на конфигурации по фиг.4 представлен тем не менее и второй путь 302 текучей среды, образующий искривление 80 всего лишь с одним изгибом (82).

Существует необходимость в усовершенствовании конструкции и конфигурации лабиринтного устройства защиты уплотнения в целях повышения надежности защиты от проникновения абразивных частиц (детрита) к уплотнению 60 из внешней окружающей среды 84.

В данной области техники известно использование в некоторых конкретных случаях открытых подшипников (то есть, негерметичных подшипников, в которых отсутствует использование герметической смазки). Открытый подшипник может содержать или подшипник скольжения, или подшипник качения, или же комбинацию подшипниковых элементов и систем. При использовании открытого подшипника существует также проблема предотвращения загрязнения подшипника с целью продления срока службы подшипника. Таким образом, в области техники, к которой относится изобретение, существует необходимость в создании лабиринтного устройства защиты с более совершенной конструкцией и конфигурацией, обеспечивающими более надежную защиту от проникновения абразивных частиц (детрита) к подшипниковому устройству из внешней окружающей среды

Дополнительную информацию можно получить из следующих ссылочных источников (описание всех ссылочных источников включено здесь путем ссылки): патенты США №3656764, 4102419, 4179003, 4200343, 4209890, 4613004, 5005989, 5027911, 5224560, 5513715, 5570750, 5740871, 6254275 и 7798248 и опубликованная заявка на выдачу патента США №2010/0038144.

Краткое изложение сущности изобретения

В варианте осуществления буровой инструмент содержит: головку бура, характеризующуюся проходящей радиально базовой поверхностью; по меньшей мере один вал подшипника, проходящий из головки бура; конус, установленный с возможностью вращения на валу подшипника и имеющий радиально проходящую базовую поверхность; первый кольцевой паз, образованный в радиально проходящей базовой поверхности конуса; второй кольцевой паз, образованный в радиально проходящей базовой поверхности головки бура, причем первый кольцевой паз совмещен, по меньшей мере, с частью второго кольцевого паза; и кольцо устройства защиты такого размера и такой формы, что оно плотно вставлено между конусом и головкой бура и при этом расположено в первом и втором кольцевых пазах.

В варианте осуществления буровой инструмент содержит: конус, установленный с возможностью вращения на валу подшипника, проходящем из головки бура, причем конус содержит первую радиально проходящую плоскую базовую поверхность, расположенную напротив второй радиально проходящей плоской базовой поверхности головки бура; первый кольцевой паз, образованный в первой радиально проходящей плоской базовой поверхности; второй кольцевой паз, образованный во второй радиально проходящей плоской базовой поверхности, причем первый кольцевой паз совмещен, по меньшей мере, с частью второго кольцевого паза, комбинация первого и второго кольцевых пазов образует первый кольцевой сальник; и кольцо устройства защиты, вставленное в первый кольцевой сальник.

В варианте осуществления буровой инструмент содержит: конус, установленный с возможностью вращения на валу подшипника, проходящем из головки бура, причем конус содержит первую радиально проходящую плоскую базовую поверхность, расположенную напротив второй радиально проходящей плоской базовой поверхности головки бура; первый кольцевой паз, образованный в первой радиально проходящей плоской базовой поверхности, причем первый кольцевой паз содержит первую и вторую противолежащие боковые стенки; второй кольцевой паз, образованный во второй радиально проходящей плоской базовой поверхности, причем второй кольцевой паз содержит первую и вторую противолежащие боковые стенки, причем первая боковая стенка первого кольцевого паза совмещена в радиальном направлении с первой боковой стенкой второго кольцевого паза, а комбинация первого и второго кольцевых пазов образует первый кольцевой сальник; и кольцо устройства защиты, вставленное в первый кольцевой сальник.

В варианте осуществления изобретения буровой инструмент содержит: конус, установленный с возможностью вращения на валу подшипника, проходящем из головки бура, причем конус содержит первую плоскую базовую поверхность, расположенную напротив второй плоской базовой поверхности головки бура; первый кольцевой паз, образованный в первой плоской базовой поверхности; второй кольцевой паз, образованный во второй плоской базовой поверхности, причем первый и второй кольцевые пазы, по меньшей мере, частично совмещены друг с другом, причем комбинация первого и второго кольцевых пазов образует первый кольцевой сальник; и кольцо устройства защиты, вставленное в первый кольцевой сальник, действующее таким образом, что оно делит путь прохождения текучей среды между валом подшипника бурового инструмента и внешней окружающей средой на ряд параллельных путей текучей среды, проходящих вокруг кольца устройства защиты. Каждый параллельный путь текучей среды содержит искривление, образованное рядом изгибов, изменяющих направление движения текучей среды.

Краткое описание чертежей

Теперь следует описание фигур, где:

на фиг.1, 2 и 3 представлен частичный вид типичного шарошечного бурового долота для твердых пород, демонстрирующий известную конструкцию защитного уплотнения с искривлением;

на фиг.4 представлен частичный вид типичного шарошечного бурового долота для твердых пород, демонстрирующий известную конструкцию лабиринтного устройства защиты уплотнения;

на фиг.5 представлены разделенные параллельные пути текучей среды, представленные конструкцией по фиг.4;

на фиг.6 представлен частичный вид шарошечного бурового долота для твердых пород, демонстрирующий вариант осуществления усовершенствованного лабиринтного устройства защиты уплотнения/подшипника;

на фиг.7А представлены разделенные параллельные пути текучей среды, представленные на фигуре 6;

на фиг.7В представлены разделенные параллельные пути текучей среды, представленные в альтернативном варианте исполнения;

на фиг.8 представлен частичный вид шарошечного бурового долота для твердых пород, демонстрирующий вариант осуществления усовершенствованного лабиринтного устройства защиты уплотнения/ подшипника;

на фиг.9А представлены разделенные параллельные пути текучей среды, представленные на фиг.8;

на фиг.9В представлены разделенные параллельные пути текучей среды, представленные в альтернативном варианте исполнения;

на фиг.10-12 представлены альтернативные конфигурации лабиринтного устройства защиты уплотнения/подшипника.

Подробное описание чертежей

Рассмотрим фиг.6, на которой представлен частичный вид шарошечного бурового долота для твердых пород и на которой показан вариант осуществления усовершенствованного лабиринтного устройства защиты уплотнения/подшипника. На фиг.1-5 одинаковые или схожие элементы обозначены одинаковыми числовыми позициями. В усовершенствованном лабиринтном устройстве защиты уплотнения/подшипника по фиг.6 использовано Г-образное кольцо лабиринтного устройства 190 защиты уплотнения/подшипника, аналогичное кольцу устройства 90 защиты по фиг.4. Однако предусмотрена другая геометрия головки и конуса, способствующая установке кольца лабиринтного устройства 190 защиты уплотнения/подшипника и введению усовершенствованного искривления 180 пути прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84. Несмотря на то, что показано использование в герметичном подшипнике, который содержит уплотнение 60 и сальник 64, очевидно, что кольцо лабиринтного устройства 190 защиты уплотнения/подшипника может быть одинаково использовано в открытом подшипнике (без уплотнения) для введения усовершенствованного искривления 180 пути прохождения текучей среды между подшипником 10 и внешней окружающей средой 84. Сальник 64 и уплотнение 60 на фиг.6 показаны только в целях наглядности, они являются необязательными элементами, использованными в конструкциях с герметичными подшипниками. Хотя показано использование с подшипником скольжения, будет понятно, что кольцо лабиринтного устройства 190 защиты уплотнения/подшипника может быть использовано для защиты подшипника любого типа, в том числе подшипников скольжения и подшипников качения.

В радиальной базовой поверхности 91 конуса 3 (посредством этой радиальной базовой поверхности 91 образована задняя поверхность конуса) образован первый кольцевой паз 192, причем паз 192 содержит противолежащие боковые стенки и основание. Первый кольцевой паз 192 смещен в радиальном направлении от сальника на величину протяженности поверхности 94 (то есть, посредством поверхности 94 одна боковая стенка паза 192 отделена от зоны размещения сальника 64, если он присутствует). Поверхность 94 может, в одном варианте осуществления, содержать часть радиальной базовой поверхности 91 (другими словами, поверхность 94 и поверхность 91 расположены в одной плоскости). В другом варианте осуществления поверхность 94 может содержать поверхность, определенную собственно конфигурацией первого кольцевого паза 192 (другими словами, поверхность 94 и поверхность 91 являются параллельными, но не лежащими в одной плоскости). В альтернативном варианте осуществления с открытым подшипником поверхность 94 смещена так, что отделяет одну боковую стенку паза 192 от цилиндрической поверхности вала 2 под подшипник. В радиальной базовой поверхности 93 головки 1 рядом с валом 2 образован второй кольцевой паз 194, причем эта радиальная базовая поверхность 93 расположена напротив радиальной базовой поверхности 91, образуя заднюю поверхность конуса, паз 194 содержит противолежащие боковые стенки и основание. Второй кольцевой паз 194 смещен в радиальном направлении от цилиндрической поверхности 62 уплотнения на величину протяженности части 193 радиальной базовой поверхности 93 (то есть, поверхность 93 отделяет одну боковую стенку паза 194 от вала 2 и поверхности 62 под уплотнение). Таким образом, поверхность, определенная частью 193, в предпочтительном варианте осуществления расположена в одной плоскости с радиальной базовой поверхностью 93. Альтернативно поверхность, определенная частью 193, получена конфигурацией второго кольцевого паза 194 (и поэтому параллельна поверхности 93, но не расположена с ней в одной плоскости). По меньшей мере, часть второго кольцевого паза 194 совмещена в радиальном направлении с первым кольцевым пазом 192. В предпочтительном варианте осуществления одна боковая стенка первого кольцевого паза 192 совмещена в радиальном направлении с соответствующей одной боковой стенкой второго кольцевого паза 194.

Первый кольцевой паз 192 и второй кольцевой паз 194 вместе образуют Г-образный (в поперечном сечении) кольцевой сальник, в котором размещено Г-образное (в поперечном сечении) кольцо лабиринтного устройства 190 защиты уплотнения/подшипника. Г-образное кольцо лабиринтного устройства 190 защиты уплотнения/подшипника выполнено таких размеров и такой формы, чтобы оно соответствовало отверстию кольцевого сальника, но чтобы при этом оно было не запрессовано, и фактически существовал небольшой зазор вокруг его периферии относительно кольцевого сальника. Одно плечо (например, короткое плечо) Г-образного кольца лабиринтного устройства 190 защиты уплотнения/подшипника вставлено в первый кольцевой паз 192. Другое плечо (например, длинное плечо) Г-образного кольца лабиринтного устройства 190 защиты уплотнения/подшипника вставлено во второй кольцевой паз 194. Следует отметить, что с описанной геометрией головки и конуса и размещением Г-образного кольца лабиринтного устройства 190 защиты уплотнения/подшипника Г-образное кольцо лабиринтного устройства 190 защиты уплотнения/подшипника расположено между конусом 3 и валом 2 (так, что в варианте осуществления с герметичным подшипником оно расположено между внешней окружающей средой и уплотнением, а в варианте осуществления с открытым подшипником оно расположено между внешней окружающей средой и подшипником).

Рассмотрим также фиг.7А и 7В, где на фиг.7А представлен вариант осуществления с герметичным подшипником, а на фиг.7 В представлен вариант осуществления с открытым подшипником. Посредством описанной геометрии головки и конуса и размещения Г-образного кольца лабиринтного устройства 190 защиты уплотнения/подшипника обеспечивают деление пути прохождения текучей среды между уплотнением 60 (на фиг.7А) и/или подшипником 10 (на фиг.7 В) и внешней окружающей средой 84 на первый путь 300 текучей среды, проходящий вокруг поверхностей первого кольцевого паза 192 (проходя изгибы 195, 196, 197 и 198), и второй путь 302 текучей среды, проходящий вокруг поверхностей второго кольцевого паза 194 (проходя изгибы 199, 200 и 201). На фиг.7А и 7 В пунктирными линиями в общем виде показаны поверхности головки, вала и конуса, прилежащие к устройству 190 защиты и уплотнению 60/подшипнику 10. Первый путь 300 и второй путь 302 текучей среды проходят параллельно друг другу при прохождении вокруг Г-образного кольца лабиринтного устройства 190 защиты уплотнения/подшипника. Эта конфигурация, таким образом, не только обеспечивает деление пути прохождения текучей среды между уплотнением 60/подшипником 10 и внешней окружающей средой 84 на первый путь 300 и второй путь 302 текучей среды (аналогично лабиринтной защите уплотнения по фиг.4 и 5), но и к тому же предусматривает для каждого из первого и второго путей 300, 302 текучей среды наличие искривления 180, содержащего по меньшей мере два (и, более предпочтительно, более чем два) изгиба. Действительно, в варианте осуществления по фиг.6 представлено искривление 180, относящееся к первому пути 300 текучей среды, содержащее четыре изгиба (195, 196, 197 и 198), что составляет, по меньшей мере, столько, сколько предусмотрено для первого пути 300 текучей среды на фиг.4 и 5, и искривление 180, относящееся ко второму пути 302 текучей среды, содержащее по меньшей мере три изгиба (199, 200 и 201, с дополнительным изгибом 207 на фиг.7 В), что значительно больше, чем предусмотрено для второго пути 302 текучей среды на фиг.4 и 5.

Изменение направления пути текучей среды предпочтительно происходит под прямым углом у каждого изгиба. Однако следует отметить, что альтернативно угол искривления может быть выполнен тупым (или, возможно, острым).

Несмотря на то, что Г-образное в поперечном сечении кольцо лабиринтного устройства 190 защиты уплотнения/подшипника изображено в качестве предпочтительного вариант осуществления, очевидно, что кольцо лабиринтного устройства 190 защиты уплотнения/подшипника может характеризоваться другими формами поперечного сечения, в том числе Т-образной формой, которая аналогичным образом способна обеспечить деление пути прохождения текучей среды на ряд параллельных путей, каждый из которых содержит искривление, содержащее по меньшей мере два и, более предпочтительно, по меньшей мере три изгиба. См. фиг.10. В другом варианте осуществления кольцо лабиринтного устройства 190 защиты уплотнения/подшипника может вместо этого иметь в поперечном сечении балочную (I-образную) конфигурацию, обеспечивающую деление пути прохождения текучей среды на ряд параллельных путей, каждый из которых содержит искривление, содержащее по меньшей мере два и, более предпочтительно, по меньшей мере три изгиба. См. фиг.11.

Кроме того, в тех случаях, когда конфигурация бурового долота это позволяет, геометрии для первого и второго кольцевых пазов могут быть изменены в отношении радиальных базовых поверхностей так, как показано на фиг.12. В этой конфигурации короткое плечо Г-образного кольца лабиринтного устройства 190 защиты уплотнения/подшипника будет введено во второй кольцевой паз 194, образованный в поверхности 93, тогда как другое, длинное плечо Г-образного кольца лабиринтного устройства 190 защиты уплотнения/подшипника будет введено в первый кольцевой паз 192, образованный в поверхности 91.

Рассмотрим фиг.8, на которой представлен частичный вид шарошечного бурового долота для твердых пород, демонстрирующий вариант осуществления усовершенствованного лабиринтного устройства защиты уплотнения/подшипника. Элементы, аналогичные или схожие с элементами, представленными на фиг.1-7, обозначены теми же числовыми позициями. В усовершенствованном лабиринтном устройстве защиты уплотнения/подшипника по фиг.8 использовано многосегментное Г-образное (в поперечном сечении) кольцо лабиринтного устройства 290 защиты уплотнения/подшипника. Снова, хотя представлено для использования с герметичным подшипником, который содержит уплотнение 60 и сальник 64, будет понятно, что кольцо лабиринтного устройства 290 защиты уплотнения/подшипника может быть использовано в открытом подшипнике (без уплотнения) для введения усовершенствованного искривления 180 пути прохождения текучей среды между подшипником 10 и внешней окружающей средой 84. Наличие на фиг.8 сальника 64 и уплотнения 60 предусмотрено лишь для наглядности, и является необязательной конструкцией, использованной в варианте осуществления с герметичным подшипником. Несмотря на то, что кольцо лабиринтного устройства 290 защиты уплотнения/подшипника показано вместе с подшипником скольжения, очевидно, что оно может быть использовано для защиты подшипника любого типа, в том числе подшипника скольжения и подшипника качения.

В радиальной базовой поверхности 91 конуса 3 (посредством этой радиальной поверхности 91 образована задняя поверхность конуса) образован первый кольцевой паз 192, причем паз 192 содержит противолежащие боковые стенки и основание. Первый кольцевой паз 192 смещен в радиальном направлении от сальника на величину протяженности поверхности 94 (то есть, посредством поверхности 94 одна боковая стенка паза 192 отделена от области, где расположен сальник 64, если он присутствует). Поверхность 94 может, в одном варианте осуществления, содержать часть радиальной базовой поверхности 91 (другими словами, поверхность 94 и поверхность 91 расположены в одной плоскости). В другом варианте осуществления поверхность 94 может содержать поверхность, определенную собственно конфигурацией первого кольцевого паза 192 (другими словами, поверхность 94 и поверхность 91 параллельны, но не расположены в одной плоскости). В альтернативном варианте осуществления с открытым подшипником поверхность 94 выполнена со смещением, отделяющим одну боковую стенку паза 192 от цилиндрической поверхности вала 2 под подшипник. В радиальной базовой поверхности 93 головки 1 рядом с валом 2 образован второй кольцевой паз 194, причем эта радиальная базовая поверхность 93 расположена напротив радиальной базовой поверхности 91, образующей заднюю поверхность конуса, и паз 194 содержит противолежащие боковые стенки и основание. Второй кольцевой паз 194 смещен в радиальном направлении от цилиндрической поверхности 62 под уплотнение на величину протяженности части 193 радиальной базовой поверхности 93 (то есть, посредством поверхности 93 одна боковая стенка паза 194 отделена от вала 2 и поверхности 62 под уплотнение). Таким образом, поверхность, определенная частью 193, в предпочтительном варианте осуществления расположена в одной плоскости с радиальной базовой поверхностью 93. Альтернативно поверхность, определенная частью 193, получена конфигурацией второго кольцевого паза 194 (в связи с чем она параллельна поверхности 93, но не расположена с ней в одной плоскости). По меньшей мере, часть второго кольцевого паза 194 совмещена в радиальном направлении с первым кольцевым пазом 192. В предпочтительном варианте осуществления одна боковая стенка первого кольцевого паза 192 совмещена в радиальном направлении с соответствующей одной боковой стенкой второго кольцевого паза 194.

Первый кольцевой паз 192 и второй кольцевой паз 194 вместе определяют Г-образный (в поперечном сечении) кольцевой сальник для кольца устройства защиты, в котором размещено многосегментное Г-образное (в поперечном сечении) кольцо лабиринтного устройства 290 защиты уплотнения/подшипника. Многосегментное Г-образное кольцо лабиринтного устройства 290 защиты уплотнения/подшипника выполнено таких размеров и такой формы, чтобы оно соответствовало отверстию кольцевого сальника, но было не запрессовано, и в фактически существовал небольшой зазор вокруг его периферии относительно кольцевого сальника. Многосегментное Г-образное кольцо лабиринтного устройства 290 защиты уплотнения/подшипника содержит кольцо первого сегмента 292 и кольцо второго сегмента 294. Кольцо первого сегмента 292 и кольцо второго сегмента 294 сопряжены друг с другом на дополнительной поверхности 296 сопряжения (в данном примере поверхность 296 сопряжения характеризуется Z-образной формой (в поперечном сечении)). Кольцо первого сегмента 292 и кольцо второго сегмента 294 вместе определяют Г-образный профиль (в поперечном сечении) кольца лабиринтного устройства 290 защиты уплотнения/подшипника. Одно плечо (например, короткое плечо) многосегментного Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника вставлено в первый кольцевой паз 192. Второе плечо (например, длинное плечо) многосегментного Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника вставлено во второй кольцевой паз 194. Поверхность 296 сопряжения образована внутри указанного другого (длинного) плеча многосегментного Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника (хотя альтернативно она может быть образована внутри другого (короткого) плеча). Следует отметить, что при описанной геометрии головки и конуса и таком размещении многосегментного Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника, как описано, многосегментное Г-образное кольцо лабиринтного устройства 290 защиты уплотнения/подшипника расположено между конусом 3 и валом 2 (так что в варианте осуществления с герметичным подшипником оно расположено между внешней окружающей средой и уплотнением, а в варианте осуществления с открытым подшипником оно расположено между внешней окружающей средой и подшипником).

Далее рассмотрены фиг.9А и 9В, где на фиг.9А представлен вариант осуществления с герметичным подшипником, а на фиг.9В представлен вариант с открытым подшипником. Описанная геометрия головки и конуса и размещение многосегментного Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника обеспечивают деление пути прохождения текучей среды между уплотнением 60 (на фиг.9А) и/или подшипником 10 (на фиг.9В) и внешней окружающей средой 84 на ряд путей текучей среды. На фиг.9А и 9В пунктирными линиями в общем виде показаны поверхности головки, вала и конуса, прилегающие к устройству 290 защиты и уплотнению 60/подшипнику 10. Первый путь 300 текучей среды проходит вокруг поверхностей первого кольцевого паза 192 (проходя изгибы 195, 196, 197 и 198). Второй путь 302 текучей среды проходит вокруг поверхностей второго кольцевого паза 194 (проходя изгибы 199, 200 и 201 и изгиб 207 на фиг.9 В). Третий путь 304 текучей среды проходит вокруг части первого кольцевого паза 192 (проходя изгибы 195, 196, 197 и 198), при этом он проходит через поверхность 296 сопряжения (проходя изгибы 205, 204, 203 и 202) и проходит вокруг части второго кольцевого паза 194 (проходя изгиб 201). Четвертый путь 306 текучей среды проходит вокруг части второго кольцевого паза 194 (проходя изгибы 199 и 200), проходит через поверхность 296 сопряжения (проходя изгибы 202, 203, 204 и 205) и проходит вокруг части первого кольцевого паза 194 (связанной с поверхностью 94). Первый, второй, третий и четвертый пути 300, 302, 304 и 306 текучей среды параллельны друг другу на участках обхода многосегментного Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника (и на участках прохождения сквозь это кольцо). Таким образом, эта конфигурация не только обеспечивает деление пути прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84 на ряд путей текучей среды (аналогично лабиринтной защите уплотнения/подшипника по фиг.6), но и предусматривает для каждого из первого, второго, третьего и четвертого путей 300, 302, 304 и 306 текучей среды соответственно наличие искривления 180, содержащего по меньшей мере два (и более предпочтительно более чем два) изгиба. Действительно, в варианте осуществления по фиг.8 предусмотрено наличие искривления 180, относящегося к первому пути 300 текучей среды, содержащего четыре изгиба (195, 196, 197 и 198), искривления 180, относящегося ко второму пути 302 текучей среды, содержащего по меньшей мере три изгиба (199, 200 и 201, с четвертым изгибом 207 на фиг.9 В), искривления 180, относящегося к третьему пути 304 текучей среды, содержащего по меньшей мере девять изгибов (195, 196, 197, 198, 205, 204, 203, 202 и 201, с дополнительным изгибом 207 на фиг.9В), и искривления 180, относящегося к четвертому пути 306 текучей среды, содержащего шесть изгибов (199, 200, 202, 203, 204 и 205).

Изменение направления пути текучей среды предпочтительно происходит под прямым углом у каждого изгиба. Однако следует отметить, что альтернативно угол искривления может быть выполнен тупым (и, возможно, острым).

Несмотря на то, что на фиг.8 показано многосегментное Г-образное кольцо лабиринтного устройства 290 защиты уплотнения/подшипника, содержащее два сегмента 292 и 294, будет понятно, что многосегментное Г-образное лабиринтное устройство 290 защиты уплотнения/подшипника может быть альтернативно выполнено с более чем двумя сегментами. Использование нескольких сегментов позволяет повысить степень деления пути прохождения текучей среды между уплотнением 60 и внешней окружающей средой 84 на ряд путей текучей среды и к тому же создать дополнительные искривления.

Несмотря на то, что в качестве предпочтительного варианта осуществления рассмотрен вариант осуществления с кольцом лабиринтного устройства 290 защиты уплотнения/подшипника, характеризующийся Г-образной формой поперечного сечения, очевидно, что многосегментное кольцо лабиринтного устройства 290 защиты уплотнения/подшипника может характеризоваться другой формой поперечного сечения, в том числе Т-образной формой, обеспечивающей аналогичным образом деление пути прохождения текучей среды на ряд параллельных путей, каждый из которых содержит искривление, содержащее по меньшей мере два и, более предпочтительно, по меньшей мере три изгиба. В другом варианте осуществления многосегментное кольцо лабиринтного устройства 290 защиты уплотнения/подшипника может вместо этого характеризоваться в поперечном сечении балочной конфигурацией (I-образной формой), обеспечивающей деление пути прохождения текучей среды на ряд параллельных путей текучей среды, каждый из которых содержит искривление, содержащее по меньшей мере два или, более предпочтительно, по меньшей мере три изгиба.

Кроме того, в тех случаях, когда это допущено размерами и конфигурацией бурового долота, геометрия первого и второго кольцевых пазов может быть изменена в отношении радиальных базовых поверхностей (срав. с фиг.12). В варианте осуществления, изображенном на фиг.12, короткое плечо Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника вставлено во второй кольцевой паз 194, образованный в поверхности 93, тогда как другое плечо Г-образного кольца лабиринтного устройства 290 защиты уплотнения/подшипника вставлено в первый кольцевой паз 192, образованный в поверхности 91.

Г-образное кольцо лабиринтного устройства защиты уплотнения/подшипника (позиции 190 и 290, указанные выше) предпочтительно изготовлено из нержавеющей стали в целях обеспечения коррозионной стойкости, с твердостью, сопоставимой с твердостью материала, используемого для выполнения головки и/или конуса, в целях обеспечения износостойкости.

Примеры осуществления изобретения описаны и представлены выше. Описанные варианты осуществления изобретения не ограничивают его.

1. Буровой инструмент, содержащий:
головку бура, содержащую радиально проходящую базовую поверхность;
по меньшей мере один вал подшипника, проходящий из головки бура и содержащий поверхность под подшипник;
конус, установленный с возможностью вращения на валу подшипника и содержащий радиально проходящую базовую поверхность;
первый кольцевой паз, образованный в радиально проходящей базовой поверхности конуса;
второй кольцевой паз, образованный в радиально проходящей базовой поверхности головки бура, причем первый кольцевой паз совмещен, по меньшей мере, с частью второго кольцевого паза; и
кольцо устройства защиты, характеризующееся такими размерами и формой, чтобы оно было плотно вставлено в первый и второй кольцевые пазы между конусом и головкой бура.

2. Буровой инструмент по п.1, где вал дополнительно содержит поверхность под уплотнение, причем буровой инструмент дополнительно содержит:
сальник, образованный между конусом и валом подшипника; и
уплотнительный элемент, расположенный в сальнике.

3. Буровой инструмент по п.1, где кольцо устройства защиты характеризуется в основном I-образной формой поперечного сечения.

4. Буровой инструмент по п.1, где кольцо устройства защиты характеризуется в основном Т-образной формой поперечного сечения.

5. Буровой инструмент по п.1, где кольцо устройства защиты характеризуется в основном Г-образной формой поперечного сечения.

6. Буровой инструмент по п.5, где Г-образное в поперечном сечении кольцо устройства защиты содержит первое плечо, заходящее в первый кольцевой паз, и второе плечо, расположенное между конусом и головкой бура во втором кольцевом пазу.

7. Буровой инструмент по п.6, где Г-образное в поперечном сечении кольцо устройства защиты содержит первый сегмент кольца, определяющий, по меньшей мере, часть первого плеча, и второй сегмент кольца, определяющий, по меньшей мере, часть второго плеча.

8. Буровой инструмент по п.7, дополнительно содержащий поверхность сопряжения между первым и вторым сегментами кольца.

9. Буровой инструмент по п.8, где поверхность сопряжения характеризуется Z-образной формой поперечного сечения.

10. Буровой инструмент по п.1, где кольцо устройства защиты, когда оно установлено в первый и второй кольцевые пазы, делит путь прохождения текучей среды между валом подшипника и окружающей средой, находящейся с наружной стороны указанного бурового инструмента, на ряд параллельных путей текучей среды, проходящих, по меньшей мере, вокруг кольца устройства защиты.

11. Буровой инструмент по п.10, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере два изгиба, определенных комбинацией кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов.

12. Буровой инструмент по п.10, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере три изгиба, определенных комбинацией кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов.

13. Буровой инструмент по п.10, где первый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере три изгиба, определенных комбинацией из кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов, и все остальные из ряда параллельных путей текучей среды представлены искривлением, содержащим по меньшей мере четыре изгиба, определенных комбинацией кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов.

14. Буровой инструмент по п.10, где кольцо устройства защиты содержит первый сегмент кольца и второй сегмент кольца; дополнительно содержит поверхность сопряжения между первым и вторым сегментами кольца устройства защиты; причем посредством кольца устройства защиты, когда оно установлено в первом и втором кольцевых пазах, происходит деление пути прохождения текучей среды между валом подшипника и окружающей средой, находящейся с наружной стороны указанного бурового инструмента, на ряд параллельных путей текучей среды, проходящих как вокруг кольца устройства защиты, так и между первым и вторым сегментами кольца.

15. Буровой инструмент по п.14, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере два изгиба, определенных комбинацией первого и второго сегментов кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов.

16. Буровой инструмент по п.14, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере три изгиба, определенных комбинацией первого и второго сегментов кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов.

17. Буровой инструмент по п.14, где первый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере три изгиба, определенных комбинацией первого и второго сегментов кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов, и все остальные из ряда параллельных путей текучей среды представлены искривлением, содержащим по меньшей мере четыре изгиба, определенных комбинацией из первого и второго сегментов кольца устройства защиты и по меньшей мере одного из первого и второго кольцевых пазов.

18. Буровой инструмент по п.17, где по меньшей мере один из остальных из ряда путей текучей среды проходит через поверхность сопряжения между первым и вторым сегментами кольца.

19. Буровой инструмент по п.10, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим ряд изгибов, определенных формой кольца устройства защиты и кольцевого сальника, образованного первым и вторым кольцевыми пазами.

20. Буровой инструмент по п.19, где изменение направления пути текучей среды происходит под прямым углом у каждого изгиба.

21. Буровой инструмент по п.1, где второй кольцевой паз, образованный в радиально проходящей базовой поверхности головки бура, смещен относительно вала подшипника на величину протяженности части радиально проходящей базовой поверхности головки бура.

22. Буровой инструмент по п.1, где первый кольцевой паз, образованный в радиально проходящей базовой поверхности конуса, смещен относительно вала подшипника на величину протяженности части радиально проходящей базовой поверхности конуса.

23. Буровой инструмент по п.1, где вал подшипника служит опорой для подшипника скольжения для вращения конуса.

24. Буровой инструмент, содержащий:
конус, установленный с возможностью вращения на валу подшипника, проходящем из головки бура, причем конус содержит первую радиально проходящую плоскую базовую поверхность, расположенную напротив второй радиально проходящей плоской базовой поверхности головки бура;
первый кольцевой паз, образованный в первой радиально проходящей плоской базовой поверхности;
второй кольцевой паз, образованный во второй радиально проходящей плоской базовой поверхности, причем первый кольцевой паз совмещен, по меньшей мере, с частью второго кольцевого паза, комбинация первого и второго кольцевых пазов образует первый кольцевой сальник; и
кольцо устройства защиты, вставленное в первый кольцевой сальник.

25. Буровой инструмент по п.24, дополнительно содержащий систему скользящего уплотнения, введенную между конусом и валом подшипника.

26. Буровой инструмент по п.25, где система скользящего уплотнения содержит второй кольцевой сальник, образованный между конусом и валом подшипника, и кольцевой уплотнительный элемент, удерживаемый во втором кольцевом сальнике.

27. Буровой инструмент по п.24, где первый кольцевой сальник характеризуется Г-образной формой поперечного сечения, и кольцо устройства защиты характеризуется соответствующей Г-образной формой поперечного сечения.

28. Буровой инструмент по п.24, где кольцо устройства защиты содержит первый сегмент кольца и второй сегмент кольца, а также дополнительно содержит поверхность сопряжения между первым и вторым сегментами кольца.

29. Буровой инструмент по п.24, где посредством кольца устройства защиты, когда оно установлено в первом кольцевом сальнике, происходит деление первого пути прохождения текучей среды между валом подшипника и окружающей средой, находящейся с наружной стороны указанного бурового инструмента, на ряд параллельных путей текучей среды, проходящих вокруг кольца устройства защиты.
30 Буровой инструмент по п.29, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере два изгиба, определенных формой кольца устройства защиты и первого кольцевого сальника.

31. Буровой инструмент по п.29, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим по меньшей мере три изгиба, определенных формой кольца устройства защиты и первого кольцевого сальника.

32. Буровой инструмент по п.29, где каждый из ряда параллельных путей текучей среды представлен искривлением, содержащим ряд изгибов, определенных формой кольца устройства защиты, и кольцевой сальник, образованный первым и вторым кольцевыми пазами, и где изменение направления пути текучей среды происходит под прямым углом у каждого изгиба.

33. Буровой инструмент, содержащий:
конус, установленный с возможностью вращения на валу подшипника, проходящем из головки бура, причем конус содержит первую радиально проходящую плоскую базовую поверхность, расположенную напротив второй радиально проходящей плоской базовой поверхности головки бура;
первый кольцевой паз, образованный в первой радиально проходящей плоской базовой поверхности, причем первый кольцевой паз содержит первую и вторую противолежащие боковые стенки;
второй кольцевой паз, образованный во второй радиально проходящей в плоской базовой поверхности, причем второй кольцевой паз содержит первую и вторую противолежащие боковые стенки, причем первая боковая стенка первого кольцевого паза совмещена в радиальном направлении с первой боковой стенкой второго кольцевого паза, при этом комбинация первого и второго кольцевых пазов образует первый кольцевой сальник; и
кольцо устройства защиты, вставленное в первый кольцевой сальник.



 

Похожие патенты:

Изобретение относится к буровой технике и может быть использовано для медленно-вращательного бурения неглубоких скважин в мерзлых грунтах. Технический результат заключается в повышении производительности породоразрушающего инструмента, снижении энергоемкости, увеличении скорости проходки скважины.

Изобретение относится к промывочным узлам породоразрушающего инструмента. Технический результат заключается в упрощении монтажа и демонтажа промывочного устройства и повышении эффективности его работы.

Изобретение относится к области горных работ, а именно к породоразрушающим инструментам, предназначенным для бурения скважин. Технический результат заключается в усилении ресурсов работы бурового долота и в росте механической скорости бурения скважин.

Группа изобретений относится к области горного дела, а именно к породоразрушающему инструменту с твердосплавным вооружением. Технический результат заключается в упрощении технологии изготовления долота и способа крепления вставок в отверстиях корпуса.

Группа изобретений относится к способу и системе моделирования режущих структур расширителя и/или долота. Технический результат заключается в вычислении характеристической кривой режущей структуры и обеспечении эффективного выбора режущей структуры.

Изобретение относится к долотам режуще-скалывающего действия, корпуса которых изготовлены как из стального материала, так и из матричного материала, пассивная калибрующая часть которых наплавлена твердосплавным покрытием и усилена алмазными поликристаллическими резцами PDC.

Группа изобретений относится к буровому инструменту и к устройству для уплотнения подшипников в буровом инструменте. Технический результат заключается в увеличении срока службы уплотнения и снижении рабочей температуры уплотнения.

Группа изобретений относится к долотам режущескалывающего действия, корпуса которых изготовлены как из стального материала, так и из матричного материала, пассивная калибрующая часть которых наплавлена твердосплавным покрытием и усилена алмазными поликристаллическими резцами PDC.

Изобретение относится к породоразрушающему инструменту режущего типа, применяемому в бурении скважин, а именно, к PDC-инструменту: бурголовкам или долотам. Технический результат заключается в увеличении показателей эффективности работы инструмента путем снятия напряженного состояния от бокового воздействия горного давления в большей части забоя скважины за счет переноса его под периферийные резцы.

Изобретение относится к промывочному узлу породоразрушающего инструмента гидромониторного типа. Промывочный узел бурового долота содержит корпус с каналом и гнездом и установленную в гнезде насадку с уплотнительным элементом, закрепленную посредством фиксатора.

Группа изобретений относится к отрезным пластинам, резцам и способам изготовления резца. Технический результат заключается в возможности режущих элементов противостоять высоким температурам. Отрезная пластина содержит решеточную структуру, образующую междоузлия внутри, и каталитический материал, осажденный внутри междоузлий в ходе процесса спекания, в результате которого образуется решеточная структура, при этом каталитический материал способствует росту решеточной структуры, содержит близкий к эвтектическому сплав, который представляет собой состав сплава, который находится в пределах плюс или минус десяти атомных массовых процентов от эвтектического состава, и характеризуется коэффициентом термического расширения, меньшим, чем коэффициент термического расширения кобальта. 3 н. и 22 з.п. ф-лы, 5 ил., 1 табл.

Группа изобретений относится к режущим элементам для бурильного инструмента, бурильным инструментам и способам формирования режущего элемента. Технический результат заключается в эффективном распределении напряжений, вызванных силами резания, в улучшении конструктивной целостности режущего элемента, в повышении его износостойкости и долговечности. Режущий элемент для бурильного инструмента включает алмазную пластинку, расположенную на подложке, углубление в режущей грани алмазной пластинки и фигурный элемент в подложке на границе раздела между алмазной пластинкой и подложкой, соответствующий углублению в режущей грани алмазной пластинки и включающий углубление в подложке, форма которого аналогична форме углубления в режущей грани алмазной пластинки, при этом по меньшей мере часть углубления в подложке расположена по меньшей мере с радиальным смещением наружу или внутрь от углубления в режущей грани алмазной пластинки. Углубление в режущей грани алмазной пластинки может быть выполнено с расходуемой структурой. 4 н. и 14 з.п. ф-лы, 13 ил.

Изобретение предназначено для бурения колонковых скважин и скважин без отбора керна с обратной внутренней промывкой в крепких горных породах и может найти применение при геологоразведочных работах, в горнодобывающей промышленности, при строительных работах. Коаксиально расположенные узлы наружной (2, 3) и внутренней (4, 5) коронок разделены высоковольтным изолятором (1). Корпус бурового долота (2) присоединен к колонне бурильных труб (6), а керновый переходник (4) - к высоковольтному тоководу (7). Внутренняя коронка (5) подпружинена пружиной (11) с возможностью опережения наружной коронки (3) не более 1/3 межэлектродного расстояния. Вдоль внутренней поверхности внутренней коронки (5) тангенциально расположены лезвия твердосплавных резцов (16), имеющих форму одностороннего клина, и вдоль наружной поверхности наружной коронки (3) расположены лезвия подобных резцов (17). Внутренние ребра-электроды (14) наружной коронки (3) и наружные ребра-электроды (15) внутренней коронки (5) выполнены с многогранными твердосплавными резцами (18, 19), позволяющими выравнивать забой скважины. Твердосплавные резцы, имеющие форму одностороннего клина (16, 17), предотвращают зависания бурового долота на керне и стенках скважины. 2 з.п. ф-лы, 3 ил.

Изобретение относится к промывочным узлам породоразрушающего инструмента гидромониторного типа. Технический результат заключается в повышении эффективности работы промывочного узла. Промывочный узел бурового долота содержит корпус с каналом и гнездом и установленную в гнезде насадку с уплотнительным элементом, закрепленную посредством фиксатора. Фиксатор выполнен в виде нескольких ступенчатых стержней с цанговой рабочей головкой, ступень большего диаметра которых расположена со стороны выходного торца насадки, при этом насадка выполнена со сквозными осевыми каналами ответной формы, соосно которым в корпусе со стороны дна гнезда выполнена кольцевая расточка для размещения цанговых головок стержней. При этом в кольцевых расточках под большими основаниями цанговых втулок установлены полые тороидальные упругие элементы для удержания фиксаторов в крайнем верхнем положении, выполненные с радиальным каналом, оснащенным подпружиненным обратным клапаном и сообщенным с полостью напорного канала. 2 ил.

Группа изобретений относится к буровым долотам и способам для получения фрагментов образцов керна из подземного пласта. Технический результат заключается в увеличении скорости проходки бурового долота. Буровое долото содержит корпус долота, имеющий центральную осевую линию долота и торец долота; совокупность лопастей, проходящих радиально вдоль торца долота и разделенных совокупностью каналов прохода потока между собой, при этом одна из совокупности лопастей является лопастью отбора керна, содержащей вертикальную поверхность и наклонную поверхность, при этом по существу вертикальная поверхность и наклонная поверхность интегрально соединены; и совокупность режущих элементов, расположенных на совокупности лопастей, при этом один из совокупности режущих элементов является первым режущим элементом, расположенным на лопасти отбора керна на первой радиальной позиции от центральной осевой линии долота. 4 н. и 32 з.п. ф-лы, 30 ил.

Изобретение относится к области износостойких композиционных спеченных материалов, применяемых для изготовления вооружения бурового инструмента и опорно-центрирующих устройств, полученных методами порошковой металлургии, в частности устройств для калибровки ствола скважин. Технический результат заключается в повышении твердости и антифрикционных свойств рабочей части зубков вооружения калибратора стволов скважин, а также его стойкости к разрушению. В способе формирования зубков вооружения калибратора стволов скважин предварительно замешивают на связующем порошок высокохромистого чугуна и самофлюсующийся порошковый сплав системы Ni-B-Si при определенном соотношении компонентов с получением матрицы, после чего в полученную матрицу добавляют упрочняющую фазу в виде карбида титана при определенном соотношении. Затем полученную смесь наносят на металлическую подложку, размещенную в оправке заданной конфигурации, соответствующей в плане торцевой поверхности хвостовика зубка, и уплотняют подвижным медным пуансоном под заданным давлением, полученный продукт спекают путем циклического пропускания через него электрического тока с удельной мощностью спекания в интервале 2000-2700 Дж/мм3 в течение 1,5-3,5 с, после чего его охлаждают при комнатной температуре с получением зубка. 1 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, в частности к оборудованию для испытания буровых рабочих органов. Технический результат заключается в повышении эффективности и расширении диапазона возможностей путем измерения крутящего момента, осевого усилия и скорости погружения рабочего органа, а также путем использования в эксперименте рабочих органов больших диаметров и значительного сокращения времени на проведение испытаний в естественных условиях без подготовки образцов. Для достижения технического результата предложен стенд для исследования буровых рабочих органов, содержащий опорную раму (1) с закрепленными на ней направляющими стойками ((3), ползун (4), установленный на направляющих стойках (3) с возможностью вертикального перемещения, привод вращения бурового рабочего органа и механизм перемещения ползуна. Согласно изобретению опорная рама (1) выполнена с каркасом (2), привод вращения бурового рабочего органа установлен на ползуне (4) и содержит электродвигатель (7), втулочно-пальцевую муфту (8), цилиндрический редуктор (9) и соединительную муфту (10) для передачи вращения буровой штанге (11), на которой установлен буровой рабочий орган в виде буровой головки (13) со шнеком (12). Между буровой штангой (11) и соединительной муфтой (10) закреплено тензозвено (14) для регистрации крутящего момента, передаваемого на буровой рабочий орган. Механизм перемещения ползуна с установленным на нем буровым оборудованием содержит лебедку (5) и полиспастную подвеску (6), установленную на каркасе (2), закрепленном на опорной раме (1). При этом ползун (4) соединен с полиспастной подвеской (6), в которой встроено тензозвено (15) для регистрации осевого усилия, а блочный элемент (16) полиспастной подвески соединен с приспособлением для регистрации скорости перемещения ползуна, соответствующей скорости погружения бурового рабочего органа. 2 ил.

Группа изобретений относится к PDC-долотам и к способам размещения PDC-резцов на долоте. Технический результат заключается в улучшении режущей способности и повышении прочности буртика долота. PDC-долото содержит несколько лопастей, содержащих первую лопасть из нескольких лопастей, содержащую набор первых первичных PDC-резцов в ряду первых первичных резцов и набор первых дублирующих PDC-резцов в ряду первых вторичных резцов, при этом радиальное положение каждого первого дублирующего PDC-резца в ряду первых вторичных резцов смещено от радиального положения каждого первого первичного PDC-резца в ряду первых первичных резцов. По меньшей мере один первый первичный PDC-резец только лишь частично перекрывает соответствующий смещенный радиально вторичный PDC-резец так, что периферийный край радиально смещенного вторичного PDC-резца выступает наружу относительно по меньшей мере одного первого первичного PDC-резца в профиле долота указанной первой лопасти. Первые дублирующие PDC-резцы расположены в части буртика долота рядом с диаметром долота, и все дублирующие PDC-резцы долота расположены в части буртика. 2 н. и 20 з.п. ф-лы, 13 ил.

Изобретение относится к породоразрушающему инструменту, применяемому для бурения нефтяных и газовых скважин. Технический результат заключается в возможности использования алмазных долот при бурении зон поглощения промывочной жидкости. Буровое алмазное долото для бурения зоны поглощения промывочной жидкости содержит цилиндрический корпус с резьбой для присоединения к колонне бурильных труб, лопасти с алмазными резцами для разрушения породы, внутренние полости и каналы для подачи промывочной жидкости к забою, твердосплавные насадки, установленные на выходе из этих каналов. В качестве резцов для разрушения породы использованы термостойкие алмазные резцы двойного прессования с минимальным количеством кобальта в верхнем слое, которые установлены на лопастях с отрицательным передним углом в пределах 15-20°, а каналы для подачи промывочной жидкости и твердосплавные насадки имеют проходной диаметр не менее 16 мм. 3 ил.

Группа изобретений относится к промывочным узлам бурового долота. Технический результат заключается в повышении эффективности работы промывочного узла. Промывочный узел бурового долота содержит корпус с каналом и гнездом, выполненным с кольцевой расточкой, установленные в гнезде насадку с уплотнительным элементом и размещенное в кольцевой расточке гнезда стопорное разрезное кольцо, и фиксирующий узел. Фиксирующий узел состоит из пластины, щеколды и защитного кожуха, при этом один из концевых участков стопорного разрезного кольца снабжен пластиной, жестко соединенной со стопорным разрезным кольцом и выполненной с глухим пазом на верхнем торце, а другой концевой участок стопорного разрезного кольца снабжен щеколдой, соединенной со стопорным разрезным кольцом с возможностью поворота посредством оси, при этом свободный конец щеколды в рабочем положении размещен в пазу пластины для взаимодействия с боковой стенкой пластины и закреплен относительно пластины посредством винта, причем щеколда и пластина для этого закрепления имеют соосные отверстия и внутреннюю резьбу в отверстии пластины. Защитный кожух выполнен цилиндрическим двухступенчатым с внутренним каналом, ступень большего диаметра имеет наружную резьбу, ответную внутренней резьбе в гнезде промывочного узла, и своим торцом в рабочем положении поджимает пластину и щеколду к стопорному разрезному кольцу и насадке, а ступень меньшего диаметра оканчивается возле торца насадки и своим торцом в рабочем положении поджимает насадку к корпусу промывочного узла посредством упругого элемента в виде уплотнительного кольца, жестко закрепленного в кольцевой проточке на том торце насадки, который взаимодействует с торцом ступени меньшего диаметра защитного кожуха. Пластина и щеколда находятся в пространстве между ступенью меньшего диаметра и внутренней поверхностью гнезда, на выходном торце защитного кожуха имеются прорези под ключ, а внутренний канал защитного кожуха выполнен с винтовой нарезкой. 2 н.п. ф-лы, 6 ил.
Наверх