Способ получения гранулированного регенеративного продукта с применением вальцового компактора


 

B01J2/00 - Способы и устройства для гранулирования материалов вообще (гранулирование металлов B22F 9/00, шлака C04B 5/02, руд или скрапа C22B 1/14; механические аспекты обработки пластмасс или веществ в пластическом состоянии при производстве гранул, например гидрофобные свойства B29B 9/00; способы гранулирования удобрений, отличающихся по химическому составу см. в соответствующих рубриках в C05B-C05G; химические аспекты гранулирования высокомолекулярных веществ C08J 3/12); обработка измельченных материалов с целью обеспечения их свободного стекания вообще, например путем придания им гидрофобных свойств

Владельцы патента RU 2576438:

Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") (RU)

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых в системах жизнеобеспечения человека. Способ получения гранулированного регенеративного продукта с применением вальцового компактора заключается в загрузке шихты в вальцовый компактор, имеющий ряд вращающихся в противоположных направлениях валков, и прессовании этой смеси между валками. Отличие заявляемого способа заключается в том, что шихту в вальцовый компактор подают шнековым питателем, величину распорного усилия при прессования регулируют изменением частоты вращения питающего шнека, зазор между валками устанавливают в пределах от 3 до 12 мм при линейной скорости прессования от 2 до 12 м/мин, сформованную плитку дробят в ситовой мельнице, после чего проводят фракционный рассев на виброгрохоте. Прессующие валки в процессе прессования охлаждают до температуры 15-25°С. Гранулы после рассева подвергают термической обработке при температуре 150±10°С. Изобретение обеспечивает непрерывность процесса гранулирования, увеличение производительности и снижение затрат. 5 з.п. ф-лы, 1 ил., 3 табл.

 

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых в системах жизнеобеспечения человека.

Известен способ гранулирования дисперсных материалов, согласно которому гранулирование осуществляют следующими последовательными стадиями: дозированием, смешиванием, последующим увлажнением связующим, предварительным гранулированием и гранулированием окатыванием. При этом стадию предварительного гранулирования осуществляют в аппарате скоростного типа с механоактивацией исходной смеси, к которой добавляют связующее в количестве, составляющем 20-35 мас. % от общей массы связующего до установления пластической прочности смеси на уровне 20-30 кг/м2. Стадию гранулирования окатыванием осуществляют введением микрогранул, полученных на первой стадии гранулирования, на поверхность тарели, вращающейся против часовой стрелки и при скорости, превышающей критическую скорость вращения тарели. Эту стадию проводят с одновременным увлажнением посредством периодического мелкодисперсного распыла связующего в количестве, составляющем 4-15% от общей массы связующего (патент РФ №2515293, МПК B01J 2/14, 2014).

Изобретение позволяет гранулировать многокомпонентные зернистые смеси с размером частиц от 1 до 7 мм, а также смеси ферментов и биологически активных препаратов. Основной недостаток данного решения заключается в непригодности известного способа для гранулирования регенеративных продуктов, для обработки которых требуется, по меньшей мере, наличие защитной среды, исключающей контакт продукта с парами воды и кислыми газами, находящимися в воздухе. Кроме того, известный способ не обеспечивает достижение заданных плотности гранул, гранулометрического состава продукта, насыпной плотности продукта и механической прочности или устойчивости к истиранию.

В настоящее время для производства регенеративных продуктов применяются следующие технологии:

- статическое прессование многоканальных блоков и брикетов;

- статическое прессование блоков-таблеток с последующим дроблением для получения гранул неправильной формы;

- таблетирование с использованием таблеточных автоматов.

Недостатки технологии получения зерненых продуктов следующие:

- низкая производительность вследствие ограничений по скорости прессования (медленный ход пресса, необходимость выдержки);

- ограничения по толщине слоя прессуемого блока (таблетки, брикета), неравномерность распределения плотности при толщине слоя более 20 мм;

- значительные усилия прессования вследствие потерь на преодоления трений, создаваемых стенками пресс-форм, что требует применения крупногабаритных прессов и оснастки;

- многостадийное измельчение таблеток для получения целевой фракции зерен, причем наблюдается высокая степень некондиционных фракций, составляющая до 45% от количества продукта, поступающего на дробление;

- многократный возврат крупной фракции на повторное дробление (до 5 раз) вручную;

- длительное нахождение надперекисных соединений на открытом воздухе, приводящее к взаимодействию с парами воды и углекислым газом (особенно в летнее время), ухудшение химических свойств (Технологический регламент инв. №73 кт, ЦКТЕ. 154.2003 от 2004 г.).

Известен принятый за прототип способ получения мультичастиц с применением вальцового компактора. Вальцовые компакторы широко применяются для сухой грануляции. Вальцовый компактор проталкивает мельчайшие частицы из фармацевтической смеси между вращающимися роликами (вальцами), для того чтобы спрессовать и уплотнить порошки до меньшего объема, образуя прессовку (прессованную порошковую заготовку) или тонкий лист. Затем эти прессовки или тонкие листы измельчают до образования гранул, из которых потом можно прессованием получить таблетки.

Особенностью известного изобретения является применение вальцовых компакторов для непосредственного формования мультичастиц, исключающее необходимость использования отдельного таблеточного пресса или устройства для таблетирования. Вальцовые компакторы обеспечивают возможность осуществления непрерывного способа производства вместо периодического, основанного на применении таблеточных прессов (патент РФ №2451504, МПК А61К 9/20, 2012).

В общем, в известном изобретении предлагается способ производства фармацевтических композиций в виде мультичастиц (состоящих из множества частиц). Особенностью этого способа является уплотнение (прессование) фармацевтической смеси в вальцовом компакторе с вальцами, вращающимися в противоположных направлениях. Поверхности вальцов имеют углубления (выемки) или пресс-формы для того, чтобы из смеси получать прессовки мультичастиц нужной формы и размера.

Согласно известному способу загружают фармацевтическую смесь, содержащую терапевтически активное соединение, пригодное для ввода млекопитающему, и по меньшей мере один фармацевтически приемлемый эксципиент в вальцовый компактор, имеющий ряд вращающихся в противоположных направлениях валков, причем каждый валок имеет множество углублений для приема упомянутой смеси, которые соответствуют углублениям точно такой же формы на вращающемся в противоположном направлении валке, и осуществляют прессование этой смеси между вращающимися в противоположных направлениях валками с непосредственным формированием симметричных мини-таблеток без необходимости в отдельной стадии прессования на таблеточном прессе.

Задачей изобретения является получение гранулированного регенеративного продукта с применением вальцового компактора.

Технический результат заключается в обеспечении непрерывности процесса гранулирования, что минимизирует продолжительность процесса гранулирования, обеспечивает увеличение производительности и снижение затрат.

Решение поставленной задачи обеспечивается тем, что согласно способу получения гранулированного регенеративного продукта с применением вальцового компактора, в котором загружают шихту в вальцовый компактор, имеющий ряд вращающихся в противоположных направлениях валков, и осуществляют прессование этой смеси между вращающимися в противоположных направлениях валками, при этом шихту в вальцовый компактор подают шнековым питателем, величину распорного усилия при прессования регулируют изменением частоты вращения питающего шнека, зазор между валками устанавливают в пределах от 3 до 12 мм при линейной скорости прессования от 2 до 12 м/мин, сформованную плитку дробят в ситовой мельнице, после чего проводят фракционный рассев на виброгрохоте.

Гранулы после рассева подвергают термической обработке при температуре 150±10°С и продолжительности выдержки при заданной температуре 6÷10 ч.

Прессующие валки в процессе прессования охлаждают до температуры 15-25°С.

Получение гранулированного регенеративного продукта ведут при достижении относительной влажности воздуха 10-12% и температуры воздуха 23±2°С.

В автоматическом режиме число оборотов питающего шнека корректируют, получая данные от датчика усилия прессования, установленного на валке компактора.

Гранулы имеют средний размер частиц от более 1 до примерно 6,5 мм.

Подача шихты в вальцовый компактор шнековым питателем, регулирование величины распорного усилия при прессования изменением частоты вращения питающего шнека, установление зазора между валками в пределах от 3 до 12 мм при линейной скорости прессования от 2 до 12 м/мин, с последующим дроблением сформованной плитки в ситовой мельнице и фракционным рассевом на виброгрохоте обеспечивают достижение оптимального соотношения между плотностью гранул из регенеративного продукта и их механической прочностью и устойчивостью к истиранию. Плотность формуемой плитки зависит от свойств исходной шихты, величины зазора между валками, частоты вращения валков и величины давления, развиваемого шнековым питателем и зависящим от частоты вращения шнека. Путем подбора оптимальных величин указанных параметров обеспечивается получение продукта, пригодного для снаряжения средств защиты органов дыхания с максимальным временем защитного действия. При дроблении и фракционном рассеве обеспечивается достижение гранулометрического состава и насыпной плотности продукта, что позволяет достигнуть необходимой плотности упаковки и уменьшить сопротивление дыханию при использовании в средствах защиты органов дыхания. Установление зазора между валками в пределах от 3 до 12 мм обеспечивает равномерность плотности спрессованной плитки из регенеративного продукта, при этом при толщине менее 3 мм для достижения необходимой прочности требуется увеличить плотность, что ухудшает стехиометрические свойства продукта, то же самое происходит при зазоре между валками больше 12 мм из-за неравномерной плотности по толщине.

При линейной скорости прессования от менее 2 м/мин происходит переуплотнение плитки, а при скорости более 12 м/мин не достигается равномерная плотность продукта. Толщина прессуемой плитки подбирается в пределах указанного диапазона таким образом, чтобы плотность плитки была максимально однородной по слою, что обеспечивает стабильность свойств конечных гранул. При этом в отличие от статического прессования в пресс-форме, усилия прессования в компакторе направлены на слой материала с двух противоположных сторон, что дополнительно обеспечивает равномерность распределения плотности по слою. В ситовой мельнице, которая герметично крепится на выгрузочном отверстии компактора, спрессованная плитка ротором продавливается через отверстия заданного размера в сетке мельницы, поэтому гранул крупнее отверстий в ситах не образуется. Классификатор или грохот, установленный под выгрузочным отверстием ситовой мельницы, отделяет основную фракцию от мелкого ретура, который собирается в тару и возвращается на приготовление шихты. Объединение всех элементов установки в единую линию, а также высокая производительность линии минимизирует время нахождения продукта на открытом воздухе, снижая тем самым сорбцию влаги и диоксида углерода шихтой и гранулами.

Проведение термической обработке гранул после рассева при температуре 150±10°С и продолжительности выдержки при заданной температуре 6-10 ч обеспечивает повышение механической прочности гранул без увеличения их плотности за счет снятия внутренних напряжений, возникающих при прессовании и дроблении.

Охлаждение прессующих валков в процессе прессования до температуры 15-25°С обеспечивает исключение налипания продукта на поверхность прессующих валков и исключает слипание частиц продута на поверхности плитки.

Проведение получения гранулированного регенеративного продукта при достижении относительной влажности воздуха 10-12% и температуры 23±2°С, что соответствует расчетному влагосодержанию 2,47 г/куб. метр (2,076 г/кг сухого воздуха), обеспечивают возможность оставления установки без мойки на время не менее 7 суток. За это время не наблюдается «омыливания» продукта, цвет остатков продукта внутри установки через 7 суток остается желтым, что указывает на незначительное поглощение влаги из воздуха помещения.

Корректировка в автоматическом режиме числа оборотов питающего шнека по данным от датчика усилия прессования, установленного на валке компактора, обеспечивает корректирование числа оборотов шнека. При этом сглаживаются колебания усилия прессования, повышая однородность отпрессованной плитки. Время выхода на режим и амплитуда колебаний зависят от равномерности подачи материала в зону прессования.

Получение гранулы со средним размером частиц от более 1 до примерно 6,5 мм обеспечивает оптимальное сопротивление гранулированного продукта в аппаратах и повышает плотность упаковки его в аппарате.

На схеме фиг. 1 изображена схема получения гранулированного регенеративного продукта.

Перечень позиций, указанных на схеме

1 - емкость подготовленных исходных компонентов;

2 - смеситель шихты;

3 - шнековый питатель;

4 - вальцовый компактор;

5 - датчик усилия прессования (величины распорного давления);

6 - блок управления;

7 - соединительный элемент;

8 - ситовая мельница;

9 - виброгрохот;

10 - емкость готовых гранул;

11 - линия возврата ретура на смешение.

Способ реализуется следующим образом.

Из емкости подготовленных исходных компонентов 1 подавали компоненты на основе супероксида калия в смеситель 2. После окончания процесса смешения шихты с помощью шнекового питателя 3, осуществляющего предварительное уплотнение, шихту подавали в пространство между валками вальцового компактора 4. Прессование осуществлялось под действием усилий, создаваемых валками при вращении навстречу друг другу и измеряемых датчиком усилия прессования (величины распорного давления) 5, соединенного с блоком управления 6. Спрессованную плитку из вальцового компактора 4 через соединительный элемент 7, выполненный в виде плоской обечайки из оптически прозрачного материала (например, силиконовой резины), подавали в ситовую мельницу 8. В ситовой мельнице 8 производили дробление спрессованной плитки ротором, снабженным ударными элементами, которые продавливают материал через отверстия заданного размера в сетке мельницы (5 мм), поэтому гранул крупнее отверстий в ситах не образуется. Полученные гранулы подавали в установленный под выгрузочным отверстием ситовой мельницы 8 виброгрохот 9, в котором через установленную в виброгрохоте сетку с размерами ячеек в свету 2,0 мм отделяли основную фракцию от мелкого ретура. Готовые гранулы поступали в емкость готовых гранул 10. Мелкий ретур по линии возврата ретура на смешение 11 возвращали на приготовление шихты.

В автоматическом режиме работы установки корректировали число оборотов шнека, получая данные от датчика усилия прессования 5, установленного на одном из валков компактора 4. Программа обеспечивает максимальное сглаживание колебаний фактических значений усилия прессования и одновременно приближает их к установленному значению. Время выхода на режим и амплитуда колебаний зависят от равномерности подачи материала в зону прессования.

Примеры.

Всего было проведено 5 операций компактирования:

Пример 1 зазор между валками - 2 мм, загружаемый материал - шихта;

Пример 2 зазор между валками - 4 мм, загружаемый материал - шихта;

Пример 3 зазор между валками - 5 мм, загружаемый материал - шихта;

Пример 4 зазор между валками - 5 мм, загружаемый материал - шихта + ретур после третьей операции (50/50);

Пример 5 зазор между валками - 14 мм, загружаемый материал - шихта.

В процессе прессования определяли и фиксировали следующие показатели работы компактирующей установки, приведенные в таблице 1.

Таблица 1
Номер примера Зазор между валами, мм Шнек, об/мин (установленные значения) Вальцы, об/мин Мельница, об/мин Усилие прессования установленное, кН
1 2 15 10 100 45
2 4 11 10 100 40
3 5 25 10 100 45
4 5 20 10 100 45
5 14 25 10 100 40
Параметры 3 и 4 испытаний занесены в электронную базу рецептов компактора

От продуктов, полученных в ходе испытаний, были отобраны пробы и направлены на анализ.

Результаты испытаний.

Гранулометрический состав и механическая прочность продуктов приведены в таблице 2:

Таблица 2
Номер примера Фракционный состав, % Прочность (3,5-5,5), %
Более 5,5 мм 3,5-5,5 мм 2,0-3,5 мм 1,0-2,0 мм Менее 1,0 мм
1 - - 72,00 18,00 10,0 88,20
2 - 27,14 63,70 7,58 1,58 76,78
3 0,60 42,80 50,80 4,80 1,00 75,70*
4 0,20 37,00 56,20 5,50 1,10 75,30
5 30,0 60,00 10,00 - - 62,00
Примечание - *После проведения термообработки прочность образца составила 88,32%.

Продукт, полученный в ходе испытаний по примерам №3 и №4, был термически обработан в соответствии с требованиями технологического регламента ЦТКЕ. 154-2003 (ПРЗ), после чего были отобраны пробы для снаряжения двух патронов самоспасателей СПИ-20 и проведены испытания по времени защитного действия на установке искусственные легкие. Продукт, полученный по примеру №1, характеризовался повышенной плотностью, а по примеру №5 - низкой механической прочностью.

Результаты испытаний приведены в таблице 3. Для сравнения приведены результаты испытаний серийного продукта ПРЗ и требования ТУ на СПИ-20.

Таблица 3
№ образца (партия, упаковка) ВЗД в СПИ-20 при 35 л/мин, мин Сопротивление, мм. вод. ст. Твд., °С С (CO2), %
Экспериментальный продукт
1 25 75/80 46,4 2,40
2 25 55/60 48,8 2,27
Серийный продукт ПРЗ
п. 2 уп. 47 25 45/45 49,2 2,27
п. 2 уп. 48 25 50/60 47,1 2,29
п. 2 уп. 49 25 50/55 47,0 2,38
Требования ТУ
- Не менее 20 Не более 80 Не более 50,0 Не более 3,00

Примечание: Продукт по примерам 1 и 5 не испытывался.

Изобретение обеспечивает непрерывность процесса гранулирования, увеличение производительности и снижение затрат.

1. Способ получения гранулированного регенеративного продукта с применением вальцового компактора, в котором загружают шихту в вальцовый компактор, имеющий ряд вращающихся в противоположных направлениях валков, и осуществляют прессование этой смеси между вращающимися в противоположных направлениях валками, отличающийся тем, что шихту в вальцовый компактор подают шнековым питателем, величину распорного усилия при прессования регулируют изменением частоты вращения питающего шнека, зазор между валками устанавливают в пределах от 3 до 12 мм при линейной скорости прессования от 2 до 12 м/мин, сформованную плитку дробят в ситовой мельнице, после чего проводят фракционный рассев на виброгрохоте.

2. Способ по п. 1, отличающийся тем, что гранулы после рассева подвергают термической обработке при температуре 150±10°С и продолжительности выдержки при заданной температуре 6÷10 ч.

3. Способ по п. 1, отличающийся тем, что прессующие валки в процессе прессования охлаждают до температуры 15-25°С.

4. Способ по п. 1, отличающийся тем, что получение гранулированного регенеративного продукта ведут при достижении относительной влажности воздуха 10-12% и температуры воздуха 23±2°С.

5. Способ по п. 1, отличающийся тем, что в автоматическом режиме число оборотов питающего шнека корректируют, получая данные от датчика усилия прессования, установленного на валке компактора.

6. Способ по п. 1, отличающийся тем, что гранулы имеют средний размер частиц от более 1 до примерно 6,5 мм.



 

Похожие патенты:
Изобретение относится к химической промышленности. Сначала получают однородную смесь порошка углеродной сажи, воды, связывающего вещества и диспергрующего вещества, в которой соотношение углеродной сажи и воды находится в пределах от 0,1:2,0 до 2:1.

Изобретение относится к производству проппантов, используемых при добыче нефти и газа методом гидравлического разрыва пласта. Многослойный проппант получен на основе спеченного алюмосиликатного сырья в виде гранул, с пикнометрической плотностью 2,0-3,5 г/см3 и размерами 0,2-2,5 мм.

Изобретение может быть использовано при получении высокомодульных полимерных композиций, обладающих улучшенной перерабатываемостью и повышенной усиливающей способностью.

Изобретение относится к технике получения гранулированных продуктов из растворов кристаллизующихся веществ, преимущественно сахаристых, и может быть использовано в пищевой промышленности.

Изобретение относится к химической технологии, в частности к способам получения гранулированных материалов из расплавов и растворов, и может найти применение в химической и других отраслях промышленности.
Техническое решение относится к химической технологии, в частности к способам нанесения покрытия на дисперсные частицы, находящиеся в ожиженном состоянии, и может найти применение в химической, пищевой, фармацевтической и других отраслях промышленности при проведении процессов гранулирования, микрокапсулирования и смешивания.

Предметом изобретения является усовершенствованное технологическое устройство для нанесения покрытия на частицы с использованием нового вихревого генератора воздушного потока, который обеспечивает параметры вихревого потока газа в пределах областей в разделительном цилиндре, а также между разделительным цилиндром и распределяющей поток перфорированной пластиной, что ведет к повышению равномерности и качества исполнения покрытия, снижению материалоемкости и повышению термоэффективности технологического процесса нанесения покрытия, в котором частицы перемещают вверх по круговой траектории, через зону распыления и сушки внутри вертикальной трубы разделительного цилиндра, расположенного над газораспределительной пластиной, а затем вниз, во второй зоне для сушки и выдержки частиц за пределами разделительного цилиндра.
Изобретение относится к нефтепереработке, в частности к способу получения катализатора для крекинга тяжелых и остаточных нефтяных фракций. Предложенный способ получения гранулированного катализатора крекинга включает введение цеолита типа Y в носитель, содержащий коллоидные компоненты и/или их предшественники, формование и термическую обработку.

Изобретение относится к оборудованию для уплотнения, смешения и гранулирования сыпучих материалов в химической, металлургической промышленности, производстве строительных материалов, агропромышленном комплексе.

Изобретение относится к сельскому и лесному хозяйству, а именно к производству гранулированного удобрения преимущественно из отходов производства, например дефекта сахарных заводов или смеси дефекта и чернозема, смываемого с корнеплодов свеклы.

Изобретение относится к химии, в частности к гранулированию лекарственных веществ путем впитывания веществ в пористый носитель. Гранулирование лекарственных веществ проводят путем смешивания активного ингредиента в жидком состоянии с пористым носителем. Предварительно в реактор с мешалкой помещают формообразующее вещество - микронизированный синтетический аморфный мезопористый оксид кремния с диаметрами пустот 3-50 нм, вакуумируют его при 150-200 мбар и температуре 25-30ºС, после чего при сохранении вакуума добавляют в реактор раствор или расплав активного лекарственного вещества с по меньшей мере одним вспомогательным веществом, взятые в соотношении 3:(1-100) масс. ч., при этом активное и вспомогательное вещества перемешивают в жидком виде в течение 5-10 минут при пониженном давлении 150-200 мбар со скоростью 100-200 об/мин при температуре стенок реактора 35-40ºС. Полученные гранулы подвергают сушке. Сушку гранул проводят в вакууме 150-200 мбар при 50-60ºС, или во взвешенном слое, или на поддонах. Технический результат - ускорение способа гранулирования за счет вакуумирования пористого носителя, а также связанное с таким ускорением повышение уровня содержания активного ингредиента. 5 з.п. ф-лы, 1 табл., 5 пр.
Изобретение относится к технологии обращения с порошкообразной закисью-окисью урана, а именно к способу гранулирования закиси-окиси урана. Способ включает приготовление смеси закиси-окиси урана, диураната аммония, нитрата или ацетата аммония и воды, при весовом отношении закиси-окиси урана и диураната аммония от 1:0.5 до 1:2, содержании нитрата или ацетата аммония 0,2-1 вес. % от количества урансодержащих компонентов и содержании воды 25-40 вес. % от веса сухих компонентов, получением из нее перемешиванием и выдерживанием однородной формовочной массы, формование из полученной массы гранул-сырцов, сушку гранул-сырцов и прокаливание. Изобретение обеспечивает эффективное приготовление прочных, непылящих гранул закиси-окиси урана. 2 з.п. ф-лы, 4 пр.

Изобретение относится к области получения мелкодисперсных порошков (нано- и микрочастиц) и может быть использовано в фармацевтической, пищевой, химической промышленности, электронике, при производстве катализаторов, полимеров, покрытий, пестицидов и т.п. Изобретение также относится к процессам разделения и фракционирования смесей химических веществ и может быть использовано в фармацевтической, пищевой, нефтехимической и химической промышленности для выделения компонентов из смесей. Технический результат, достигаемый заявляемым изобретением, - расширение функциональных возможностей устройства и способа получения мелкодисперсных порошков (для разных типов растворов или суспензий; для разных типов антирастворителей; обеспечение возможности регулирования процесса в зависимости от свойств исходных веществ); повышение эффективности; упрощение конструкции и упрощение способа. Технический результат достигается за счет того, что установка для получения мелкодисперсных порошков, содержащая полость с раствором вещества и полость для образования частиц вещества, содержащую антирастворитель, средство введения раствора из полости с раствором вещества в полость для образования частиц, согласно изобретению содержит первую ограниченную стенками вертикально ориентированную полость с поперечным сечением S1, вторую ограниченную стенками вертикально ориентированную полость с поперечным сечением S2, поперечное сечение S1 первой полости больше поперечного сечения S2 второй полости, при этом вторая полость расположена ниже первой полости соосно с ней, третья ограниченная стенками полость расположена ниже второй полости, в первой и второй полости размещены соответственно первый и второй поршни, установленные с возможностью их взаимообусловленного вертикального перемещения, в нижней части второй полости выполнено центральное отверстие, вторая и третья полости сообщены между собой через обратный клапан, обеспечивающий прохождение раствора из второй полости в третью через центральное отверстие в нижней части второй полости, надпоршневое пространство первой полости сообщено с источником гидравлической жидкости, обеспечивающим подачу гидравлической жидкости в надпоршневое пространство первой полости, подпоршневое пространство второй полости сообщено с источником раствора вещества, обеспечивающим подачу раствора вещества в подпоршневое пространство второй полости, при этом S1×P1=S2×P2, где P1 - давление в надпоршневом пространстве первой полости, Р2 - давление в подпоршневом пространстве второй полости, третья полость сообщена с источником антирастворителя, обеспечивающим подачу антирастворителя в третью полость, при этом Р2 больше, чем Р1, а Р3 меньше, чем Р2, где Р3 - давление в третьей полости. В способе получения мелкодисперсных порошков, включающем подачу раствора вещества от источника в полость с антирастворителем, согласно изобретению подачу раствора вещества в полость с антирастворителем осуществляют вертикально сверху вниз, при этом подачу раствора вещества осуществляют из полости с давлением, превышающим давление в полости с антирастворителем, через обратный клапан, посредством которого полость с раствором вещества непосредственно сообщена с полостью с антирастворителем. 2 н. и 8 з.п. ф-лы, 1 ил.
Наверх