Способ изготовления высокотемпературного фильтрующего материала для агрессивных жидкостей и газов

Изобретение относится к области химической технологии. Способ изготовления включает пропитку углеродных волокон расплавленным кремнием с удалением избыточного кремния растворением в смеси плавиковой и азотной кислот. Полученный фильтрующий материал образован нитями карбида кремния в текстильной форме сетчатой ткани. Изобретение обеспечивает получение высокотемпературного фильтрующего материала в форме пластин, инертного по отношению к кислым и щелочным средам. 1 ил.

 

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации.

Предложенный фильтрующий материал образован нитями карбида кремния в текстильной форме сетчатой ткани.

Известен способ получения керамического фильтра, содержащего углеродное покрытие (Патент РФ №2456056, МПК B01D 39/20, С04В 38/00, опубл. 20.07.2012 г.) [1]. Способ включает прессование изделия из пористого материала с открытыми порами и связующих из кремния в штампе, затем прокалывание полученной заготовки насквозь множеством игл или стержней с получением малых пор в поперечном сечении изделия. Недостатком известного способа является высокая трудоемкость изготовления фильтра путем прокалывания иглами или стержнями. Известен фильтрующий материал для очистки высокотемпературных газов от мелкодисперсных частиц в газогенераторах на твердых топливах (Патент РФ №2429898, МПК B01D 39/20, опубл. 27.09.2011 г.) [2]. Материал включает фенолформальдегидную смолу, уротропин и природный речной песок фракции 0,2-0,5 мм. Недостатком этого материала является низкая предельная температура эксплуатации фильтра - 420°С.

Известны химически стойкий фильтр для очистки жидкостей и газов и способ его изготовления (Патент РФ №2417817, МПК С04В 38/00, С04В 35/622, В01D 39/20, опубл. 10.05.2011 г.) [3]. Керамический фильтр включает блок пористых керамических пластин прямоугольной формы со сквозными каналами. Для изготовления фильтра проводят замешивание ряда оксидов на органическом связующем: парафин с полиэтиленом, промежуточные отжиги, прессования и окончательный отжиг при температуре от 700°С до 1300°С. Недостатками способа [3] являются сложность и энергоемкость приготовления фильтрующего материала, а также определенные сомнения в его экологической безопасности. В описании патента указано: «Одновременно этот фильтр может использоваться для очистки воды, масел, соков, молока и др.». Последнее исключено, поскольку в состав материала заявленного фильтра входят химические соединения Ва, Be, Cd, Sr, токсичность которых хорошо известна.

Известен способ получения керамического волокнистого высокотемпературного газового фильтра (Патент РФ №2163833, МПК B01D 39/20, B32B 18/00, С04В 35/76, опубл. 10.03.2001 г.) [4]. Способ [4] наиболее близок по технической сущности к заявляемому изобретению и принят за прототип.

Способ [4] имеет целью получение трубчатых материалов для высокотемпературных газовых фильтров. Поставленная цель достигается тем, что изготавливается композитный фильтр, имеющий распределение непрерывного керамического волокна и штапелированных керамических волокон по толщине стенки фильтра. Изобретение относится к керамической волокнистой композитной структуре и к способу ее получения, в частности к керамическому волокнистому композитному фильтру, пригодному для очистки высокотемпературного газа. Керамическую волокнистую композитную структуру или фильтр получают способом, в котором непрерывное керамическое волокно в виде нити наматывают на пористую вакуумную оправку при одновременном нанесении на нее разбавленной суспензии штапелированных керамических волокон. При этом получают керамическую волокнистую композитную заготовку, в которой непрерывное керамическое волокно плотно окружено штапелированными керамическими волокнами. Заготовку пропитывают различными керамическими связующими, удаляя избыток керамического связующего. Далее проводят сушку и обжиг заготовки с образованием связующей фазы в точках контактного взаимодействия с волокнами.

Общими с заявляемым способом признаками являются наличие непрерывного керамического волокна, пропитка связующим и удаление избытка связующего.

Недостатками способа-прототипа являются высокая трудоемкость намотки хрупкого керамического волокна на вакуумную пористую оправку при одновременном нанесении на нее суспензии керамических волокон. Данные о применяемых керамических волокнах в патенте [4] не приводятся. Другим недостатком является то обстоятельство, что геометрическая форма фильтра ограничивается формой трубы. Не ясно, каким образом создается связующая фаза в точках контактного взаимодействия штапелированных волокон с непрерывной керамической нитью при обжиге заготовки. Кроме того, керамические нити (волокна) являются дорогостоящим продуктом.

Задачей заявляемого способа является получение высокотемпературного фильтрующего материала в форме пластин большой площади с одновременным снижением себестоимости материала.

Поставленная задача достигается за счет того, что в предлагаемом способе, включающем направленную пропитку перемещаемой в горизонтальной плоскости натянутой ленты из углеродной сетчатой ткани расплавленным кремнием, нарезание полученной силицированной ленты на мерные пластины и химическое удаление свободного кремния в смеси плавиковой и азотной кислот.

В результате силицирования углерод исходной сетчатой ткани превращается в карбид кремния с сохранением структуры ткани. За счет неизбежного увеличения удельного объема углеродных волокон при переходе в карбид кремния площадь просвета пластин фильтрующего материала снижается в 2 раза. Связка продольных нитей основы и поперечных нитей утка обеспечивается при силицировании ткани естественным образом. Углеродная сетчатая ткань является недорогим и освоенным в массовом производстве ряда стран материалом. Получаемый материал (сетка из карбида кремния) инертен по отношению к кислотным и щелочным средам и может использоваться на воздухе при температуре до 1900°С.

Для достижения этого технического результата процесс перемещения ленты из углеродной сетчатой ткани проводят в горизонтальной плоскости в среде вакуума с подачей к ее поверхности расплавленного кремния. Данная схема необходима в связи с тем, что для обеспечения плоскостности получаемого материала исходная лента ткани должна быть натянута. Функцию связующего в заявляемом способе выполняет кремний.

Затем нарезанные алмазным инструментом пластины материала подвергают обработке в смеси плавиковой и азотной кислот с целью удаления избыточного кремния как для вскрытия окон в материале, так и для увеличения температурного диапазона его использования. После отмывки и сушки материал может быть использован в качестве фильтрующего как в виде отдельных пластин, так и в виде пакетов из них.

Пример

В водоохлаждаемую герметичную камеру установили бобину с намотанной на нее лентой из углеродной сетчатой ткани СКТ-А длиной 1 м и шириной 100 мм. Ленту привели в зацепление с вращаемой аналогичной приемной бобиной. После вакуумирования камеры до уровня 10-1 Торр капиллярный питатель, содержащий дробленый кремний, нагрели до температуры 1500°С и включили механизм перемещения ленты ткани. Скорость перемещения поддерживали в пределах 3-5 см/мин. После охлаждения участок ленты силицированной ткани длиной 0,45 м извлекли из камеры и нарезали алмазным диском на 4 пластины размерами 100 мм × 100 мм каждая. Далее пластины разместили в кювете из тефлона, залили их смесью концентрированных кислот 1HF/3HNO3, извлекли из кюветы, отмыли проточной водой и высушили.

Структура исходной углеродной сетчатой подложки СКТ-А иллюстрируется микрофотографиями Фиг. 1 (а, в). Удельная площадь ее просвета, оцененная при помощи метода гистограмм в графическом редакторе Photoshop 6.0, составляет 19%.

Структура сетчатой подложки после ее силицирования и химического удаления свободного кремния приведена на Фиг. 1 (б, г). При этом удельная площадь ее просвета снижается до 10%.

Микрофотографии структуры фильтрующего материала представлены на фиг. 1, где «а» - исходная сетчатая ткань, «б» - та же ткань после силицирования и химического удаления свободного кремния, «в» и «г» - поперечные сечения композиционного материала по линии основы ткани в той же последовательности. Нити утка нормальны к плоскости микрофотографий.

Способ изготовления высокотемпературного фильтрующего материала для агрессивных жидкостей и газов, включающий пропитку исходных волокон в форме нитей связующим и удаление избытка связующего, отличающийся тем, что в качестве связующего используют расплавленный кремний, проводят направленную пропитку им перемещаемой в горизонтальной плоскости натянутой ленты из углеродной сетчатой ткани, нарезание полученной силицированной ленты на мерные пластины и химическое удаление избыточного кремния в смеси плавиковой и азотной кислот.



 

Похожие патенты:

Изобретение относится к сепаратору частиц для очистки отработавших газов. Сепаратор (1) частиц для очистки отработавших газов (ОГ) двигателя внутреннего сгорания (ДВС) (2), причем по меньшей мере один выполненный с возможностью прохождения через него ОГ металлический пласт (3) расположен в корпусе (4) с впускным отверстием (5), выпускным отверстием (6), поперечным сечением (25) и центральной осью (7), причем по меньшей мере один металлический пласт (3) имеет по меньшей мере одну волнистость (9), которая перекрывает поперечное сечение (25) корпуса (4), и по меньшей мере один металлический пласт (3) выполнен без фильтра.

Изобретение относится к области машиностроения, в частности к технологии изготовления изделий в пресс-форме, и может быть применено для изготовления фильтров, например маслосистем газотурбинных установок.

Изобретение относится к получению фильтров с боковыми сторонами с закрытой поверхностью, пригодных для фильтрования расплавленного металла, и фильтрам, получаемым с помощью такого способа.

Изобретение может быть использовано в двигателях внутреннего сгорания. Устройство (6) для улавливания твердых частиц расположено между трубопроводом (1) рециркуляции отработавших газов (ОГ) и выпускным трубопроводом (2).

Предложен композит в виде пористого блока с нановолокнами. Пористый блок имеет одну или множество пор и содержит множество неорганических нановолокон, выращенных внутри пор блока с использованием гидротермального процесса.

Изобретение относится к эксплуатации скважин для добычи углеводородов. .

Изобретение относится к прикладной химии, а именно к фильтрующим материалам (ФМ) на основе природного песка, предназначенным для изготовления фильтров очистки высокотемпературных газов от мелкодисперсных частиц и шлаковых образований в газогенераторах на твердых топливах. Предложенный ФМ содержит натриевое стекло (или смесь его с калиевым стеклом), натрий кремнефтористый и природный песок с размером частиц 0,5-1,0 мм. Фильтрующий материал отличается улучшенной воспроизводимостью основных характеристик, меньшим размером пор, большей прочностью, сохранением механических свойств при повышенной влажности воздуха, доступностью, дешевизной, обладает хорошими технологическими и эксплуатационными свойствами. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области фильтровальной техники. Предложен фильтрующий материал для гидравлических фильтров, таких как масляные фильтры. Материал содержит слой композитного материала, содержащего 70-90% волокон боросиликатного стекла, 3-20% термопластичных полимерных волокон, 3-20% связующих добавок и 5-30% углеродных волокон. Предложен также фильтрующий элемент, содержащий вышеупомянутый фильтрующий материал. Изобретение обеспечивает высокую прочность материала, длительный срок службы в сочетании с электропроводностью и тонкостью очистки. 2 н. и 7 з.п. ф-лы, 2 ил.
Предложенное решение относится к области очистки жидкостей и газов и может быть использовано в пищевой, фармацевтической, химической и других отраслях промышленности для повышения качества фильтрации. Фильтрующий материал состоит из ядра и оболочки. Ядро выполнено из материалов, выбранных из стекла, стеклянной микросферы, стеклянного микрошарика или диатомита. Оболочка, накатанная на ядро, выполнена из диатомита или диатомитовой породы, обожженных при 700-1200°С. Технический результат заключается в повышении качества фильтрующего материала. 1 з.п. ф-лы, 3 пр.
Наверх