Способ хрусталёва е.н. определения границ упругого фазового напряженно-деформированного состояния материальной среды в массиве



Способ хрусталёва е.н. определения границ упругого фазового напряженно-деформированного состояния материальной среды в массиве
Способ хрусталёва е.н. определения границ упругого фазового напряженно-деформированного состояния материальной среды в массиве

 


Владельцы патента RU 2576539:

Хрусталёв Евгений Николаевич (RU)

Изобретение относится к области «Физики материального контактного взаимодействия» и касается определения границ упругого состояния материальной среды в массиве. Предлагается после определения физических параметров структурированной среды в массиве - угла внутреннего трения , удельного сцепления сстр (кг/см2) и удельного веса γстр (кг/см2) определять верхнюю границу упругого состояния среды через значение гравитационного (бытового) давления , нижнюю границу упругого состояния структурированной среды - через значение и нижнюю границу упругого состояния среды с нарушенной структурой - через значение , где σТ.сж, σТР - пределы текучести среды при сжатии и растяжении, , снстр[2-(tgφстр/tgφн)] (кг/см2), а через выражение определяют величину «зуба» текучести упруго-вязко-упругой материальной среды. Технический результат - повышение точности определения границы упругого состояния деформируемого грунта в массиве. 1 ил.

 

Изобретение относится к области «Физики материального контактного взаимодействия» и касается определения границ упругого состояния материальной среды в массиве.

Известен способ определения границ упругого фазового состояния металлов как несжимаемой материальной среды при растяжении и сжатии, заключающийся в том, что на основании испытания образца длиной l (см) металла заданного сечения площадью F(см2) на растяжение под задаваемыми ступенями нагрузки Р(кГ) строят график предельного состояния металла по закону Ш. Кулона τii·tgφ+c (кГ/см2), где σi=Pi/F (кГ/см2) - напряжение растяжения и сжатия образца при относительном удлинении и сжатии εi=Δl=li/l=(Pl)/(EF) (закон Гука), Е модуль упругости (кГ/см2), и диаграмму σi=ƒ(εi) «растяжения-сжатия» образца металла, по графику τii·tgφ+c (кГ/см2) и его круговым диаграммам Мора, а также по диаграмме σi=ƒ(εi) определяют верхнюю границу предела текучести металла при растяжении - σТР и при сжатии - σТсж при соответствующих величинах среднего напряжения сопротивления металла растяжению (σТР/2) и сжатию (σТсж/2), величину временного сопротивления (предела текучести) σв.р - при растяжении и σв.сж - при сжатии [1], а также верхнюю границу «зуба» текучести σЗРВ и нижнюю границу «зуба» текучести σЗРН при его проявлении в момент растяжения [2].

Проявление «зуба» текучести при растяжении металла считается аномальным явлением и во внимание не принимается. Параметры σТ и σв аналитических выражений не имеют и их получают опытным путем в лабораториях на металлических образцах.

Пределы текучести при сжатии - σТсж и при растяжении - σТР определяют соответствующие границы потери упругости металлов при сжатии и растяжении.

Известен способ определения границ «мгновенно» упругого фазового напряженно-деформированного состояния образца грунта - как высокопористой сжимаемой материальной среды при одноосном сжатии, заключающийся в том, что пределы природной структурной устойчивости и прочности образца грунта в условиях одноосного сжатия и растяжения определяют зависимостями и , где - угол внутреннего трения грунтовой среды с ненарушенной структурой, сстр(кГ/см2) - ее удельное сцепление [3, 4].

Недостатком известного способа определения границ упругофазового состояния грунта является то, что эти границы соответствуют только образцу грунта, деформируемому в условиях одноосного сжатия или растяжения, в то время как проектировщиков интересуют границы упругого состояния деформируемого грунта в массиве.

Технический результат по способу определения границ упругого фазового напряженно-деформированного состояния материальной среды в массиве, заключающемуся в том, что определяют прочностные физические параметры структурированной среды - угол внутреннего трения и сстр(кГ/см2) - удельное сцепление на глубине h (см) массива, через которые рассчитывают верхнюю границу упругости среды при сжатии и нижнюю границу упругости среды при растяжении, достигается тем, что определяют удельный вес среды γстр(кГ/см3), верхнюю границу упругого фазового состояния среды при сжатии определяют через величину гравитационного (бытового) давления

, соответствующую пределу потери структурной прочности среды при сжатии, нижнюю границу упругого состояния структурированной среды при растяжении определяют через величину

, a нижнюю границу упругого состояния среды с нарушенной структурой определяют через величину

, где σТ.сж - предел текучести среды при сжатии (кГ/см2), σТР - предел текучести среды при растяжении (кГ/см2), при этом выражением

определяют величину «зуба» текучести материальной среды при растяжении, где , снстр[2-(tgφстр/tgφн)](кГ/см2) - параметры прочности материальной среды в нарушенном состоянии.

Впервые получены аналитические зависимости для определения верхней и нижней границ упругого фазового состояния любой материальной среды через ее физические параметры угла внутреннего трения и удельного сцепления с (кГ/см2) в структурированном и нарушенном состоянии, установлена определяющая зависимость величины «зуба» текучести, присущего упругой вязко-пластичной материальной среде, характеризующейся углом внутреннего трения и сн(кГ/см2) - удельным сцеплением при нарушении ее структурной прочности.

Предлагаемое изобретение поясняется графическими материалами, где на фиг. 1 представлена зависимость (Ш. Кулона - Е.Н. Хрусталева) предельного состояния упруго-вязко-пластичной материальной среды в структурированном и нарушенном состоянии в условиях компрессионного сжатия, на фиг. 2 - основная кривая (1) упругого деформирования структурированной среды и петля упругого гистерезиса (2-3) типичной упруго-вязко-пластичной материальной среды с нарушенной структурой (грунт, металл и др.).

На графике предельного состояния грунтовой упруго-вязко-пластичной среды (фиг. 1) величина природного (бытового) гравитационного давления в массиве составляет величину для структурированного грунта и - для грунта с нарушенной структурой. Радиусы кругов Мора при сжатии среды составляют величины , и при ее растяжении - , . Величина «зуба» текучести при верхней границе упругого фазового состояния среды и нижней границе упругого фазового состояния структурированной среды

и среды с нарушенной структурой ,

где , .

Пример реализации способа. Суглинок в массиве на глубине h=120 (см) находится в структурированном состоянии, удельный вес суглинка γстр=0,0022 (кГ/см3). Угол внутреннего трения суглинка , удельное сцепление сстр=0,16 (кГ/см2).

Расчетный угол внутреннего трения суглинка в нарушенном состоянии равен

, a удельное сцепление .

Верхняя граница упругого фазового состояния суглинка составляет величину , нижняя граница упругого фазового состояния суглинка составляет величину для структурированного суглинка и величину для суглинка с нарушенной структурой, при этом величина «зуба» текучести равна

Источники информации

1. Феодосьев В.И. Сопротивление материалов. - М.: гл.редакция физ.-мат. лит-ры изд-ва «Наука», 1974. - С. 53-56, 62-66, 264-268.

2. Политехнический словарь. Гл.ред. И.И. Артоболевский. - М.: Советская Энциклопедия, 1977. - С. 486 («текучести зуб»).

3. Патент РФ №2270990. Способ определения несущей способности грунтового основания и торфяной залежи / (Хрусталев Е.Н. Б.И. №6 от 27.02.2006 - фиг. 6).

4. Хрусталев Е.Н. Контактное взаимодействие в геомеханике. 4.1: Несущая способность оснований сооружений. - Тверь, ТГТУ, 2004. - С. 77-78.

Способ определения границ упругого фазового напряженно-деформированного состояния материальной среды в массиве, заключающийся в том, что определяют прочностные физические параметры структурированной среды - угол внутреннего трения и сстр(кГ/см2) - удельное сцепление на глубине h (см) массива, через которые рассчитывают верхнюю границу упругости среды при сжатии и нижнюю границу упругости среды при растяжении, отличающийся тем, что определяют удельный вес среды γстр(кГ/см3), верхнюю границу упругого фазового состояния среды при сжатии определяют через величину гравитационного (бытового) давления , соответствующую пределу потери структурной прочности среды при сжатии, нижнюю границу упругого состояния структурированной среды при растяжении определяют через величину , а нижнюю границу упругого состояния среды с нарушенной структурой определяют через величину , где σТ.сж - предел текучести среды при сжатии (кГ/см2), σТР - предел текучести среды при растяжении (кГ/см2), при этом выражением определяют величину «зуба» текучести материальной среды при растяжении, где - параметры прочности материальной среды в нарушенном состоянии.



 

Похожие патенты:

Изобретение относится к компактному зажимному устройству (50) для трубы, пригодному для использования в установке для гидравлических испытаний под давлением с целью контроля качества трубы, полученной электросваркой методом сопротивления.

Изобретение относится к «физике материального взаимодействия», конкретно к способу определения модуля Eо общей деформации и модуля Eупр упругости материальной среды в условиях гравитационного взаимодействия pб и влияния атмосферного давления .

Изобретение относится к способам определения прочности сцепления волокон в одноосноориентированных волокнистых композитных материалах, применяемых в строительных конструкциях и изделиях.

Использование: для тестирования истинной прочности или жесткости твердых или сверхтвердых компонентов, используя акустическую эмиссию. Сущность изобретения заключается в том, что устройство тестирования на основе акустической эмиссии содержит тестируемый образец, включающий твердую поверхность, акустический датчик, индентор, соединенный с твердой поверхностью, и нагрузку.

Изобретение относится к области исследования и анализа твердых материалов путем определения их прочностных свойств, а именно определения коррозии и трещин в металлических запорных элементах - напорных клапанах высокого давления гидрорезного оборудования в процессе их циклического нагружения во время работы насоса, и может быть использовано для оценки их работоспособности.

Изобретение относится к области неразрушающего контроля и может быть использовано в строительной отрасли. Предлагаемый способ заключается в том, что предварительно выявляют место наибольшей осадки фундамента здания.

Изобретение относится к лабораторному моделированию в геофизике с применением электрогидравлического, программно управляемого пресса и может быть использовано для исследований процессов разрушения горных пород с целью отработки методик и алгоритмов прогнозирования сейсмической опасности в природных массивах.

Изобретение относится к испытательной технике. Призматический образец имеет форму призмы, продольную и поперечную плоскости симметрии, два боковых выступа, расположенных продольно, по концам призмы - опорные поверхности, а в центральной ее части - поверхность нагружения поперечной испытательной нагрузкой.

Изобретение относится к испытательной технике, к испытаниям на прочность. Центробежная установка содержит корпус, установленные на нем вал с приводом вращения, гидроцилиндр, закрепленный на валу перпендикулярно его оси, размещенные в гидроцилиндре поршень, фиксатор положения поршня в гидроцилиндре, захват для соединения с торцом образца, закрепленный на поршне в подпоршневой полости, и источник среды, соединенный с подпоршневой полостью гидроцилиндра посредством входного отверстия в гидроцилиндре.

Изобретение относится к ракетной технике, а именно к стендам, которые предназначены для проведения гидроиспытаний корпусов ракетных двигателей на твердом топливе (РДТТ).

Изобретение относится к «Физике материального контактного взаимодействия» и касается возможности достижения равномерного напряженно-деформированного состояния в зоне контакта двух материальных сред. Суть изобретения заключается в том, что придают контактирующей поверхности более прочной материальной среды выпуклой полусферической формы с радиусами взаимодействия R с р . с ф = 0,5 b 2 + l 2 / sin ϕ с л о - для прямоугольной площади контакта, R с р . с ф = 0,5 d / sin ϕ с л о - для круглой площади контакта, R ц = 0,5 b / sin ϕ с л о - для полуцилиндрической формы контакта шириной b, где ϕ с л о - угол внутреннего трения среды с нарушенной или с ненарушенной структурой, более слабой по прочности. Технический результат - обеспечение возможности определения геометрических параметров контактирующих материальных сред с равномерным распределением между ними напряжений. 3 ил.

Изобретение относится к испытанию керамических обтекателей летательных аппаратов на разрушение. Способ включает создание избыточного давления во внутренней полости обтекателя. Предварительно на наружной поверхности обтекателя монтируют упругий перфорированный прозрачный чехол, на внутреннюю поверхность которого нанесен липкий слой, обеспечивающий возможность фиксации осколков обтекателя при его разрушении, и перфорированный защитный кожух, при этом пространство между наружной поверхностью упомянутого чехла и внутренней поверхностью кожуха заполняют резиновым материалом. Липкий слой на внутреннюю поверхность упругого чехла может быть нанесен двусторонним скотчем. Может быть использован резиновый материал в виде шариков. Обеспечивается возможность восстановления картины разрушения обтекателя при проведении опрессовки. 2 з.п. ф-лы, 1 ил.
Наверх