Способ хрусталёва е.н. получения равномерного контактного напряжения при взаимодействии материальных сред



Способ хрусталёва е.н. получения равномерного контактного напряжения при взаимодействии материальных сред
Способ хрусталёва е.н. получения равномерного контактного напряжения при взаимодействии материальных сред

 


Владельцы патента RU 2576542:

Хрусталёв Евгений Николаевич (RU)

Изобретение относится к «Физике материального контактного взаимодействия» и касается возможности достижения равномерного напряженно-деформированного состояния в зоне контакта двух материальных сред. Суть изобретения заключается в том, что придают контактирующей поверхности более прочной материальной среды выпуклой полусферической формы с радиусами взаимодействия R с р . с ф = 0,5 b 2 + l 2 / sin ϕ с л о - для прямоугольной площади контакта, R с р . с ф = 0,5 d / sin ϕ с л о - для круглой площади контакта, R ц = 0,5 b / sin ϕ с л о - для полуцилиндрической формы контакта шириной b, где ϕ с л о - угол внутреннего трения среды с нарушенной или с ненарушенной структурой, более слабой по прочности. Технический результат - обеспечение возможности определения геометрических параметров контактирующих материальных сред с равномерным распределением между ними напряжений. 3 ил.

 

Способ Хрусталева Е.Н. получения равномерного контактного напряжения при взаимодействии материальных сред.

Изобретение относится к области «Физики материального контактного взаимодействия» и касается возможности достижения равномерного напряженно-деформированного состояния в зоне контакта материальных сред, характеризующихся физическими параметрами - углом φ0 внутреннего трения и удельным сцеплением с (кГ/см2).

Известен способ получения равномерного контактного напряжения в зоне взаимодействия двух материальных сред - слабого грунтового основания с физическими параметрами - углом внутреннего трения и удельным сцеплением сГ (кГ/см2) с абсолютно гибким или абсолютно жестким сферическим штампом, при этом угол сектора полуконтакта сферического гибкого или жесткого штампа с грунтовым основанием в фазе максимальной упругости грунтового основания составляет величину ,

а с торфяной залежью -

,

где - краевая критическая нагрузка для торфяной залежи, - давление потери структурной прочности среды при растяжении,

- критическое давление для среды под центром штампа [1, 2].

Расчетные значения угла максимального полуконтакта материальных сред по радиусу R сферы или цилиндра практически оказываются заниженными для структурированных грунтов с углом внутреннего трения в 3,0…8 раз и для структурированных торфяных залежей с - соответствующими углу внутреннего трения торфа или заниженным в 3 раза.

Установлено на сегодняшний день, что только в предельном фазовом напряженно-деформированном состоянии материальной среды при ее разрушении угол полуконтакта двух сред должен соответствовать углу внутреннего трения наиболее слабой по прочности среды [2].

Технический результат по способу получения равномерного контактного напряжения при взаимодействии материальных сред, заключающемуся в том, что определяют и сравнивают упругие прочностные параметры контактирующих материальных сред - углы φ0 внутреннего трения и удельные сцепления с (кГ/см2), рассматривают деформируемую наиболее слабую материальную среду с углом внутреннего трения и удельным сцеплением ссл (кГ/см2), достигается тем, что полный контакт двух сред производят по полусферической или полуцилиндрической поверхности, выпуклой со стороны более слабой среды под углом, равным удвоенному углу (2φ0) внутреннего трения более слабой по прочности среды, с радиусами взаимодействия двух контактирующих полусферических поверхностей - прямоугольных в плане со сторонами (b×l), - круглых в плане с диаметром d и полуцилиндрических поверхностей - прямоугольных в плане и шириной b, где угол внутреннего трения для структурированной среды и - для среды с нарушенной структурой.

Предлагаемый способ впервые позволяет определить геометрические параметры контактирующих материальных сред с равномерным распределением между ними напряжений через физический параметр наиболее слабой по прочности и наиболее деформируемой материальной среды - угол ее внутреннего трения, что повышает несущую способность и устойчивость сооружений на грунтовых основаниях, износоустойчивость и надежность работы контактирующих деталей машин.

Предлагаемое изобретение поясняется графическими материалами, где на фиг. 1 - общий вид фундаментной плиты здания в отрытом котловане с выпуклой контактной поверхностью под радиус сферы Rсф или радиус цилиндрической поверхности прямоугольного фундамента длиной (1) и шириной (b) с равномерной эпюрой контактных напряжений σк - const; на фиг. 2 - вид А фиг. 1 фундаментной плиты с цилиндрической поверхностью; на фиг. 3 - вид А фиг. 1 фундаментной плиты со сферической поверхностью.

Пример реализации способа. Монолитная фундаментная плита 1 (фиг. 1) со зданием прямоугольной формы (b×l) (см.) (фиг. 2) проектируется на грунтовом основании, сложенном суглинком с удельным весом γстр=0,0022 (кГ/см3), с углом внутреннего трения и удельным сцеплением сстр=0,2 (кГ/см2). Вес нагруженной плиты 250 т, габариты плиты b×l=6 м × 8 м, площадь плиты F=48 м2. Плита укладывается на дне котлована 2 глубиной Н=2 м. Определим форму и параметры поверхности плиты с равномерно распределенным контактным давлением σк - const по ее площади.

Упругое состояние суглинка под плитой обеспечивается при контактном давлении р≤рб, где гравитационное (бытовое) давление в грунте с ненарушенной структурой. Рабочее давление под плитой pp=Р/F=250000/480000=0,52 (кГ/см2), что свидетельствует о том, что суглинок под плитой находится в нарушенном состоянии. Угол внутреннего трения суглинка в нарушенном состоянии

Таким образом, для создания равномерного контактного напряжения между суглинком и нагруженной фундаментной плитой необходимо прямоугольную площадь контакта плиты с грунтом выполнить выпуклой полусферической с радиусом сферы

(фиг. 3) или выпуклой полуцилиндрической (фиг. 2) с радиусом полуцилиндрической воронки сжатия вдоль длинной стороны .

Источники информации

1. Хрусталев Е.Н. Контактное взаимодействие в геомеханике. Ч.II: Напряжения и деформации оснований сооружений: Монография. - Тверь: «Научная книга», 2007. - С. 71 (рис. 2.7), 72 (рис. 2.8), 76 (фиг. 2.9), 78 (фиг. 2.12), 80 (таблица 2.3), с 200-203.

2. Патент РФ №2343448. Способ определения несущей способности и осадок грунтового основания и торфяной залежи / Хрусталев Е.Н. Б.И. №1 от 10.01.2009 - Таблица 1.

Способ получения равномерного контактного напряжения при взаимодействии материальных сред, заключающийся в том, что определяют и сравнивают упругие прочностные параметры контактирующих материальных сред - углы φ0 внутреннего трения и удельное сцепление с (кГ/см2), рассматривают деформируемую наиболее слабую материальную среду с углом внутреннего трения и удельным сцеплением ссл (кГ/см2), отличающийся тем, что полный контакт двух сред проводят по полусферической или полуцилиндрической поверхности, выпуклой в сторону более слабой среды под углом, равным удвоенному углу (2 φ0) внутреннего трения более слабой по прочности среды с радиусами взаимодействия двух контактирующих полусферических поверхностей - прямоугольных в плане со сторонами (b×l), - круглых в плане с диаметром d и полуцилиндрических поверхностей - прямоугольных в плане и шириной b, где угол внутреннего трения для структурированной среды и - для среды с нарушенной структурой.



 

Похожие патенты:

Изобретение относится к области «Физики материального контактного взаимодействия» и касается определения границ упругого состояния материальной среды в массиве.

Изобретение относится к компактному зажимному устройству (50) для трубы, пригодному для использования в установке для гидравлических испытаний под давлением с целью контроля качества трубы, полученной электросваркой методом сопротивления.

Изобретение относится к «физике материального взаимодействия», конкретно к способу определения модуля Eо общей деформации и модуля Eупр упругости материальной среды в условиях гравитационного взаимодействия pб и влияния атмосферного давления .

Изобретение относится к способам определения прочности сцепления волокон в одноосноориентированных волокнистых композитных материалах, применяемых в строительных конструкциях и изделиях.

Использование: для тестирования истинной прочности или жесткости твердых или сверхтвердых компонентов, используя акустическую эмиссию. Сущность изобретения заключается в том, что устройство тестирования на основе акустической эмиссии содержит тестируемый образец, включающий твердую поверхность, акустический датчик, индентор, соединенный с твердой поверхностью, и нагрузку.

Изобретение относится к области исследования и анализа твердых материалов путем определения их прочностных свойств, а именно определения коррозии и трещин в металлических запорных элементах - напорных клапанах высокого давления гидрорезного оборудования в процессе их циклического нагружения во время работы насоса, и может быть использовано для оценки их работоспособности.

Изобретение относится к области неразрушающего контроля и может быть использовано в строительной отрасли. Предлагаемый способ заключается в том, что предварительно выявляют место наибольшей осадки фундамента здания.

Изобретение относится к лабораторному моделированию в геофизике с применением электрогидравлического, программно управляемого пресса и может быть использовано для исследований процессов разрушения горных пород с целью отработки методик и алгоритмов прогнозирования сейсмической опасности в природных массивах.

Изобретение относится к испытательной технике. Призматический образец имеет форму призмы, продольную и поперечную плоскости симметрии, два боковых выступа, расположенных продольно, по концам призмы - опорные поверхности, а в центральной ее части - поверхность нагружения поперечной испытательной нагрузкой.

Изобретение относится к испытательной технике, к испытаниям на прочность. Центробежная установка содержит корпус, установленные на нем вал с приводом вращения, гидроцилиндр, закрепленный на валу перпендикулярно его оси, размещенные в гидроцилиндре поршень, фиксатор положения поршня в гидроцилиндре, захват для соединения с торцом образца, закрепленный на поршне в подпоршневой полости, и источник среды, соединенный с подпоршневой полостью гидроцилиндра посредством входного отверстия в гидроцилиндре.

Изобретение относится к испытанию керамических обтекателей летательных аппаратов на разрушение. Способ включает создание избыточного давления во внутренней полости обтекателя. Предварительно на наружной поверхности обтекателя монтируют упругий перфорированный прозрачный чехол, на внутреннюю поверхность которого нанесен липкий слой, обеспечивающий возможность фиксации осколков обтекателя при его разрушении, и перфорированный защитный кожух, при этом пространство между наружной поверхностью упомянутого чехла и внутренней поверхностью кожуха заполняют резиновым материалом. Липкий слой на внутреннюю поверхность упругого чехла может быть нанесен двусторонним скотчем. Может быть использован резиновый материал в виде шариков. Обеспечивается возможность восстановления картины разрушения обтекателя при проведении опрессовки. 2 з.п. ф-лы, 1 ил.
Наверх