Способ контроля качества термической обработки теплозащитных покрытий

Изобретение относится к технологии напыления теплозащитных керамических покрытий, а более точно касается определения времени теплового воздействия, необходимого для релаксации остаточных напряжений в покрытии, а также энергии, требующейся для релаксации. Сущность: два образца с теплозащитным керамическим покрытием подвергают термической обработке в течение заданного для каждого образца времени, фиксируют время и температуру термической обработки каждого образца. Определяют уровень остаточных напряжений и энергии, необходимой для их релаксации, для каждого образца. По тому образцу, у которого достигается наибольшая полная релаксация остаточных напряжений, судят о качестве покрытия, и этот режим термической обработки выбирают для использования в производстве. Технический результат: получение значений остаточных напряжений в теплозащитном керамическом покрытии предварительно подвергнутых тепловому воздействию, что позволяет корректировать режимы термической обработки, а также прогнозировать долговечность покрытия в результате высокотемпературной эксплуатации. 3 табл., 5 ил.

 

Изобретение относится к технологии напыления теплозащитных керамических покрытий, а более точно касается определения времени теплового воздействия, необходимого для релаксации остаточных напряжений в покрытии, а также энергии, требующейся для релаксации.

Изобретение может быть использовано для контроля качества последующей за напылением термической обработки теплозащитных покрытий при разработке новых технологий и текущего контроля серийных технологий.

Известен способ контроля качества термической обработки теплозащитных керамических покрытий [Takahashi S., Yoshiba M.., Harada Y. Microstructural features of mechanical failure in thermal barrier coating systems under static loadings // Materials at high temperatures, 2001, volume 18(2), pp. 125-130], заключающийся в определении характера развития трещин в керамическом слое покрытия. Способ заключается в нагружении образца с теплозащитным керамическим покрытием изгибающими нагрузками по четырехточечной схеме до разрушения и контроля характера образовавшихся трещин. Способ позволяет произвести лишь качественную оценку напряженного состояния керамического слоя покрытия и характера развития в нем трещин.

Известен способ определения модуля Юнга теплозащитного керамического покрытия в зависимости от температуры [M. Beghini, G. Benamati, L. Bertini, F. Frendo. Measurement of Coatings′ Elastic Properties by Mechanical Methods: Part 2. Application to Thermal Barrier Coatings // Experimental Mechanics, December 2001, Vol.41, No.4, p. 305-311], заключающийся в выдержке при определенной температуре образца с теплозащитным керамическим покрытием, последующего нагружения образца изгибающими нагрузками по 4-точечной схеме до разрушения и определении модуля Юнга покрытия. Однако данный способ не позволяет определить время, при котором начинает снижаться модуль Юнга покрытия.

Известен способ определения остаточных напряжений и энергетических характеристик газотермических покрытий (Ильинкова Т.Α., Ибрагимов А.Р., Бакиров И.Р., Мельникова Т.Н. патент №2499244], в котором нагружение образца с покрытием осуществляют изгибающей нагрузкой по 4-точечной схеме, не превышающей предел упругости материала покрытия, а затем разгружают до значения деформации растяжения, равной нулю, измеряют остаточное усилие, продолжают разгружение до получения значения усилия, равного нулю, и измеряют остаточную деформацию сжатия; по полученному деформационному гистерезису рассчитывают остаточные напряжения в покрытии. Однако данный способ осуществляется при комнатной температуре и не позволяет определить влияние времени теплового воздействия на напряженное состояние покрытия.

Технический результат: получение значений остаточных напряжений в теплозащитном керамическом покрытии, предварительно подвергнутых тепловому воздействию, что позволяет корректировать режимы термической обработки, а также прогнозировать долговечность покрытия в результате высокотемпературной эксплуатации.

Технический результат достигается тем, что образец с покрытием, расположенный на опорах покрытием вниз, плавно нагружают по 4-точечной схеме статической нагрузкой до величины нагрузки, не превышающей предел упругости материала покрытия, последовательно разгружают до значения деформации растяжения, равной нулю, при этом измеряют остаточное усилие Р0 (Н), продолжают разгружение до получения значения усилия, равного нулю, и измеряют остаточную деформацию сжатия - L, (мкм).

По результатам измерения строится диаграмма в координатах: «Нагрузка - Р, (Н) - перемещение (абсолютная деформация) - L, (мкм), которая представляет собой деформационный гистерезис. По полученному деформационному гистерезису рассчитывают остаточные напряжения в покрытии и его энергетические характеристики, включающие: энергию высвобождения внутренних напряжений (Дж), энергию, необходимую для полной релаксации остаточных напряжений (Дж), плотность энергии, необходимой для полной релаксации остаточных напряжений (Дж/м3).

По полученному деформационному гистерезису рассчитывают:

1. Энергию высвобождения внутренних напряжений S (Дж) как разницу энергии S1, затраченную на процесс деформирования газотермического покрытия и энергии S2, высвобождающуюся при разгружении покрытия.

Расчет этих площадей можно осуществить по формулам (2) и (3):

где Pn1 - нагружение, Н; Рn2 - разгрузка, Н; Li - перемещение, мкм.

2. Энергию А (Дж), необходимую для полной релаксации остаточных напряжений в покрытии, которая рассчитывается как площадь прямоугольного треугольника в области сжатия:

где F - усилие, Н; а - перемещение в области сжатия, мкм, РO - остаточное усилие, Н.

3. Остаточные напряжения σ (МПа) рассчитывается по формуле:

где Р0 - остаточное усилие, при котором деформация становится равной нулю; В - ширина образца, мм; Н - полная толщина образца, мм; С - расстояние между нагруженной и опорной балкой, 10 мм.

4. Плотность энергии релаксации остаточных напряжений, Дж/м3 рассчитывается по формуле:

где σ=Pm/F есть растягивающее напряжение. Модуль упругости E трехслойной системы (основа - подслой - покрытие), используя правило аддитивности, находим по формуле:

где Еосн., Еподслой, Епк., - модули упругости основы, подслоя и керамического слоя, соответственно, МПа; hосн, hподслой, hпк - толщины основы, подслоя и газотермического покрытия, соответственно, мкм.

Сущность способа заключается в следующем. Предварительно по меньшей мере два образца с теплозащитным керамическим покрытием каждый подвергают термической обработке в течение заданного для каждого образца времени, фиксируют время и температуру термической обработки каждого образца, осуществляют вышеупомянутые действия по определению уровня остаточных напряжений и энергии, необходимой для их релаксации, по тому образцу, у которого достигается наибольшая полная релаксация остаточных напряжений, судят о качестве покрытия, и этот режим термической обработки выбирают для использования в производстве.

На фиг. 1 представлена схема 4-точечного изгиба, где 1 - прямоугольный металлический образец (пластина); 2 - подслой; 3 - покрытие; 4 - тензодатчик; 5 - измеритель деформации; 6 - устройство для нагружения.

На фиг. 2 представлена схема деформационного гистерезиса газотермического покрытия, где S1 - энергия, потраченная на деформирование образца; S2 - энергия, освобожденная при разгрузке образца; А - часть энергии S2, потраченная на релаксацию остаточных напряжений.

На фиг. 3 представлены деформационные гистерезисы образца №14 в исходном состоянии и после выдержки в печи 1 час, где: а) деформационный гистерезис покрытия в исходном состоянии, б) после выдержки в печи в течение 1 часа.

На фиг. 4 представлены деформационные гистерезисы образца №18 в исходном состоянии и после выдержки в печи 10 часов, где: а) деформационный гистерезис покрытия в исходном состоянии, б) после выдержки в печи в течение 10 часов.

На фиг. 5 представлены деформационные гистерезисы образца №17 в исходном состоянии и после выдержки в печи 100 часов, где: а) деформационный гистерезис покрытия в исходном состоянии, б) после выдержки в печи в течение 100 часов.

Пример: Теплозащитные керамические покрытия напыляли плазменным методом по стандартной технологии. После напыления пластины с покрытиями подвергали двойной термической обработке:

- диффузионному отжигу в вакууме при температуре 1050°С в течение 4-х часов;

- окислительному отжигу на воздухе при температуре 850°С в течение 20-ти часов.

Далее одна часть образцов (с индексом «1») испытывались на 4-точечный изгиб в исходном виде, вторая часть образцов (с индексом «2») подвергались выдержке при температуре 1100°С с варьированием времени от 1 до 100 часов в зависимости от толщины керамического слоя покрытия таким образом, чтобы исключить преждевременное разрушение покрытия. Охлаждение образцов осуществлялось вместе с печью.

Пример 1.1. Деформационные гистерезисы образца в исходном состоянии и после выдержки в печи 1 час представлены на фиг. 3, где: а) деформационный гистерезис покрытия в исходном состоянии и б) после выдержки в печи в течение 1 часа. Результаты измерений механических характеристик представлены таблице 1.

После выдержки в печи в один час произошла полная релаксация остаточных напряжений в покрытии. При этом значение модуля Юнга не изменилось.

Пример 1.2. Деформационные гистерезисы образца в исходном состоянии и после выдержки в печи 10 часов представлены на фиг. 4 где: а) деформационный гистерезис покрытия в исходном состоянии и б) после выдержки в печи в течение 10 часов. Результаты измерений механических характеристик представлены таблице 2.

Остаточные напряжения снизились с 41,9 МПа до 8,4 МПа. При этом практически не произошло изменение в модуле Юнга и плотности упругой энергии деформации.

Пример. 1.3. Деформационные гистерезисы образца в исходном состоянии и после выдержки в печи 100 часов представлены на фиг. 5, где а) деформационный гистерезис покрытия в исходном состоянии и б) после выдержки в печи в течение 100 часов. Результаты измерений механических характеристик представлены таблице 3.

За 100 часов выдержки вдвое увеличились остаточные напряжения в покрытии, а энергия высвобождения внутренних напряжений, S А - более чем вчетверо. Особенно сильно изменилось значение А - доля энергии, потраченная на полное снижение внутренних напряжений. При этом изменений в значении модуля Юнга практически не произошло.

Таким образом, можно установить, что после термической обработки диффузионный отжиг в вакууме при температуре 1050°С в течение 4-х часов, окислительный отжиг на воздухе при температуре 850°С в течение 20-ти часов, дополнительно необходим был 1 час термической обработки при температуре 1100°С на воздухе для достижения полной релаксации теплозащитных керамических покрытий, соответственно, данный дополненный режим обработки предлагаем в производство.

Способ контроля качества термической обработки теплозащитных керамических покрытий, включающий определение уровня остаточных напряжений и энергии, необходимой для их релаксации, путем того, что образец с покрытием, расположенный на опорах покрытием вниз, плавно нагружают по 4-точечной схеме статической нагрузкой до величины нагрузки, не превышающей предел упругости материала покрытия, последовательно разгружают до значения деформации растяжения, равной нулю, при этом измеряют остаточное усилие, продолжают разгружение до получения значения усилия, равного нулю, и измеряют остаточную деформацию сжатия, по полученному деформационному гистерезису рассчитывают остаточные напряжения в покрытии и его энергетические характеристики, включающие: энергию высвобождения внутренних напряжений (Дж), энергию, необходимую для полной релаксации остаточных напряжений (Дж), плотность энергии, необходимой для полной релаксации остаточных напряжений (Дж/м3), отличающийся тем, что предварительно по меньшей мере два образца с теплозащитным керамическим покрытием каждый подвергают термической обработке в течение заданного для каждого образца времени, фиксируют время и температуру термической обработки каждого образца, осуществляют вышеупомянутые действия по определению уровня остаточных напряжений и энергии, необходимой для их релаксации, по тому образцу, у которого достигается наибольшая полная релаксация остаточных напряжений, судят о качестве покрытия, и этот режим термической обработки выбирают для использования в производстве.



 

Похожие патенты:

Изобретение относится к области эксплуатации нефтедобывающего оборудования, а именно, к способу и устройству, применяемым для контроля состояния насосных штанг нефтедобывающих скважин.

Изобретение относится к испытательной технике, а именно к устройствам для экспериментальных исследований прочностных свойств и процессов накопления усталостных повреждений в поверхностных слоях образцов из конструкционных материалов в зависимости от закона изменения на поверхности образца напряжения и его градиента.

Изобретение относится к определению механических характеристик труб, а именно к моделям, предназначенным для испытаний материалов труб малого диаметра на трещиностойкость, и может быть использовано при производстве и эксплуатации труб.

Изобретение относится к машиностроению, а именно к испытательной технике, используемой при испытаниях на усталость. Зажимное устройство содержит стягиваемые с помощью винтов опорные детали, между которыми размещен испытуемый образец и переходные детали, расположенные по обе стороны концевой части испытуемого образца и имеющие участок, выступающий за зону их контакта с опорными деталями в сторону рабочей части образца.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов строительных материалов на совместное действие усилий растяжения, среза и изгиба, и позволяет испытывать образцы материалов при различных комбинациях нагружения их усилиями растяжения, среза и изгиба в совокупности с разрывной машиной.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении наземных испытаний оболочек типа тел вращения.

Изобретение относится к области испытательной техники, а именно к устройствам для определения упругих характеристик материалов при изгибе, и может быть использовано для определения зависимости модуля упругости конструкционных материалов как от температуры, так и от величины изгибающих напряжений.

Изобретение относится к области строительства и предназначено для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами (в частности, железобетонных балок), и нагруженных равномерно распределенной нагрузкой.

Изобретение относится к технике испытаний протяженных объектов с переменной по длине жесткостью. Сущность: объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу.

Изобретение относится к испытательной технике, а именно к способам испытаний плоских образцов на изгиб. Сущность: концы образцов закрепляют на опоре, выполненной в виде замкнутой рамы с двумя подвижными распорками.

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций. Устройство содержит корпус с размещенным в нем приводом и жестко закрепленную на нем металлическую раму с основанием, захватами для испытуемого образца и тензодатчиками. Один из захватов жестко закреплен на раме, а второй установлен на основании посредством двух пневмоцилиндров с возможностью обеспечения приложения вертикальной нагрузки и крутящего момента на испытуемый образец. Тензодатчики размещены на подвижном захвате и испытуемом образце. Технический результат: обеспечение испытания пространственных коробчатых конструкций, изготовленных с использованием сварки, клеесварки, клепки или клееклепки, позволяющие проводить оценку прочностных характеристик конструкции в различных зонах. 2 ил.

Изобретение относится к измерительной технике для промышленности и может быть применено для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением. Установка содержит силовую раму и испытуемый образец, размещенный симметрично на 4-точечный изгиб, между двумя внутренними опорами и двумя наружными опорами. Силовая рама дополнена держателем, выполненным в виде неразъемного замкнутого по контуру корпуса, внутри которого симметрично, в выемках корпуса, размещены наружные цилиндрические опоры. Внутренние цилиндрические опоры расположены в выемках снизу подвижной планки, принимающей нагрузку. Верх планки по краям снабжен симметричными скосами для перемещения между скосами и корпусом, клиньев, соединенных разъемно с регулировочными винтами. Технический результат: увеличение точности определения (улавливания) начала процесса зарождения и развития коррозионных трещин в образцах металла бесшовных и электросварных труб, в том числе, с большой толщиной стенки. 4 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике для промышленности и может быть применено для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением. Сущность: осуществляют нагружение образца испытуемой трубы, закрепленного симметрично на 4-точечный изгиб, между двумя внутренними опорами и двумя наружными опорами. Перед нагружением испытуемый образец помещают в замкнутый контур корпуса держателя между парой внутренних цилиндрических опор, размещенных, для точной фиксации пары верхних точек опоры образца, в выемках нижней части подвижной планки, и парой наружных цилиндрических опор, размещенных, для точной фиксации пары нижних точек опоры образца, в выемках в нижней части корпуса держателя. Первоначальное расчетное усилие нагружения на испытуемый образец прикладывают сверху через переводник домкратом по динамометру сжатия к подвижной планке, изгибая середину образца двумя внутренними цилиндрическими опорами, расположенными в выемках подвижной планки симметрично относительно центра образца и наружных опор. Точное доведение прилагаемого усилия до расчетной величины прогиба образца и его уравнивание между симметричными внутренними опорами производят поворотом левого и правого винтов, перемещая подвижные клинья вдоль скосов к центру подвижной планки, передавая усилия от винтов через подвижные клинья планке и через внутренние опоры на испытываемый образец. Исключают смещение подвижных клиньев по скосам, для сохранения точности нагружения образца в процессе испытаний, для чего подвижные клинья, при достижении расчетной, определяемой геометрическими параметрами трубы величины прогиба образца, надежно фиксируют винтами между планкой и верхней частью корпуса держателя. Технический результат: увеличение точности определения (улавливания) начала процесса зарождения и развития коррозионных трещин в образцах металла бесшовных и электросварных труб, в том числе, с большой толщиной стенки. 3 ил.
Наверх