Способ извлечения ионов тяжелых металлов из водных растворов



Способ извлечения ионов тяжелых металлов из водных растворов
Способ извлечения ионов тяжелых металлов из водных растворов
Способ извлечения ионов тяжелых металлов из водных растворов
Способ извлечения ионов тяжелых металлов из водных растворов

 


Владельцы патента RU 2576569:

Воропанова Лидия Алексеевна (RU)

Изобретение относится к способу извлечения ионов тяжелых металлов из водных растворов. Способ включает экстракцию с использованием в качестве экстрагента растительных масел, содержащих жирные кислоты, при величине рН водных растворов, равной 9-11. Затем ведут отстаивание образующейся системы с расслаиванием ее на фазы и их разделение. При этом отстаивание системы ведут с образованием трех фаз: верхней - масляной, представляющей собой регенерируемый экстрагент, нижней - водной, и промежуточной между ними - гелеобразной, состоящей из воды, масла и содержащей в виде сетчатой структуры гидроксокомплексы тяжелых металлов. Гелеобразную массу подвергают сушке при температуре 100-300°С до образования нанокристаллов оксидов тяжелых металлов. Технический результат заключается в эффективности очистки водных растворов металлов с использованием возобновляемого нетоксичного недорогого и эффективного экстрагента. 6 ил., 1 табл., 5 пр.

 

Изобретение относится к извлечению веществ органическими экстрагентами из водных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Известна жидкостная экстракция, основанная на распределении веществ между двумя несмешивающимися жидкостями, которая широко используется в аналитической химии для разделения компонентов растворов [Гиндин Л.М. Экстракционные процессы и их применение. М.: Наука, 1984. 144 с.]. Обычно в качестве двух жидких несмешивающихся фаз, используются водные растворы и органические растворители.

Недостатком является то, что большинство органических растворителей относятся к легколетучим, пожароопасным и токсичным веществам.

Наиболее близким техническим решением является способ извлечения ионов тяжелых металлов из водных растворов [патент РФ 2481409, МПК С22В 3/26, опубл. 10.05.2013], включающий экстракцию с использованием в качестве экстрагента растительных масел, содержащих жирные кислоты, при величине рН водных растворов, равной 9-11, отстаивание образующейся системы с расслаиванием ее на фазы и их разделение.

Недостатком способа является то, что не указана дальнейшая переработка фаз после расслаивания.

Задачей изобретения является разработка способов переработки фаз после их расслаивания и разделения.

Технический результат, который может быть достигнут при осуществлении изобретения, заключается в высокой степени эффективности извлечения металлов, глубокой очистке водной фазы, регенерации экстрагента с одновременной экономичностью, безопасностью процесса с использованием возобновляемого нетоксичного, недорогого и эффективного экстрагента.

Данный технический результат достигается тем, что в известном способе извлечения ионов тяжелых металлов из водных растворов, включающем экстракцию с использованием в качестве экстрагента растительных масел, содержащих жирные кислоты, при величине рН водных растворов, равной 9-11, отстаивание образующейся системы с расслаиванием ее на фазы и их разделение, отстаивание системы после экстракции ведут с образованием трех фаз: верхней - масляной, представляющей собой регенерируемый экстрагент, нижней - водной, и промежуточной между ними - гелеобразной, состоящей из воды, масла и содержащей в виде сетчатой структуры гидроксокомплексы тяжелых металлов, гелеобразную массу подвергают сушке при температуре 100-300°С до образования нанокристаллов оксидов тяжелых металлов.

Сущность способа поясняется данными таблицы и фиг. 1-6, в которых указаны концентрация ионов металлов в исходных растворах, время экстракции при заданной величине рН, концентрация металлов и величина рН в осветленной водной фазе, коэффициент распределения D, рассчитываемый как отношение равновесных концентраций ионов металлов в органической и водной фазах.

Перемешивание и поддержание заданного значения рН осуществляли до тех пор, пока в дальнейшем кислотно-основные характеристики системы изменялись незначительно. По достижении равновесия между органической и осветленной водной фазами органическую фазу отделяли от водной, в последней определяли величину рН и остаточную концентрацию иона металла. Для поддержания заданного значения рН раствора в процессе экстракции в качестве нейтрализаторов использовали растворы щелочи или кислоты.

Примеры конкретного выполнения способа

Пример 1 (фиг. 1)

На фиг. 1 дана зависимость остаточной концентрации ионов металлов от величины рН раствора. Экстрагент - оливковое масло; время экстракции 1 час; O:В=1:3, t=24 °С; исходная концентрация С0, г/дм3: 1,1 Zn (II); 5,1 Pb (II); 1,2 Cu (II); 1,3 Fe (III). Лучшие результаты экстракции приведены в таблице.

Пример 2. Исследована зависимость остаточной концентрации ионов металлов от отношения В:O.

В качестве экстрагента использовали оливковое масло; время экстракции - сутки; t=20-24°С.

Zn (II): С0=2,3 г/дм3, рН 10. Экстракция осуществляется при В:O≤7. При В:O≥8 образуются осадки.

Pb (II): С0=5,24 г/дм3, рН 11. Экстракция осуществляется при В:O≤7. При В:O≥8 образуются осадки, при этом остаточная концентрация включала сумму концентраций ионов свинца в растворе и в осадке.

Cu (II):

- рН 6; С0=1,1 г/дм3. Экстракция осуществляется при В:O=3-8.

При В:O>8 образуются осадки;

- рН 10; С0=1,1 г/дм3. Экстракция осуществляется при В:O≤8.

При В:O≥8 образуются осадки.

Fe (III). Экстракция ионов Fe (III) осуществляется при В:O≥3 практически сразу, остаточная концентрация примерно одинакова и равна С=0,095 г/дм3. При экстракции ионов Fe (III) образуется на дне стакана налет бурого цвета.

Fe (II)э7 Экстракция ионов Fe (II) осуществляется в пределах В:O=3-6. При В:O≥7 образуются осадки черного цвета. В процессе экстракции происходит окисление ионов Fe (II) до Fe (III).

Пример 3 (фиг. 2, 3)

На фиг. 2 даны зависимости остаточной концентрации С, г/дм3, ионов металлов Zn (II), Pb (II), Cu (II) и Fe (II) от времени τ, мин, и начальной концентрации С0, г/дм3. Экстрагент - оливковое масло; O:В=1:3. рН=10, t=20-24°С. Экстракция осуществляется за время, мин, не более: Zn (II) - 60; Pb (II) - 90; Cu (II) - 30; Fe (II) - 30 мин при O:В=1:3 и 70 мин при O:В=1:4,5.

Экстракция ионов Fe (III) при рН 10 и O:В=1:3 осуществляется практически сразу, остаточная концентрация примерно одинакова и равна С=0,095 г/дм3. При С0>3 г/дм3 образуются осадки бурого цвета. Экстракция ионов Fe (II) осуществляется в пределах 1 часа. При С0>1,6 г/дм3 образуются осадки черного цвета.

В интервале исследованных исходных концентраций для ионов Zn (II), Pb (II) и Fe (II) с увеличением концентрации указанных ионов скорость процесса убывает незначительно, а для ионов Cu (II) возрастает.

На фиг. 3 даны зависимости остаточной концентрации ионов металлов от времени и температуры. Экстрагент - оливковое масло, O:В=1:3.

В интервале исследованных температур для ионов Zn (II), Pb (II) и Fe (II) с увеличением температуры указанных ионов скорость процесса возрастает, а для ионов Cu (II) убывает.

Из фиг. 2, 3 видно, что экстракция ионов тяжелых металлов зависит от исходной концентрации, времени и температуры.

Для ионов Zn (II), и Fe (II) и Pb (II) процесс экстракции лежит в кинетической области и лимитируется образованием комплекса этих ионов с составляющими экстрагента, который сольватируется в органическую фазу.

Для ионов Cu (II) увеличение скорости процесса с ростом исходной концентрации может свидетельствовать о том, что экстракция лимитируется скоростью внешней диффузии. Уменьшение скорости экстракции с ростом температуры может быть связано с коалесценцией (слиянием капель растительного масла) внутри подвижного раствора при перемешивании. С увеличением температуры скорость коалесценции растет, а следовательно, уменьшается межфазная поверхность между органической и водной фазой, что, согласно первому закону Фика, снижает скорость диффузии. Кроме того, положение двойной связи в олеиновой кислоте может меняться при нагревании и при различных химических воздействиях. Например, термообработка в щелочной среде способствует миграции двойной связи в положение, смежное с карбоксильной группой. Следует учитывать также, что с ростом температуры за счет окислительно-восстановительных реакций между Cu (II) и растительным маслом увеличивается концентрация Cu (I), который не экстрагируется в масляную фазу.

Пример 4. Экстракция ионов железа из смеси солей Fe (II) и Fe (III). Установлено, что с увеличением концентрации коэффициент разделения растет. В процессе экстракции объем экстракта увеличивается на 5-10% от объема экстрагента, причем экстракт имеет структуру геля. Осадки гидроксокомплексов Fe (III) имеют бурый, а осадки Fe (II) - черный цвет. Осадки черного цвета после сушки магнитны и имеют состав FeO·Fe2O3 или Fe3O4.

Пример 5 (фиг. 4)

На фиг. 4 дана зависимость коэффициента распределения D от вида растительного масла: 1 - абрикосовое, 2 - тыквенное, 3 - кедровое, 4 - соевое, 5 - виноградное, 6 - кукурузное, 7 - грецкого ореха, 8 - подсолнечное, 9 - льняное, 10 - оливковое.

Растительные масла обладают различной способностью экстрагировать ионы Zn (II), Pb (II), Cu (II) и Fe (II). Все исследованные масла хорошо экстрагируют ионы Fe (III). Коэффициент распределения D ионов Сu для ряда масел на порядок больше, чем у других исследованных ионов металлов.

Пример 6 (фиг. 5, 6)

При отстаивании системы после экстракции больше суток происходит ее расслаивание на три фазы: верхнюю - масляную (регенерируемый экстрагент), нижнюю - водную, и промежуточную между ними - гелеобразную сетчатую структуру гидроксокомплексов металла с составляющими воды и масла. Из промежуточной фазы геля можно извлечь металл или его соединения.

На фиг. 5 показана динамика отстаивания системы после экстракции свинца для различных масел в пределах суток, O:В=1:3, рН=11, С0=5 г/дм3. Цифрами обозначены высоты фаз в мм (по вертикали) и время отстаивания в мин (по горизонтали).

Аналогичные результаты получены и для других исследованных металлов. Полученные данные дают перспективу технического использования растительных масел, особенно непригодных для употребления в пишу («прогорклые» масла).

При высушивании гидроксокомплексов при температуре выше 100-300°С образуются нанокристаллы оксидов металлов.

На фиг. 6 дана схема экстракции ионов металлов растительными маслами.

Способ извлечения ионов тяжелых металлов из водных растворов, включающий экстракцию с использованием в качестве экстрагента растительных масел, содержащих жирные кислоты, при величине рН водных растворов, равной 9-11, отстаивание образующейся системы с расслаиванием ее на фазы и их разделение, отличающийся тем, что отстаивание системы после экстракции ведут с образованием трех фаз, верхняя из которых - масляная, представляющая собой регенерируемый экстрагент, нижняя - водная, и промежуточная - гелеобразная, состоящая из воды, масла и содержащая в виде сетчатой структуры гидроксокомплексы тяжелых металлов, гелеобразную фазу после разделения подвергают сушке при температуре 100-300°С до образования нанокристаллов оксидов тяжелых металлов.



 

Похожие патенты:

Изобретение относится к. способу переработки колумбитового концентрата.
Изобретение может быть использовано при подготовке растворов отработавшего ядерного топлива атомных электростанций (ОЯТ АЭС) к экстракционной переработке, при выделении радионуклидов из радиоактивных растворов облученных урановых мишеней в биомедицинских целях, а также при анализе технологических растворов.

Способ экстракции палладия из водных растворов относится к гидрометаллургическим приемам извлечения металлов и может использоваться в металлургической и химической промышленности.
Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии.

Изобретение может быть использовано в области гидрометаллургии цветных металлов и в химической промышленности. Способ экстракции ионов меди (II) из аммиачных растворов с использованием экстрагента, состоящего из смеси 1-фенил-3-гептил-1,3-пропандиона и 2-этилгексановой кислоты в количестве от 5 до 10 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона в органическом растворителе, несмешивающемся с водой.

Изобретение относится к способу извлечения и концентрирования золота из растворов гидрохлорирования золотосодержащих руд и концентратов. Золото извлекают в анионной форме из хлорсодержащих растворов экстракцией стабильной эмульсией водного раствора водорастворимого сульфита в сернистой нефти.

Изобретение относится к способу извлечения тербия (III) из бедного или техногенного сырья с помощью метода флотоэкстракции. В процессе флотоэкстракции катионов тербия (III) используют в качестве органической фазы изооктиловый спирт, а в качестве собирателя ПАВ анионного типа - додецилсульфат натрия в концентрации, соответствующей стехиометрии реакции: Tb+3+3NaDS=Tb(DS)3+3Na+, где Tb+3 - катион тербия (III), DS- - додецилсульфат-ион.

Изобретение относится к гидрометаллургии, в частности к технологии переработки рудных концентратов ниобия и тантала. Способ получения оксидов ниобия и тантала из колумбитового (танталитового) концентрата включает его вскрытие фторидами аммония и серной кислотой, последующее выделение, очистку и разделение солей ниобия и тантала экстракцией.
Изобретение относится к экстракционной технологии аффинажа природного урана. Способ экстракционного аффинажа урана включает предварительную очистку азотнокислого раствора нитрата уранила путем контактирования его с ТБФ в разбавителе.

Изобретение относится к применению дигликольамида в кислой водной фазе, содержащей америций, кюрий и/или лантаниды, в качестве повышающего коэффициент их разделения комплексообразователя при экстракции.

Изобретение относится к области утилизации отходов гальванического производства, например шламов, путем переработки последних и может быть использовано на предприятиях цветной металлургии и предприятиях, использующих в своем производственном цикле соединения цветных металлов.

Изобретение относится к получению наноструктурированных порошков металлических сплавов. Наноструктурированный порошок твердого раствора кобальт-никель состоит из первичных частиц в виде кобальтоникелевых наноблоков размерами 5-20 нм, агломерированных во вторичные частицы размерами 100-200 нм сферической формы.

Группа изобретений относится к получению металлического цинка из его рудных пород. Способ получения металлического цинка из водной суспензии частиц, содержащих соединения цинка руды, включает генерацию в объеме сырья физических «треугольных» магнитных полей, напряженность которых составляет 8·104÷1,0·105 А/м.

Изобретение относится к способу переработки шламов металлургических и горно-обогатительных комбинатов. Из исходного сырья при дезинтеграции удаляют негабаритные включения, из полученного продукта готовят пульпу и обрабатывают ее высокоамплитудными ультразвуковыми колебаниями, далее проводят гравитационную сепарацию, при которой образуется два потока, содержащих цинк- и свинецсодержащие продукты.

Изобретение относится к способу извлечения ценных компонентов из сульфидного сырья. Способ включает промывку сырья водой с получением твердого осадка, получение сульфатного раствора, из которого извлекают железо, медь и цинк путем перевода железа в осадок в виде гидроксида железа Fe(OH)3, осаждения меди из фильтрата железным скрапом, осаждения цинка из фильтрата сероводородом.
Изобретение относится к способу выщелачивания ценных минералов из проницаемого рудного тела или из твердых частиц, полученных из руды, содержащей компоненты карбоната металла и сульфида металла.

Изобретение относится к гидрометаллургии цветных и благородных металлов, а именно к извлечению металлов из сульфидных руд и продуктов обогащения. Способ включает регулирование расхода воздуха, подаваемого на биоокисление, и скорость перемешивания в чане, где проводится биоокисление, по концентрации ионов двухвалентного железа в пульпе, обеспечивая значение концентрации около нуля.

Изобретение относится к технологии получения оксида цинка и может быть использовано для получения оксида цинка со смещенным изотопным составом. Способ включает получение гидроксида цинка из диэтилцинка, которое ведут в проточном реакторе в струе воды или водной пульпы, содержащей гидроксид цинка, с расходом диэтилцинка до 40 кг в час с получением пульпы, содержащей частицы гидроксида цинка.
Изобретение относится к способу пирометаллургической переработки железосодержащих материалов, включающий загрузку в плавильную зону двухзонной печи железосодержащих материалов, флюсующих добавок и углеродсодержащих материалов, расплавление их в барботируемом кислородсодержащим дутьем железосодержащем расплаве, дожигание отходящих из расплава горючих газов с последующей подачей расплава в восстановительную зону, в которую загружают углеродсодержащие материалы и другие шихтовые материалы, восстановление железа с образованием железоуглеродистого расплава и шлака, дожигание отходящих из ванны зоны восстановления горючих газов, раздельный выпуск продуктов плавки, при этом газы, отходящие из зон восстановления и плавления, охлаждают и очищают отдельно, причем очищенные газы плавильной зоны удаляют в вытяжную трубу, а отходящие газы зоны восстановления после охлаждения и очистки компремируют и подают в фурмы нижнего ряда зоны плавления.

Изобретение относится к области гидрометаллургии и может быть использовано при переработке концентратов, промпродуктов и твердых отходов, содержащих металлы. Способ извлечения ионов тяжелых металлов железа, золота и серебра из сульфатного кека включает выщелачивание спека 3 н.

Изобретение предназначено для химической, строительной промышленности и медицины и может быть использовано при изготовлении композитов, пластификаторов бетона, микроцидов с анти-ВИЧ.
Наверх