Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты. В солнечном модуле с концентратором, имеющим рабочую поверхность, на которую падает солнечное излучение, полупараболоцилиндрический концентратор с поверхностью входа лучей и приемник излучения, установленный между фокальной осью и вершиной полупараболоцилиндрического концентратора, причем на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей с поверхностями входа и выхода лучей, выполненных в виде жалюзи из плоских зеркальных фацет, на выходе оптической отклоняющей системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, угол φ и φ1 наклона основных и дополнительных зеркальных отражателей и апертурный угол полупараболоцилиндрического концентратора δ связаны соотношениями. Изобретение должно обеспечить повышение эффективности использования солнечной энергии и снижение стоимости получения электроэнергии и теплоты. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты.

Известен солнечный фотоэлектрический модуль с концентратором солнечной энергии, содержащий скоммутированные и установленные между двумя листами стекла двухсторонние солнечные элементы в виде полос, перпендикулярных основанию модуля, с тыльной стороны которых симметрично относительно середины солнечных элементов установлены два полуцилиндрических концентратора, суммарная площадь апертуры которых в два раза больше площади солнечных элементов. При установке под углом к горизонту, равным широте местности и полярной ориентации оси концентраторов юг-север, фотоэлектрический модуль работает круглый год без слежения за солнцем с теоретическим коэффициентом концентрации К=2. Фактический коэффициент концентрации с учетом оптического КПД на отражение составляет 1,56 (I. Edmonds, Solar Energy Materials. 1990. Ν 21. P. 173-190).

Недостатком известного фотоэлектрического модуля является низкий коэффициент концентрации и высокая стоимость модуля, практически равная стоимости фотоэлектрического модуля без концентратора.

Известен солнечный модуль с концентратором солнечной энергии, содержащий плоское защитное прозрачное ограждение, нормаль к поверхности которого находится в меридиональной плоскости, и установленный на защитном прозрачном ограждении в фокусе линейно-фокусирующего цилиндрического концентратора приемник излучения в виде полосы, концентратор выполнен в виде несимметричного отражателя, состоящего из двух разновеликих частей, разделенных плоскостью симметрии, проходящей через вершину и фокальную ось отражателя, причем большая часть отражателя выполнена в виде половины параболоцилиндрического (в дальнейшем - полупараболоцилиндрического) отражателя, а меньшая часть - в виде кругового цилиндрического отражателя с радиусом, равным расстоянию от фокальной оси до вершины полупараболоцилиндрического отражателя, фокальная ось смещена к одной из сторон защитного ограждения, параллельно его основанию, и совпадает с краем полосы приемника излучения, а угол наклона плоскости симметрии параболоцилиндрического отражателя к горизонтальной поверхности равен α=114°-δ-γ, если фокальная ось и приемник в северном полушарии смещены к южной стороне несимметричного отражателя, и равен α=114°-δ, если фокальная ось и приемник в северном полушарии смещены к северной стороне параболоцилиндрического отражателя, где γ - широта местности в месте установки солнечного модуля, а δ - апертурный угол параболоцилиндрического отражателя.

Для обеспечения непрерывной работы солнечного модуля в течение года без слежения с наружной стороны защитного прозрачного ограждения установлено с зазором параллельно ему дополнительное защитное прозрачное ограждение, в зазоре между двумя ограждениями установлены управляемые дистанционно горизонтальные жалюзи с фацетами, которые имеют с двух сторон зеркальное покрытие, а ширина фацет в 3-4 раза превышает расстояние между фацетами (прототип) (патент РФ №2172903, БИ №24, 2000 г.).

Недостатком известного модуля являются большие косинусные потери излучения, равные 1-cos (90°-2φ), связанные с отклонением плоскости симметрии параболоцилиндрического отражателя от нормали к рабочей поверхности модуля, и оптические потери на пропускание в горизонтальных жалюзи с фацетами. Например, при апертурном угле φ=24° косинусные потери солнечного излучения составляют 1-cos 42°=0,257, т.е. 25,7%.

Задачей изобретения является повышение эффективности использования солнечной энергии и снижение стоимости получения электроэнергии и теплоты.

Вышеуказанный технический результат достигается тем, что в солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, полупараболоцилиндрический концентратор с поверхностью входа лучей и приемник излучения, установленный между фокальной осью и вершиной полупараболоцилиндрического концентратора, на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей с поверхностями входа и выхода лучей, выполненных в виде жалюзи из плоских зеркальных фацет, на выходе оптической отклоняющей системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, угол φ и φ1 наклона основных и дополнительных зеркальных отражателей и апертурный угол полупараболоцилиндрического концентратора δ связаны соотношениями

где δ, φ и φ1 - отсчитываются от вертикали к рабочей поверхности против часовой стрелки, β0, β1 и β2 - углы входа и выхода лучей, отсчитывающиеся от вертикали к рабочей поверхности против часовой стрелки, расстояние а между основными зеркальными отражателями на рабочей поверхности и ширина основных зеркальных отражателей удовлетворяет соотношению a=d·sinφ, при котором для любых углов φ нижняя грань основного зеркального отражателя и верхняя грань следующего основного зеркального отражателя находятся в одной вертикальной плоскости, а ширина дополнительных зеркальных отражателей d1 удовлетворяет соотношению

где d - ширина основных зеркальных отражателей.

В варианте конструкции солнечного модуля с концентратором модуль содержит две встречно отклоняющие лучи оптические системы и два полупараболоцилиндрических концентратора с общей фокальной осью и с общим двухсторонним приемником, угол между основными зеркальными отражателями двух отклоняющих встречно лучи оптических систем составляет 2(φ-β0), а угол между поверхностями входа полупараболоцилиндрических концентраторов составляет 180°-2β0.

Сущность предлагаемого изобретения поясняется на фиг. 1, 2, 3.

На фиг. 1 представлен общий вид отклоняющей оптической системы солнечного модуля и ход лучей в нем. На фиг. 2 - переотражение лучей в солнечном модуле с полупараболоцилиндрическим концентратором с помощью дополнительных зеркальных отражателей (поперечное сечение). На фиг. 3 - солнечный модуль с отклоняющей оптической системой с одним полупараболоцилиндрическим концентратором. На фиг. 4 - солнечный модуль с концентратором, состоящий из двух отклоняющих оптических систем и двух полупараболоцилиндрических концентраторов.

На фиг. 1 солнечный модуль с концентратором содержит рабочую поверхность 1, на которую падает излучение 2, отклоняющую оптическую систему 3 с поверхностью входа 4 и выхода 5 лучей, высотой h, шириной l и длиной L, состоящую из основных зеркальных отражателей 6, установленных под углом φ к вертикали к рабочей поверхности 1, и дополнительных зеркальных отражателей 7, установленных на поверхности выхода 5 отклоняющей оптической системы 3 под углом β1. Основные зеркальные отражатели 6 установлены друг от друга на расстоянии а.

Количество основных 6 и дополнительных 7 зеркальных отражателей в отклоняющей оптической системе 3 Обозначим через β0 и β1 угол входа луча и выхода лучей от основных зеркальных отражателей 6 в отклоняющей оптической системе 3. Углы β0 и β1 отсчитываются от вертикали к рабочей поверхности. Угол β1 выбирается из условия максимального отклонения отраженного луча на выходе из системы на расстоянии ОЕ=2а-δ от линии АВ входа луча, где δ - бесконечно малая величина, обеспечивающая полную оптическую прозрачность отклоняющей оптической системы 3.

Принимая h=1, получим

I

Для лучей, нормальных к поверхности отклоняющей оптической системы 3

Тогда из (1) следует, что

Равенство (2) возможно только при φ→0.

Для угла наклона основных зеркальных отражателей 6 φ>0 и угла входа лучей β0>0 имеет место равенство: β1=2φ-β0.

Подставляя β1 из (1), получим

На фиг. 2 пропускание Δ от основных зеркальных отражателей 6 лучей β0 составляет:

из треугольников BDN и DNK

где d и d1 - размеры основных 6 и дополнительных 7 зеркальных отражателей.

Из (4) получаем соотношение для ширины дополнительных зеркальных отражателей d1

Угол выхода лучей β2 от дополнительных зеркальных отражателей 7 для лучей входа β0 равен:

Установка дополнительных зеркальных отражателей 7 позволяет отклонить на угол β2 те лучи β0, для которых отклоняющая оптическая система 3 из основных зеркальных отражателей 6 была прозрачна и обеспечить 100%-е переотражение всех лучей β0, поступающих на рабочую поверхность 1 солнечного модуля с концентратором. Полупараболоцилиндрический концентратор 8 с параметрическим углом δ, фокальной осью F и вершиной О имеет поверхность входа 9 лучей, которая параллельна поверхности выхода 5 отклоняющей оптической системы 3. Приемник 10 установлен между фокальной осью F и вершиной О полупараболоцилиндрического концентратора 8.

В солнечном модуле с концентратором на фиг. 3 отклоняющая оптическая система 3 шириной В=QO1 создает на поверхности полупараболоцилиндрического концентратора 8 поток параллельных лучей с углами β1 и β2.

Коэффициент концентрации солнечного модуля с концентратором с учетом косинусных потерь равен

На фиг. 4 солнечный модуль с концентратором содержит две отклоняющие лучи встречно оптические системы 11 и 125, у которых угол между основными зеркальными отражателями 13 и 14 двух отклоняющих оптических систем составляет Q1=2φ0-2β0, а угол между поверхностями входа 15 и 16 равен Q2=180°-2β0. Солнечный модуль содержит два полупараболоцилиндрических концентратора 17 и 18 с общей фокальной осью F, общим двухсторонним приемником 19, у которых поверхности входа 20 и 21 образуют угол Q3=Q2=180°-2β0. Линии 22 и 23, которые являются касательными к поверхности полупараболоцилиндрических концентраторов 17 и 18, у поверхностей входа 20 и 21 и внешними границами апертурных углов образуют между собой угол Q4=180°-2(δ+β0). Коэффициент концентрации солнечного модуля с концентратором на фиг. 4 равен

Солнечный модуль с концентратором работает следующим образом (фиг. 1, 2, 3). Солнечное излучение 2 поступает под углом β0 на рабочую поверхность 1 солнечного модуля с концентратором, совмещенную с поверхностью входа 4 отклоняющей оптической системы 3, отражается от основных зеркальных отражателей 6 под углом β1 и от дополнительных зеркальных отражателей 7 под углом β2, поступает на поверхность входа 9 полупараболоцилиндрического концентратора 8, отражается от полупараболоцилиндрической поверхности концентратора и поступает на приемник 10 при условии β1≥90°-2δ.

Пример выполнения солнечного модуля с концентратором (фиг. 1, 2, 3).

Отклоняющая оптическая система 3 состоит из основных зеркальных отражателей 6 размером d=50 мм, дополнительных зеркальных отражателей 7 d1=6,86 мм, расстояние между основными отражателями а=20 мм, l=1250 мм. Угол наклона основных зеркальных отражателей 6 φ=22,5°, дополнительных зеркальных отражателей 7 φ1=39,6°, угол входа лучей β0=5,4°, углы выхода лучей β1=39,6°, β2=73,8°, пропускание Δ=4,37 мм, апертурный угол полупараболоцилиндрического концентратора 8 δ=26,2°, зеркальные отражатели концентратора 8 выполнены из стеклянных фацет. Приемник 10 имеет размеры 125×1250 мм, состоит из 36 кремниевых солнечных элементов размером 125×31,25 мм, соединенных последовательно. Геометрический коэффициент концентрации к=4,32, косинусные потери 4,4%, оптический КПД 80%, КПД приемника 15%. Площадь модуля 0,6875 м. Общий КПД модуля 11,946%. Пиковая электрическая мощность 82,13 Вт при освещенности 1 кВт м2 и температуре 25°С.

Солнечные планарные кремниевые модули в 2014 г. продавались по заводской цене 0,945 долл./Вт в Германии и 0,792 долл./Вт в Китае (Beate Knoll, Anne Kreutzmanna. Pain threshold reached. Photon International, March 2014, p. 40-44). При среднем КПД 15% стоимость модулей составляет 141,75 долл./м2 в Германии и 118,8 долл./м2 в Китае. Несмотря на то что стоимость установленной мощности солнечных энергоустановок ниже стоимости угольных и атомных электростанций, стоимость электрической энергии, вырабатываемой солнечными энергоустановками, превышает стоимость электрической энергии от традиционных источников энергии. Основная причина - низкий коэффициент использования установленной мощности (КИУМ) солнечных энергоустановок от 0,114 в Германии до 0,17 в Анапе (Россия) и 0,25 в экваториальных странах. Чтобы компенсировать низкий КИУМ, необходимо дальнейшее снижение стоимости солнечных модулей и использование солнечных концентраторов.

Основные требования к солнечным модулям с концентраторами из кремния: коэффициент концентрации не более 4-5 из условия естественного охлаждения модулей и использование рассеянного излучения в пределах апертурного угла концентратора. Такие солнечные модули с концентраторами могут быть использованы в стационарном исполнении для крыш и фасадов домов и со следящими системами для установки на земле. При стоимости зеркальных отражателей 30 долл./м2, концентрации 5, оптическом КПД 0.85 и электрическом КПД 15% стоимость солнечного модуля с концентратором составит для Германии 86,58 долл./м2, 0,378 долл./Вт, т.е. снизится в 2,5 раза, при этом стоимости концентратора и приемника будут примерно равны и составлять по 50% от стоимости модуля. Стоимость солнечного модуля с концентратором для Китая составит 52 долл./м2, 0,349 долл./Вт.т.е. снизится в 2,27 раза по сравнению с солнечным модулем без концентратора.

По сравнению с прототипом солнечный модуль с концентратором имеет небольшие косинусные потери, большой срок службы и низкую стоимость. Приемник 10 может быть выполнен с устройством отвода тепла для получения электроэнергии и (или) горячей воды.

1. Солнечный модуль с концентратором, имеющий рабочую поверхность, на которую падает солнечное излучение, полупараболоцилиндрический концентратор с поверхностью входа лучей и приемник излучения, установленный между фокальной осью и вершиной полупараболоцилиндрического концентратора, на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей с поверхностью входа и выхода лучей, выполненных в виде жалюзи из плоских зеркальных фацет, отличающийся тем, что на выходе оптической системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, угол φ и φ1 наклона основных и дополнительных зеркальных отражателей и апертурный угол полупараболоцилиндрического концентратора δ связаны соотношениями
β0=2φ-arctg(2tgφ),
β11=2φ-β0,

β2=2φ10,
где δ, φ и φ1 - отсчитываются от вертикали к рабочей поверхности против часовой стрелки, β0, β1 и β2 - углы входа и выхода лучей, отсчитывающиеся от вертикали к рабочей поверхности против часовой стрелки, расстояние а между основными зеркальными отражателями на рабочей поверхности и ширина основных зеркальных отражателей удовлетворяет соотношению а=d·sin φ, при котором для любых углов φ нижняя грань основного зеркального отражателя и верхняя грань следующего основного зеркального отражателя находятся в одной вертикальной плоскости, а ширина дополнительных зеркальных отражателей d1 удовлетворяет соотношению

где d - ширина основных зеркальных отражателей.

2. Солнечный модуль с концентратором по п. 1, отличающийся тем, что модуль содержит две встречно отклоняющие лучи оптические системы и два полупараболоцилиндрических концентратора с общей фокальной осью и с общим двухсторонним приемником, у которых угол между плоскостями основных зеркальных отражателей двух встречно отклоняющих лучи оптических систем равен 2(φ~β0), а угол между поверхностями входа полупараболоцилиндрических концентраторов составляет 180°-2β0.



 

Похожие патенты:

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей, выполненных в виде жалюзи из плоских зеркальных фацет, на выходе оптической отклоняющей системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, угол φ и φ1 наклона основных и дополнительных зеркальных отражателей связаны соотношениями, а приемник с шириной А=B·ctgβ1 установлен по ходу лучей β1, β2 в плоскости, перпендикулярной к плоскости выхода лучей, где В - ширина оптической отклоняющей системы.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, приемник излучения, согласно изобретению на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей, выполненных в виде жалюзи из плоских зеркальных фацет, на выходе оптической системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, углы φ0 и φ1 наклона основных и дополнительных зеркальных отражателей связаны соотношениями.

Изобретение относится к гелиотехнике, в частности, к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле, содержащем фокусирующую призму с острым углом Ψ0, и коэффициентом преломления n0 с эффектом полного внутреннего отражения на рабочей поверхности, на которую падает излучение, с углом входа лучей β0 и с устройством переотражения, между приемником и фокусирующей призмой в оптическом контакте с ними установлена дополнительная прямоугольная призма, над которой и над частью рабочей поверхности фокусирующей призмы установлена отклоняющая оптическая система с поверхностями входа и выхода лучей, выполненная из множества миниатюрных призм с коэффициентом преломления n1 и с острыми углами Ψ1, установленными однонаправленно с острым углом Ψ0 фокусирующей призмы.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных фотоэлектрических станций, размещенных на строительных конструкциях зданий (козырьки или навесы над крыльцом, балконом, террасой и т.д.).

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим установкам с датчиками слежения за Солнцем, и может быть использовано в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального пользования.

Изобретение относится к области контроля фотоэлектрических устройств и касается способа исследования пространственного распределения характеристик восприимчивости фотоэлектрических преобразователей в составе солнечных батарей к оптическому излучению.

Изобретение относится к переносным портативным солнечным электростанциям, предназначенным для преобразования солнечной лучистой энергии в электрическую как в солнечную погоду, так и в переменную.

Изобретение относится к солнечным электростанциям, в том числе к переносным, предназначенным для преобразования солнечной лучистой энергии в электрическую как в солнечную погоду, так и в переменную.
Группа изобретений относится к летательным аппаратам с использованием подъемной силы несущего газа. Дирижабль с электродвигателем и заменяемыми отсеками для пассажиров и грузов характеризуется тем, что отсеки дирижабля для пассажиров или грузов, находящихся на отдельной, прикрепленной снизу его корпуса рубке управления дирижаблем, являются заменяемыми.

Группа изобретений относится к области энергетики и может быть использована для выработки электроэнергии, горячей воды и пара. Способ получения тепловой и электрической энергии включает фокусирование солнечных лучей концентратором на неподвижную тепловоспринимающую поверхность и последующее передвижение по ней фокуса в соответствии с перемещением солнца, нагрев через тепловоспринимающую поверхность теплоносителя и преобразование полученной тепловой энергии в электрическую.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей, выполненных в виде жалюзи из плоских зеркальных фацет, на выходе оптической отклоняющей системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, угол φ и φ1 наклона основных и дополнительных зеркальных отражателей связаны соотношениями, а приемник с шириной А=B·ctgβ1 установлен по ходу лучей β1, β2 в плоскости, перпендикулярной к плоскости выхода лучей, где В - ширина оптической отклоняющей системы.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, приемник излучения, согласно изобретению на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей, выполненных в виде жалюзи из плоских зеркальных фацет, на выходе оптической системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, углы φ0 и φ1 наклона основных и дополнительных зеркальных отражателей связаны соотношениями.

Изобретение относится к гелиотехнике, в частности, к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле, содержащем фокусирующую призму с острым углом Ψ0, и коэффициентом преломления n0 с эффектом полного внутреннего отражения на рабочей поверхности, на которую падает излучение, с углом входа лучей β0 и с устройством переотражения, между приемником и фокусирующей призмой в оптическом контакте с ними установлена дополнительная прямоугольная призма, над которой и над частью рабочей поверхности фокусирующей призмы установлена отклоняющая оптическая система с поверхностями входа и выхода лучей, выполненная из множества миниатюрных призм с коэффициентом преломления n1 и с острыми углами Ψ1, установленными однонаправленно с острым углом Ψ0 фокусирующей призмы.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных фотоэлектрических станций, размещенных на строительных конструкциях зданий (козырьки или навесы над крыльцом, балконом, террасой и т.д.).

Изобретение относится к устройствам преобразования солнечной энергии в тепловую, в частности к системам солнечного теплоснабжения, размещенным на строительных конструкциях зданий и сооружений, и предназначенным для обогрева и (или) горячего водоснабжения индивидуальных жилых домов, коттеджей, сельских усадебных домов, офисов, общественных зданий, теплиц и других объектов.

Изобретение относится к тепло- и гелиотехнике, а именно к ресурсосберегающим и энергосберегающим устройствам, основанным на солнечной энергии и обеспечивающим микроклимат в различных сооружениях, использующих водоемы, находящиеся вблизи них.

Изобретение относится к устройствам альтернативного энергоснабжения с использованием комбинированных средств получения тепла, холода и электричества при помощи ветровой и солнечной энергии, которые предназначены преимущественно для автономного кондиционирования и горячего водоснабжения жилых и промышленных зданий.

В одном варианте выполнения изобретения предложен способ подачи электроэнергии при помощи источника возобновляемой энергии, включающий: обеспечение первого источника возобновляемой энергии, причем первый источник возобновляемой энергии является непостоянным или не обеспечивает достаточного количества энергии; подачу энергии от первого источника возобновляемой энергии на электролизер с целью формирования энергоносителя посредством электролиза; избирательное реверсирование электролизера, позволяющее использовать его в качестве топливного элемента; и подачу энергоносителя на электролизер для выработки энергии, причем первый источник возобновляемой энергии, электролизер или энергоноситель получает дополнительное тепло от первого источника тепла; и первый источник тепла выбран из группы, состоящей из геотермального и солнечного источника тепла.

Изобретение относится к области энергетики, а именно к области использования солнечной энергии, и может быть применено при генерировании электрического тока с использованием энергии солнечного излучения в качестве источника теплового излучения.

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным воздухопроводом, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, второй из которых снабжен грунтовыми теплопроводящими трубами, при этом в тепловом аккумуляторе размещена вихревая труба, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменник - с помещением, а также южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и содержит завихритель, состоящий из четырех пластин, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений.

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий микроконтроллер, оптический солнечный датчик, фотоприемники которого выполнены в виде каскадных фотопреобразователей, датчик оборотов первого электродвигателя, датчик оборотов второго электродвигателя. Система обеспечивает сопровождение солнечного диска с необходимой точностью независимо от погодных условий и сводит к минимуму собственное потребление энергии за счет исключения срабатывания оптического солнечного датчика при его засветке от светлых пятен в облаках. 2 ил.

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты. В солнечном модуле с концентратором, имеющим рабочую поверхность, на которую падает солнечное излучение, полупараболоцилиндрический концентратор с поверхностью входа лучей и приемник излучения, установленный между фокальной осью и вершиной полупараболоцилиндрического концентратора, причем на рабочей поверхности установлена отклоняющая оптическая система из основных зеркальных отражателей с поверхностями входа и выхода лучей, выполненных в виде жалюзи из плоских зеркальных фацет, на выходе оптической отклоняющей системы установлены дополнительные зеркальные отражатели, углы входа β0, выхода лучей β1 для основных зеркальных отражателей, углы входа лучей β0 и β2 для дополнительных зеркальных отражателей, угол φ и φ1 наклона основных и дополнительных зеркальных отражателей и апертурный угол полупараболоцилиндрического концентратора δ связаны соотношениями. Изобретение должно обеспечить повышение эффективности использования солнечной энергии и снижение стоимости получения электроэнергии и теплоты. 1 з.п. ф-лы, 4 ил.

Наверх