Гелиевый рефрижератор с избыточным обратным потоком для производства холода на двух температурных уровнях

Изобретение относится к криогенной технике, а более конкретно к гелиевым рефрижераторам с избыточным обратным потоком. Сателлитный рефрижератор для производства холода на двух температурных уровнях включает в себя следующие компоненты: гелиевый компрессор, теплообменный блок, два дроссельных вентиля, криостат первого охлаждаемого устройства при гелиевой температуре ~4,4 К. Сателлитный рефрижератор работает следующим образом. Гелий из обратного потока сжимается в компрессоре и поступает в канал прямого потока теплообменного блока, в котором охлаждается до температуры второго охлаждаемого устройства, после чего разделяется на два потока. Один поток охлаждает второе устройства, после чего возвращается в дополнительный поток теплообменного блока, соединенный с криостатом первого устройства через дроссельный вентиль. Другой поток также соединен с криостатом первого охлаждаемого устройства через второй дроссельный вентиль. Использование изобретения обеспечивает охлаждение второго объекта (низкотемпературных экранов) при температурах выше 4,4 К без введения в его схему дополнительного детандера, что сохраняет простоту и надежность сателлитного рефрижератора при расширении его возможностей. 2 ил.

 

Изобретение относится к криогенной технике, а более конкретно к гелиевым рефрижераторам с избыточным обратным потоком.

Известны гелиевые рефрижераторы с избыточным обратным потоком для производства холода на температурном уровне ~4,4 К, принцип действия которых и область применения наиболее полно отражены в монографии: В.П. Беляков. Криогенная техника и технологии. М., Энергоиздат, 1982. Н.Н. Агапов и др. Развитие и реконструкция криогенной системы ЛФВЭ ускорительного комплекса NIKA (2012-2015) Препринт Р8 2012-14, ОИЯИ, Дубна, 2012. Функциональная схема этого устройства показана на фиг. 1. Обратный поток гелия n сжимается в компрессоре 1 до давления прямого потока m. Прямой поток m охлаждается в теплообменном блоке 2, затем дросселируется в вентиле 3 и поступает в криостат 4 в виде парожидкостной смеси. Пары поступают в канал обратного потока n теплообменного блока, где нагреваются прямым потоком m. Жидкий гелий испаряется в криостате 4 за счет теплопритоков из окружающей среды и тепловой нагрузки от охлаждаемого устройства Q и в виде паров также поступает в канал обратного потока n теплообменного блока. В криостат дополнительно подается жидкий гелий LHe, пары которого создают избыточный по сравнению с прямым потоком m обратный поток n, необходимый для достижения положительного эффекта Джоуля-Томсона на дроссельном вентиле 3.

Как видно из фиг. 1, гелиевые рефрижераторы с избыточным обратным потоком в отличие от классических гелиевых рефрижераторов не содержат детандеров в ступени предварительного охлаждения и поэтому просты как в устройстве, так и в управлении и имеют высокую степень надежности. Благодаря этим качествам гелиевые рефрижераторы с избыточным обратным потоком нашли широкое применение как в различных экспериментальных установках, использующих холод при гелиевых температурах, так и в крупных криогенных системах, например в криогенном комплексе сверхпроводящего ускорителя «Теватрон» (США, национальная лаборатория им. Ферми). Рассматривается применение гелиевых рефрижераторов с избыточным обратным потоком и в новом мегапроекте сверхпроводящего ускорительного комплекса НИКА (ОИЯИ, г. Дубна) .

Недостатком гелиевого рефрижератора с избыточным обратным потоком является то, что он производит холод только на одном температурном уровне ~4,4 К. Однако практически все объекты, работающие при этой температуре, для снижения теплопритоков из окружающей среды имеют низкотемпературные экраны, функционирующие при более высокой температуре. Как правило, эти экраны охлаждаются потоком жидкого азота (Т≈80 К). Но когда по условиям техники безопасности применение жидкого азота запрещено, то приходится отказываться от гелиевого рефрижератора с избыточным обратным потоком и применять более дорогие и менее надежные классические рефрижераторы с детандерами в ступени предварительного охлаждения и дополнительным детандером для гелиевого потока, охлаждающего низкотемпературные экраны.

Задачей, на решение которой направлено заявляемое изобретение, является создание такого гелиевого рефрижератора с избыточным обратным потоком, который бы производил холод на двух температурных уровнях: первый при Т=4,4 К для охлаждения устройства и второй при 4,4 К<Т<80 К для охлаждения экранов этого устройства.

Техническим результатом настоящего изобретения является наличие в гелиевом рефрижераторе с избыточным обратным потоком двух источников холода на различных температурных уровнях, что позволит использовать его и в тех случаях, когда по условиям техники безопасности запрещено применение жидкого азота для охлаждения экранов устройства, работающего при 4,4 К<Т<80 К.

Технический результат изобретения обеспечивается тем, что часть прямого потока гелиевого рефрижератора с избыточным обратным потоком отводится на охлаждение низкотемпературных экранов при 4,4 К<Т<80 К. Затем тепло, отведенное от экранов, передается с помощью дополнительного прямого потока обратному потоку в теплообменном блоке и далее эта часть прямого потока используется для получения холода уже при Т≈4,4 К.

Сущность изобретения поясняется чертежом, представленным на фиг. 2. Гелиевый рефрижератор с избыточным обратным потоком для производства холода на двух температурных уровнях содержит компрессор 1, теплообменный блок 2 с каналами обратного потока m, прямого потока n и дополнительного прямого потока s, дроссельных вентилей 3 и 5 и криостата 4.

Обратный поток гелия n сжимается в компрессоре 1 до давления прямого потока m. Прямой поток m охлаждается в теплообменном блоке 2 до температуры Тн. При этой температуре от прямого потока отбирается часть (дополнительный прямой поток s), которая используется для охлаждения низкотемпературных экранов. Оставшаяся часть потока m проходит через теплообменный блок 2 и дроссельный вентиль 3, производя холод при температуре Т≈4,4 К.

Поток s, проходя через каналы низкотемпературных экранов, охлаждает их, нагреваясь при этом от температуры Тн>4,4 К до температуры Тв<80 К, и при этой температуре направляется в отдельный канал теплообменного блока 2, проходя который охлаждается обратным потоком с температуры Тв до температуры Тн, отдавая таким образом тепло, отнятое от низкотемпературных экранов, обратному потоку n. Затем поток s поступает на дополнительный дроссельный вентиль 5, производя холод при температуре Т≈4,4 К.

Таким образом, предлагаемый гелиевый рефрижератор с избыточным обратным потоком обеспечивает охлаждение второго объекта (низкотемпературных экранов) при температурах выше 4,4 К без введения в его схему дополнительного детандера, что сохраняет простоту и надежность гелиевого рефрижератора с избыточным обратным потоком при расширении его возможностей.

Гелиевый рефрижератор с избыточным обратным потоком для производства холода на двух температурных уровнях, содержащий компрессор, теплообменный блок с каналами прямого и обратного потоков, дроссельный вентиль прямого потока и криостат охлаждаемого устройства при гелиевой температуре ~4,4 К, отличающийся тем, что для охлаждения второго устройства при температурах выше 4,4 К часть прямого потока выводится из теплообменного блока на второе охлаждаемое устройство и после второго охлаждаемого устройства возвращается в теплообменный блок в дополнительный канал прямого потока, соединенный с криостатом первого охлаждаемого устройства дополнительным дроссельным вентилем.



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано при ремонте пароэжекторных холодильных машин в различных отраслях народного хозяйства, в частности судовых пароэжекторных холодильных машин.

Изобретение относится к устройству для сжатия многокомпонентных газов, в частности попутного нефтяного газа, и может быть использовано в нефтегазовой промышленности.

Способ получения холода, по которому хладагент последовательно испаряют в испарителе, повышают его давление в компрессоре, охлаждают и конденсируют в конденсаторе.

Изобретение относится к холодильному бытовому устройству с автоматическим оттаиванием, в частности, для домашнего использования. Указанное холодильное устройство содержит внутреннее отделение для хранения продуктов питания, образованное термоформованной секцией, холодильную камеру, содержащую испаритель и вентилятор для циркуляции воздуха внутри указанного внутреннего отделения.

Изобретение относится к теплообменным композициям, используемым в системах охлаждения и теплопередающих устройствах. Теплообменная композиция включает, по меньшей мере, приблизительно 45 мас.% транс-1,3,3,3-тетрафторпропена (R-1234ze(E)), до приблизительно 10 мас.% двуокиси углерода (R-744) и от приблизительно 2 до приблизительно 50 мас.% 1,1,1,2-тетрафторэтана (R-134a).

Изобретение относится к компрессорам для использования в охлаждающих системах. Поршневой компрессор для использования в охлаждающей парокомпрессионной система содержит первый и второй впускные коллекторы, первый и второй поршневые компрессионные узлы, выпускной коллектор и первый импульсный клапан.

Изобретение относится к холодильной технике. Способ охлаждения герметичного агрегата компрессионного холодильника включает увлажнение поверхности конденсатора.

Изобретение относится к области переработки твердых бытовых отходов. .

Изобретение относится к холодильной технике. .

Изобретение относится к холодильной установке. Установка для охлаждения одной и той же физической единицы посредством единственного холодильника/ожижителя или нескольких холодильников/ожижителей, расположенных параллельно. Холодильник(и)/ожижитель(и) использует рабочий газ одинаковой природы, имеющий низкую молярную массу, то есть имеющий среднюю величину общей молярной массы менее чем 10 г/моль, такой как чистый газообразный гелий. Каждый холодильник/ожижитель содержит компрессорную станцию для сжатия рабочего газа, холодильную камеру, предназначенную для охлаждения рабочего газа на выходе компрессорной станции, причем рабочий газ, охлажденный каждой из соответствующих холодильных камер холодильников/ожижителей, вступает в теплообмен с физической единицей в целях отдачи холода к последнему. Все компрессорные станции холодильника(ов)/ожижителя(ей) образуют единственную компрессорную станцию, обеспечивающую сжатие рабочего газа для каждой из соответствующих отдельных холодильных камер холодильников/ожижителей. Компрессорная станция содержит только компрессорные машины типа со смазываемым винтом и системы для удаления масла из рабочей текучей среды, выходящей из компрессорных машин. Компрессорная станция содержит множество компрессорных машин, создающих несколько уровней давления для рабочей текучей среды, причем переход от одного уровня давления к более высокому последующему уровню давления достигается посредством одной или более компрессорных машин, расположенных последовательно, или посредством компрессорных машин, расположенных параллельно. Компрессорная станция содержит две компрессорные машины, создающие два уровня давления, возрастающих над уровнем давления текучей среды у входа компрессорной станции, при этом две основные компрессорные машины, соответственно первая и вторая компрессорные машины, расположены последовательно и создают на своем соответствующем выходе текучей среды уровни давления, соответственно называемые “низким” и “высоким”. Другая дополнительная компрессорная машина питается на входе текучей средой, выходящей из холодильных камер под так называемым “средним” уровнем давления, являющимся промежуточным между низким и высоким уровнями. Дополнительная компрессорная машина создает на своем выходе текучей среды также “высокий” уровень давления, причем средний уровень давления является выше, чем уровень давления у входа основных компрессорных машин. Целью изобретения является предложение установки охлаждения, которая является менее дорогой, более компактной и эффективной. 6 з.п. ф-лы, 4 ил.

Изобретение относится к установке и способу для охлаждения одного и того же объекта (1). Объект подвергается охлаждению посредством нескольких аппаратов для охлаждения и/или ожижения (L/R), расположенных параллельно. В аппаратах для охлаждения и/или ожижения (L/R) используется один и тот же рабочий газ, имеющий низкую молекулярную массу, то есть имеющий среднюю общую молекулярную массу, составляющую менее 10 г/моль, такой как газообразный гелий. Каждый аппарат для охлаждения и/или ожижения (L/R) содержит станцию (2) для сжатия рабочего газа и холодильную камеру (3). Холодильная камера (3) предназначена для охлаждения рабочего газа на выходе из компрессионной станции (2) до криогенной температуры, близкой к температуре сжижения рабочего газа. Рабочий газ, охлажденный посредством каждой из соответствующих холодильных камер (3), вводится в теплообмен с объектом (1). Одна компрессионная станция (2) обеспечивает сжатие рабочего газа для каждой из соответствующих отдельных холодильных камер (3). Компрессионная станция (2) содержит только компрессионные машины (ЕС1, ЕС2, ЕС3) типа винтовых машин с принудительной смазкой и системы (4, 14) для отделения масла. Техническим результатом является повышение компактности и эффективности. 2 н. и 9 з.п. ф-лы, 4 ил.

Группа изобретений относится к холодильной технике. Устройство теплового насоса включает в себя инвертор, который прикладывает требуемое напряжение к двигателю компрессора. Содержит блок управления инвертора, который восстанавливает значения межфазных и фазных напряжений или фазных токов, имеющих частоту выше, чем частота во время нормального режима функционирования, для выполнения возбуждения с блокировкой двигателя компрессора. Восстановление осуществляется на основе соответствующих межфазных и фазных напряжений или с фазных токов двигателя компрессора в течение множества циклов высокочастотного возбуждения. Данное устройство теплового насоса может быть использовано в устройстве кондиционирования воздуха, водонагревателе, холодильной установке или морозильном аппарате. Техническим результатом является предотвращение застоя хладагента и повышение надежности и эффективности работы системы. 5 н. и 12 з.п. ф-лы, 22 ил.

Изобретение относится к холодильной технике. Контроллер холодильника включает в себя таблицу параметров, хранящую сопротивление потоку устройства для понижения давления, связанное с каждой из температур наружного воздуха, причем сопротивления потоку отличаются друг от друга, блок установки режима работы, выполненный с возможностью выбора одного из сопротивлений потоку в таблицы параметров на основании температуры наружного воздуха, определенной датчиком температуры наружного воздуха, и блок управления холодильным контуром, выполненный с возможностью установки рабочего времени для сопротивления потоку, выбранного блоком установки режима работы, и управления холодильным контуром для обеспечения энергосберегающего режима, подлежащего выполнению, в зависимости от сопротивления Rf потоку и рабочего времени. Изобретение направлено на создание холодильника с упрощенной конструкцией. 9 з.п. ф-лы, 9 ил.

Изобретение относится к рабочей среде теплового цикла, содержащей 1,1,2-трифторэтилен в количестве по меньшей мере 20 масс.% и дифторметан в количестве по меньшей мере 1 масс.% в рабочей среде (100 масс.%), а также к системе теплового цикла, использующей эту рабочую среду. Технический результат – снижение воспламеняемости, меньшее влияние на озоновый слой и глобальное потепление, превосходная производительность (мощность) и безопасность системы теплового цикла. 2 н. и 10 з.п. ф-лы, 6 табл., 3 ил., 5 пр.

Изобретение относится к холодильной компрессионной системе. Устройство для сжатия газообразного холодильного агента, для использования в холодильном контуре установки для сжижения, содержит холодильный контур и два компрессора, которые функционально соединены с холодильным контуром. Один из компрессоров обеспечен в конфигурации с двойным всасыванием и выпускные отверстия и впускные отверстия первого и второго компрессоров соединены, по меньшей мере частично, в конфигурации с взаимно параллельными потоками таким образом, что поток холодильного агента, который покидает холодильный контур через множество его выпускных отверстий, распределяется между двумя компрессорами перед объединением у впускного отверстия холодильного контура. Изобретение направлено на уменьшение габаритов и повышение выходной производительности. 11 з.п. ф-лы, 22 ил., 1 табл.

Изобретение относится к холодильной технике, в частности к холодильникам компрессионного типа. Способ повышения энергоэффективности холодильников компрессионного типа заключается в том, что часть теплового потока с поверхности конденсатора утилизируется путем преобразования тепловой энергии в электрическую энергию, которая может быть накоплена в аккумуляторе и использована для питания дополнительного вентилятора обдува поверхности конденсатора, или для обеспечения работы холодильника при аварийном отключении электросети, или для обеспечения работы дополнительных устройств, повышающих уровень комфортности холодильника. Для преобразования тепловой энергии в электрическую могут использоваться многослойные пленочные термопары, которые крепятся к поверхности конденсатора с помощью фольговой пластины, или фольговая пластина может являться подложкой, на которой изготовлены многослойные пленочные термопары методом напыления тонких термопарных пленок. Техническим результатом является обеспечение перспективы совершенствования конструкции холодильников и создания новых моделей холодильников с повышенным КПД и более высоким уровнем комфортности. 5 з.п. ф-лы, 1 ил.

Изобретение относится к рабочей среде теплового цикла, содержащей 1,2-дифторэтилен в количестве по меньшей мере 20% масс. и гидрофторуглерод, в которой гидрофторуглерод является дифторметаном, 1,1-дифторэтаном, 1,1,2,2-тетрафторэтаном, 1,1,1,2-тетрафторэтаном или пентафторэтаном, которая используется в системе теплового цикла (такой, как система цикла Ранкина, система цикла теплового насоса, система холодильного цикла 10 или система теплопередачи). Технический результат - меньшее влияние на озоновый слой и глобальное потепление, превосходная производительность системы теплового цикла (эффективность и мощность), одновременное сохранение холодильного коэффициента и улучшения холодопроизводительности. 10 з.п. ф-лы, 12 табл., 10 пр., 3 ил.

Изобретение относятся к кондиционеру воздуха с компрессором, использующим хладагент R32. Он содержит компрессор для сжатия хладагента; наружный теплообменник; внутренний теплообменник; и расширительный клапан для уменьшения давления хладагента, причем хладагент образован из гидрофторуглерода (HFC); компрессор содержит компрессорный узел для сжатия хладагента, узел электродвигателя для передачи вращающей силы компрессорному узлу через вращающийся вал, соединенный с компрессорным узлом, и участок для вмещения компрессорного масла для содержания компрессорного масла с целью уменьшения трения между вращающимся валом и компрессорным узлом и понижения температуры компрессора; и масло содержит углеродную наночастицу, при этом объем компрессорного масла составляет около 35-45% от эффективного объема внутренней части компрессора, причем эффективным объемом является объем, полученный путем вычитания объемов узла электродвигателя и компрессорного узла из общего объема компрессора. Это позволяет повысить надежность и эффективность компрессора при использовании хладагента на основе HFC. 12 з.п. ф-лы, 15 ил.

Изобретение относится к криогенной технике, а более конкретно к гелиевым рефрижераторам с избыточным обратным потоком. Сателлитный рефрижератор для производства холода на двух температурных уровнях включает в себя следующие компоненты: гелиевый компрессор, теплообменный блок, два дроссельных вентиля, криостат первого охлаждаемого устройства при гелиевой температуре ~4,4 К. Сателлитный рефрижератор работает следующим образом. Гелий из обратного потока сжимается в компрессоре и поступает в канал прямого потока теплообменного блока, в котором охлаждается до температуры второго охлаждаемого устройства, после чего разделяется на два потока. Один поток охлаждает второе устройства, после чего возвращается в дополнительный поток теплообменного блока, соединенный с криостатом первого устройства через дроссельный вентиль. Другой поток также соединен с криостатом первого охлаждаемого устройства через второй дроссельный вентиль. Использование изобретения обеспечивает охлаждение второго объекта при температурах выше 4,4 К без введения в его схему дополнительного детандера, что сохраняет простоту и надежность сателлитного рефрижератора при расширении его возможностей. 2 ил.

Наверх