Электрохимический генератор низкотемпературной плазмы



Электрохимический генератор низкотемпературной плазмы
Электрохимический генератор низкотемпературной плазмы

 

H05H1/24 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2577076:

Открытое акционерное общество "Научно-исследовательское предприятие гиперзвуковых систем" (ОАО "НИПГС") (RU)

Изобретение относится к области авиационной техники. Электрохимический генератор низкотемпературной плазмы для поджига, стабилизации и оптимизации работы сверхзвуковой камеры сгорания содержит термохимический реактор со штуцером для подвода газа с химически активным компонентом. Термохимический реактор стыкуется со сверхзвуковой камерой сгорания. Генератор снабжен плазматроном, последовательно с которым соединен термохимический реактор. Изобретение позволяет обеспечить надежное воспламенение, а также стабилизировать горение углеводородных топлив в прямоточных сверхзвуковых камерах сгорания. 1 ил.

 

Изобретение относится к области авиационной техники и может быть использовано для обеспечения надежного воспламенения и стабилизации горения углеводородных топлив в прямоточных сверхзвуковых камерах сгорания в условиях, когда традиционные газодинамические методы не позволяют этого сделать (низкие статические температуры и давления, бедные смеси).

Известны модули для воспламенения и стабилизации горения, использующие наносекундные разряды, в которых температура электронов может быть наиболее высокой, значительно больше, чем температура нейтральных молекул и ионов (неравновесные разряды), благодаря чему они могут эффективно возбуждать высоко расположенные уровни молекул, участие которых приводит к интенсификации химических процессов, протекающих при горении, предложенные в работе: Aleksandrov N., Anikin N., Bazelyan E., Zatsepin D., Starikovskaia S., Starikovskii A.. - «Chemical reactions and ignitions in hydrocarbon-air mixtures by high-voltage nanosecond gas discharge)) (AIAA Paper. 2001-2949). Однако для реализации наносекундных разрядов требуются напряжения на уровне 40-50 кВ, которые технологически трудно применимы в камерах сгорания.

Известны модули для воспламенения и стабилизации горения углеводородных топлив, в которых используются неравновесные СВЧ и ВЧ разряды с высокой температурой электронов, например, предложенные в работах: Esakov I., Grachev L., Kholftaev K. - «Investigation of under-critical microwave streamer discharge for jet engine fuel ignition» (AIAA Paper 2001-2939) и Klimov A., Bityurin V., Brovkin V., Kuznetsov A., Sukovatkin N., Vystavkin N. - «Plasma assisted combustion» (Proceedings of the 3 th Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications. - M.: IVTAN. 2001. p. 33-37). Недостатком таких модулей является необходимость использования полупрозрачных диэлектрических окон и покрытий, которые разрушаются при температурах, значительно более низких, чем температура стенок камер сгорания на рабочих режимах и специфические особенности сочетания источников электромагнитного излучения с камерами, выполненными из металла.

Известен электроразрядный модуль пилотного пламени, в котором используются неравновесные электродные разряды, технологически наиболее просто реализуемые в камерах сгорания, предложенный в работе: Leonov S., Bityurin V., Savelkin K., Yarantsev D. - «Plasma-induced ignition and plasma assisted combustion of fuel in high speed flow» (Proceedings of 5 th Workshop "PA and MHD in Aerospace Applications". - M.: IVTAN. 2003, p. 56).

Недостатком указанного модуля является то, что зона воспламенения образуется на периферии камеры сгорания, у ее стенки, а необходимость использования уступа, в рециркуляционной области за которым создается зона плазмохимических реакций, приводит к увеличению аэродинамического сопротивления течению в камере сгорания.

Ближайшим техническим решением является сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания (патент РФ №2499193), который по максимальному количеству сходных существенных признаков принят за прототип. Известный стабилизатор горения содержит термохимический реактор (ТХР) в одном из двух последовательно расположенных по потоку электродов анода и катода, выполненных в виде обтекаемых пилонов с симметричными аэродинамическими профилями и установленных в проточной части камеры сгорания, при этом анод электрически изолирован от металлической стенки камеры сгорания, а катод расположен в следе за анодом и установлен непосредственно на стенке камеры. Анод имеет излом и состоит из двух секций: корневой, имеющей отрицательную стреловидность относительно направления потока, и концевой - с нулевой стреловидностью, обеспечивающих газодинамическую стабилизацию положения канала разряда и интенсификацию плазмохимических реакций, возникающих в зоне пониженного давления за профилем нулевой стреловидности. Для впрыска топлива в поток на обтекаемой поверхности анода (пилона) размещены инжекторы, к которым подводится топливо через встроенную в пилон подводящую трубку. Недостатком прототипа является повышенный уровень аэродинамических потерь, обусловленный трудностью перемещения анодного конца канала разряда от места пробоя к зоне пониженного давления на задней кромке анода. Пробой происходит на ближайшую к нему металлическую стенку камеры.

Задачей и техническим результатом изобретения является обеспечение низкого уровня энергетических затрат при существенном воздействии, позволяющее осуществлять воспламенение и поддерживать стабильное горение топливно-воздушной смеси, на процессы в объеме камеры сгорания, а также управление энергоэффективностью сгорания топлива для достижения функционирования энергодвигательных установок сверхзвуковых летательных аппаратов в требуемом диапазоне полетных условий.

Задача, на решение которой направлено заявляемое изобретение, и технический результат, полученный при осуществлении ее, заключается в оптимизации внутрикамерных процессов и характеристик и может быть достигнута совокупностью заявленных существенных признаков, необходимых и достаточных для осуществления технического результата.

Сущность поясняется чертежом, на котором представлена схема заявленного электрохимического генератора низкотемпературной плазмы, где:

1 - термохимический реактор;

2 - камера сгорания;

3 - корпус плазматрона (анод);

4 - катод;

5 - плазматрон;

6 - штуцер подвода газообразного рабочего тела плазматрона;

7 - керамический держатель;

8 - металлическая обойма держателя;

9 - электрод катода;

10 - диффузор;

11 - изолированное сопло;

12 - малая диэлектрическая трубка;

13 - большая диэлектрическая трубка;

14 - штуцер подвода газа с химически активным компонентом;

15 - трубка-завихритель;

16 - центрирующая вставка.

Сущность заявляемого технического решения заключается в том, что, как и прототип, оно содержит термохимический реактор 1, камеру сгорания 2, анод 3, катод 4.

В отличие от прототипа дополнительно введен плазматрон 5, связанный с термохимическим реактором 1, который соединен с камерой сгорания 2. Корпус плазматрона 5 со штуцером 6 является анодом 3. Керамический держатель 7 электрода 9 катода 4, закрепленный в металлической оболочке 8, изолирует электрод 9 катода 4 от корпуса плазматрона 5. Диффузор 10 и сопло 11 расположены на диэлектрических вставках в виде трубок 12 и 13. В термохимический реактор 1 через штуцер 14 подводится газ с химически активным компонентом. Через сопло 11 низкотемпературная плазма выдувается по направлению анода 3 и далее термохимического реактора 1. Анод 3 изготовляется из высокотемпературного материала или материала с высокой теплопроводностью. В аноде 3 выполнено осевое отверстие для выдувания плазмы в трубку-завихритель 15. Трубка-завихритель 15 соединена с графитовой центрирующей вставкой 16.

Устройство работает следующим образом.

Плазма вводится в камеру сгорания 2. Вводимая плазма имеет диффузный характер за счет ее формирования в плазматроне 5. Это позволяет воздействовать на больший объем топливно-воздушной смеси внутри камеры сгорания 2. Используется как электрическая энергия, так и химическая, причем основная мощность выделяется именно за счет использования химической составляющей, что с точки зрения технической реализации более эффективно, т.к. электрической мощности может быть недостаточно на борту летательного аппарата для существенного влияния на внутрикамерные процессы энергодвигательной установки. К электроду 9 катода 4 подается питание от источника со схемой поджига дуги. Электрод 9 изолирован от корпуса плазматрона 5, который выполняет роль анода 3, керамическим держателем 7, закрепленным в металлической обойме 8. Между катодом 4 и корпусом плазматрона 5 через изолированное сопло 11 происходит электрический самостоятельный разряд в среде рабочего тела. Газообразное рабочее тело подается через штуцер 6 в корпус плазматрона 5. Далее газообразное рабочее тело через неплотности попадает внутрь большой диэлектрической трубки 13 к керамическому тангенциальному диффузору 10, благодаря прохождению газа через который происходит газодинамическая крутка анодного пятна контакта дуги с корпусом плазматрона 5 для уменьшения эрозии с одной стороны, и стабилизация дуги на оси канала плазматрона 5 с другой стороны. Сопло 11 изолировано от катода 4 диффузором 10, а от анода малой 12 и большой 13 диэлектрическими трубками. Низкотемпературная плазма рабочего тела через отверстие в торце корпуса плазматрона 5 подается в термохимический реактор 1, который соосно состыкован с плазматроном 5. Плазма через графитовую центрирующую вставку 16 попадает в трубку-завихритель 15. Вставка 16 и трубка 15 находятся внутри термохимического реактора 1, в который через штуцер 14 подается газ с химически активным компонентом. Газ, проходя через тангенциальные отверстия в стенке и неплотности на торцах трубки-завихрителя 15, охлаждает ее и вступает в реакцию с плазмой. В трубке-завихрителе 15 происходит смешение и реакция между плазмой и газом с химически активным компонентом. Трубка 15 испытывает большие тепловые нагрузки. Значительное их снижение достигается за счет подачи плазмы вдоль оси трубки 15 и подачи газа с химически активным компонентом вдоль внутренней стенки через серию отверстий, расположенных тангенциально потоку плазмы. При этом происходит частичная завеса конвективной передачи тепла от потока плазмы кварцевой трубке, а также охлаждение за счет обдува газом с химически активным компонентом. Для более эффективной оптимизации внутрикамерных процессов подвод низкотемпературной плазмы к камере сгорания 2 может осуществляться путем одновременного подключения нескольких электрохимических генераторов низкотемпературной плазмы.

Термохимический реактор 1 соединен с камерой сгорания 2. Низкотемпературная плазма с наработанными радикалами для инициации и поддержания горения попадает в камеру сгорания 2 двигательной установки.

Проведенное моделирование подтвердило возможность осуществлять воспламенение топлива в канале камера сгорания 2 и поддержание пламени в окрестности зоны впрыска (благодаря нескольким локальным воздействиям инжектируемых плазменных струй с температурой более 3000 K и с массовой скоростью от 500 м/с) в условиях, когда традиционные газодинамические методы не позволяют этого сделать. Таким образом, техническим результатом изобретения является обеспечение низкого уровня энергетических затрат при получении существенного воздействия на процессы в сверхзвуковой камере сгорания энергодвигательной установки летательного аппарата для эффективного поджига, стабилизации и оптимизации горения.

Электрохимический генератор низкотемпературной плазмы, содержащий термохимический реактор, который стыкуется со сверхзвуковой камерой сгорания, анод и катод, отличающийся тем, что генератор снабжен плазматроном, последовательно с которым соединен термохимический реактор, при этом корпус плазматрона со штуцером для подвода газообразного рабочего тела является анодом, через керамический держатель в металлической обойме введен электрод катода, а катод через диффузор связан с изолированным соплом, зафиксированным в корпусе плазматрона через малую и большую диэлектрические трубки, причем в торце корпуса плазматрона есть канал для подачи плазмы в термохимический реактор, имеющий штуцер для подвода газа с химически активным компонентом, внутри корпуса термохимического реактора установлена высокотемпературная трубка-завихритель с отверстиями, которая удерживается на оси термохимического реактора центрирующей вставкой.



 

Похожие патенты:

Изобретение относится к области переработки твердых отходов и может быть использовано на промышленных предприятиях, а также в коммунальном хозяйстве. Электродуговой плазмотрон постоянного тока для установок плазменной переработки отходов включает соосные полые цилиндрические водоохлаждаемые электроды (анод и катод), выполненные с возможностью вихревой подачи плазмообразующего газа в зазор между анодом и катодом через форсунку, выполненную из изолирующего термостойкого материала, соосной с анодом и катодом с отверстиями для подачи газа, при этом отверстия выполнены в плоскости, перпендикулярной оси электродов по касательной к внутренней поверхности форсунки.

Изобретение относится к измерительной технике и может быть использовано для диагностики неоднородного слоя плазмы, контроля параметров плазмы в технологических установках, в исследованиях по моделированию плазмы ионосферы.

Изобретение относится к области электротехники, конкретно к плазменным источникам электрической энергии, использующим воду и/или дымовые (СО2 - 80%) газы в качестве рабочего вещества.

Изобретение относится к устройству для плазменной обработки газообразной среды. Устройство содержит генерирующее плазму устройство для создания в газообразной среде плазмы, диэлектрическую структуру, сформированную в виде трубки из плавленого кварца, причем плазма способна переноситься в диэлектрическую структуру, и камеру взаимодействия, включающую внутреннее пространство и стенку.

Изобретение относится к двигательным установкам (ДУ) малой тяги для коррекции орбит космических аппаратов (КА). ДУ содержит размещенные друг над другом ускорители плазмы (УП) с ускоряющими электродами: катодом (3) и анодом (4), а также узлами подачи рабочего тела: шашек (7), снабженных пружинными толкателями (8).

Изобретение относится к области плазменной техники. Плазменная горелка содержит каскад между катодом и анодом.

Изобретение относится к источникам электрической энергии переменного и постоянного тока. Источник содержит электроразрядную камеру 1 активации рабочего вещества и устройство активации рабочего вещества, включающее высоковольтный накопитель 2 электрической энергии и стабилизатор 3 плазмы в рабочей камере 1.

Изобретение относится к медицинской технике, а именно к средству для высокочастотной хирургии/терапии. Многофункциональный элемент для осуществления хирургических/терапевтических вмешательств включает устройство подачи окислительного средства, устройство подачи газа и электрод для получения плазмы.

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов.

Изобретение относится к устройствам для получения импульсной низкотемпературной плазмы и может быть использовано в плазмохимии, машиностроении и для экспериментальных исследований.

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с симметричными аэродинамическими профилями, один из которых - анод, электрически изолирован от металлической стенки камеры сгорания и оборудован трубкой для подвода топлива и инжекторами для впрыска топлива в поток, при этом анод имеет излом так, что корневая часть анода имеет отрицательную стреловидность относительно направления потока, а концевая - нулевую стреловидность, а второй электрод - катод расположен в следе за первым и непосредственно закреплен на стенке камеры сгорания, в анод дополнительно встроены трубка и инжекторы для впрыска в поток одновременно с топливом химически активных добавок, торец концевой части анода со стороны набегающего потока имеет выступ в виде тонкой прямоугольной пластины, расположенной в плоскости симметрии пилона, задняя кромка пластины скошена и имеет скругления в угловых точках, при этом угол между торцевой поверхностью и задней кромкой анода также скруглен.

Изобретение относится к теплоэнергетике и может быть использовано при создании и модернизации энергетических газотурбинных установок, потребляющих в качестве энергетического газотурбинного топлива природный газ и другие виды газообразного топлива.

Изобретение относится к горелкам для газовых турбин и, в частности, к горелкам, выполненным с возможностью стабилизации горения в двигателе. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в форсажной камере турбореактивного двигателя или в форсажной камере турбореактивного двухконтурного двигателя.

Изобретение относится к газотурбинным двигателям (ГТД) и может быть использовано в камерах сгорания авиационных ГТД и наземных установок. .

Изобретение относится к области двухконтурных турбореактивных двигателей, в частности к форсажным турбореактивным двигателям. .

Изобретение относится к области плазменно-электромагнитного воздействия на различные виды материальной среды, расположенной как на близком, так и значительном расстояниях от излучателя. Технический результат - упрощение образования плазмы, которая образуется с помощью энергии емкостной камеры, переходящей в разрядную камеру, напряженность электрического поля которой превышает напряжение пробоя, например воздуха, подаваемого из воздушной камеры в разрядную. Причем напряженность электрического поля суммируется с напряженностью суммарного магнитного поля, образованного, по меньшей мере, одной парой индуктивностей, вырабатывающих суммарное магнитное поле с постоянным средним значением вектора Пойтинга, направленного вдоль оси излучения. При этом энергия емкостной камеры увеличивается за счет сложения энергии дополнительно включенного параллельно емкостной камеры конденсатора, а количество подаваемого в разрядную камеру воздуха регулируется давлением, создаваемым в воздушной камере. При этом коаксиально излучающему одной парой индуктивностей суммарному магнитному полю излучается второе суммарное высокочастотное относительно первого магнитное поле, образованное второй парой индуктивностей. Устройство для реализации способа содержит емкостную камеру, представляющую собой коаксиально расположенные обкладки конденсатора, между которыми размещена, по меньшей мере, пара излучающих индуктивностей, причем емкостная камера на выходе заканчивается плазменной камерой, через которую проходят магнитные поля, образованные парами катушек индуктивностей, при этом, по меньшей мере, пара индуктивностей намотана на замкнутый гибкий магнитопровод, который в свою очередь имеет круговую обмотку относительно оси излучения. Одна индуктивность в каждой паре индуктивностей имеет правую, а другая - левую обмотки. 2 н. и 5 з.п. ф-лы, 4 ил.
Наверх