Самонастраивающийся электропривод манипулятора



Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора
Самонастраивающийся электропривод манипулятора

 


Владельцы патента RU 2577204:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" (ДВФУ) (RU)

Изобретение относится к робототехнике и может быть использовано при создании электроприводов манипуляторов. Техническим результатом является обеспечение инвариантности динамических свойств электропривода к непрерывным и быстрым изменениям его моментных нагрузочных характеристик. Самонастраивающийся электропривод манипулятора управляет обобщенной координатой q2 манипулятора, конструкция которого позволяет осуществлять горизонтальное прямолинейное перемещение (координата q4) и три вращательных движения (координаты q1, q2 и q3), при этом формируют дополнительный сигнал управления, подаваемый на вход электропривода, который обеспечивает получение моментного воздействия, необходимого для обеспечения полной инвариантности его показателей качества к непрерывно изменяющимся параметрам нагрузки. 2 ил.

 

Изобретение относится к робототехнике и может быть использовано при создании электроприводов манипуляторов.

Известно устройство для управления приводом робота, содержащее последовательно соединенные первый и второй сумматоры, первый блок умножения, третий сумматор, усилитель и электродвигатель, связанный с первым датчиком скорости непосредственно и через редуктор с первым датчиком положения, выход которого соединен с первым отрицательным входом первого сумматора, подключенного вторым положительным входом к входу устройства, последовательно соединенные релейный блок и четвертый сумматор, второй положительный вход которого соединен с выходом первого датчика скорости и входом релейного блока, последовательно соединенные первый задатчик сигнала и пятый сумматор, второй положительный вход которого подключен к выходу датчика массы, а выход - к второму входу первого блока умножения, последовательно соединенные второй датчик скорости, установленный в третьей степени подвижности робота, второй блок умножения и третий блок умножения, второй вход которого соединен с выходом первого датчика скорости, а выход - с третьим отрицательным входом четвертого сумматора, а также второй датчик положения, установленный в третьей степени подвижности робота, причем второй отрицательный вход второго сумматора соединен с выходом первого датчика скорости, а выход четвертого сумматора подключен ко второму положительному входу третьего сумматора, последовательно соединенные второй задатчик сигнала, шестой сумматор, четвертый блок умножения, второй вход которого через первый косинусный функциональный преобразователь соединен с выходом второго датчика положения, седьмой сумматор, второй положительный вход которого соединен с выходом третьего задатчика сигнала, и пятый блок умножения, второй вход которого соединен с выходом первого датчика ускорения, установленного в третьей степени подвижности робота, а выход подключен к четвертому положительному входу четвертого сумматора, последовательно соединенные второй синусный функциональный преобразователь, вход которого соединен с входом первого косинусного функционального преобразователя, и шестой блок умножения, второй вход которого подключен к выходу шестого сумматора, а выход - ко второму входу второго блока умножения, пятый отрицательный вход четвертого сумматора подключен к выходу седьмого блока умножения, первый вход которого соединен с выходом второго датчика скорости, а второй вход - с выходом второго блока умножения, третий положительный вход пятого сумматора соединен с выходом четвертого блока умножения, третий положительный вход седьмого сумматора подключен к выходу датчика массы и второму положительному входу шестого сумматора, последовательно соединенные восьмой сумматор, первый и второй положительные входы которого подключены, соответственно, к выходам второго и первого датчиков положения, третий синусный функциональный преобразователь, восьмой блок умножения и девятый сумматор, а также девятый блок умножения, второй вход которого подключен к выходу второго датчика ускорения, установленного в четвертой степени подвижности робота, а его выход - к шестому положительному входу четвертого сумматора, последовательно соединенные четвертый задатчик сигнала, десятый сумматор, десятый блок умножения, второй вход которого через четвертый синусный функциональный преобразователь подключен к выходу первого датчика положения, а его выход - ко второму положительному входу девятого сумматора, последовательно соединенные пятый задатчик сигнала и одиннадцатый сумматор, второй положительный вход которого подключен к выходу датчика массы и ко второму входу десятого сумматора, а его выход - ко второму входу восьмого блока умножения, последовательно соединенные третий датчик ускорения, механически связанный с выходным валом электродвигателя, одиннадцатый блок умножения, второй вход которого соединен с выходом второго блока умножения, и двенадцатый сумматор, второй положительный вход которого подключен к выходу третьего датчика ускорения, а выход - к третьему положительному входу третьего сумматора, последовательно соединенные первый дифференциатор и двенадцатый блок умножения, второй вход которого соединен с выходом седьмого сумматора, тринадцатый блок умножения, первый вход которого подключен к выходу шестого блока умножения, а второй вход - к выходу первого датчика ускорения и входу первого дифференциатора, последовательно соединенные тринадцатый сумматор, подключенный первым отрицательным входом к выходу тринадцатого блока умножения, и четырнадцатый блок умножения, последовательно соединенные квадратор, пятнадцатый блок умножения, второй вход которого соединен с выходом четвертого блока умножения, и шестнадцатый блок умножения, последовательно соединенные четырнадцатый сумматор, семнадцатый блок умножения и восемнадцатый блок умножения, второй вход которого подключен к выходу одиннадцатого сумматора, последовательно соединенные пятый косинусный функциональный преобразователь, вход которого соединен с выходом первого датчика положения, и девятнадцатый блок умножения, второй вход которого подключен к выходу десятого сумматора, а также двадцатый и двадцать первый блоки умножения, причем второй вход последнего соединен с выходом первого датчика скорости, первым положительным входом четырнадцатого сумматора и вторым входом четырнадцатого блока умножения, последовательно соединенные шестой косинусный функциональный преобразователь, подключенный входом к выходу восьмого сумматора, и двадцать второй блок умножения, последовательно соединенные второй дифференциатор, подключенный входом к выходу второго датчика ускорения и второму входу двадцатого блока умножения, и двадцать третий блок умножения, а также двадцать четвертый блок умножения, второй вход которого соединен с выходом второго дифференциатора, а выход - с третьим положительным входом двенадцатого сумматора, седьмой положительный - к выходу четырнадцатого блока умножения, восьмой отрицательный вход - к выходу шестнадцатого блока умножения, девятый положительный - к выходу двенадцатого блока умножения, а десятый отрицательный - к выходу двадцать пятого блока умножения, первый вход которого соединен с выходом тринадцатого блока умножения, а второй вход - с выходом второго датчика скорости, входом квадратора, вторым входом шестнадцатого блока умножения и вторым положительным входом четырнадцатого сумматора, причем второй отрицательный вход тринадцатого сумматора подключен к выходу пятнадцатого блока умножения, последовательно соединенные двадцать шестой блок умножения, первый вход которого подключен к выходу восьмого блока умножения, а его второй вход - к выходу четырнадцатого сумматора, и пятнадцатый сумматор, второй положительный вход которого через двадцать седьмой блок умножения подключен к выходу первого датчика скорости, а выход - к первому входу двадцатого блока умножения, выход которого соединен с одиннадцатым отрицательным входом двенадцатого сумматора, а также шестнадцатый сумматор, первый положительный вход которого соединен с выходом двадцать второго блока умножения, второй положительный вход с выходом девятнадцатого блока умножения и первыми входами двадцать первого и двадцать четвертого блоков умножения, а выход - с первым входом девятого блока умножения, и двадцать восьмой блок умножения, первый вход которого подключен к выходу двадцать третьего блока умножения, второй вход - к выходу одиннадцатого сумматора и второму входу двадцать второго блока умножения, а выход - к четвертому положительному входу двенадцатого сумматора, причем второй вход двадцать седьмого блока умножения соединен с выходом десятого блока умножения, а выход шестого косинусного функционального преобразователя - со вторыми входами семнадцатого и двадцать третьего блоков умножения, последовательно соединенные четвертый датчик ускорения, установленный в первой степени подвижности робота, двадцать девятый блок умножения и семнадцатый сумматор, второй положительный вход которого подключен ко второму входу двадцать девятого блока умножения и выходу девятого сумматора, а выход - к седьмому положительному входу четвертого сумматора, последовательно соединенные тридцатый блок умножения и восемнадцатый сумматор, второй положительный вход которого подключен к выходу восемнадцатого блока умножения и второму входу тридцатого блока умножения, а выход - к пятому положительному входу двенадцатого сумматора, последовательно соединенные тридцать первый блок умножения и девятнадцатый сумматор, второй положительный вход которого подключен к выходу двадцать первого блока умножения и второму входу тридцать первого блока умножения, а выход - к шестому положительному входу двенадцатого сумматора, последовательно соединенные третий дифференциатор, вход которого соединен с выходом четвертого датчика ускорения и первыми входами тридцатого и тридцать первого блоков умножения, и тридцать второй блок умножения, второй вход которого соединен с выходом девятого сумматора, а выход - с двенадцатым положительным входом двенадцатого сумматора (см. патент РФ №2399479, Б.И. №26, 2010 г.).

Недостатком данного устройства является то, что оно предназначено для электропривода манипуляционного робота, имеющего другую кинематическую схему. В результате это устройство не будет точно компенсировать все переменные нагрузочные характеристики рассматриваемого привода и обеспечивать требуемую динамическую точность его работы.

Известно также устройство для управления приводом робота, содержащее последовательно соединенные первый сумматор, второй сумматор, первый блок умножения, третий сумматор, первый усилитель и электродвигатель, связанный непосредственно с первым датчиком скорости и через редуктор с первым датчиком положения, выход которого подключен к первому входу первого сумматора, соединенного вторым входом с входом устройства, последовательно подключенные второй датчик скорости, второй блок умножения, третий блок умножения и четвертый сумматор, второй вход которого соединен со вторым входом второго сумматора и выходом первого датчика скорости, третий вход - с выходом релейного элемента, подключенного входом ко второму входу третьего блока умножения и выходу первого датчика скорости, а выход соединен со вторым входом третьего сумматора, последовательно соединенные датчик массы и пятый сумматор, второй вход которого подключен к выходу первого задатчика постоянного сигнала, а выход - к второму входу первого блока умножения, последовательно соединенные второй датчик положения, первый функциональный преобразователь, четвертый блок умножения, шестой сумматор, второй вход которого подключен к выходу второго задатчика постоянного сигнала, и пятый блок умножения, второй вход которого соединен с выходом первого датчика ускорения, а выход - с четвертым входом четвертого сумматора, последовательно соединенные третий задатчик постоянного сигнала, седьмой сумматор, второй вход которого подключен к выходу датчика массы, и шестой блок умножения, второй вход которого через второй функциональный преобразователь подключен к выходу второго датчика положения, а выход - ко второму входу второго блока умножения, причем второй вход четвертого блока умножения соединен с выходом седьмого сумматора, его выход - с третьим входом пятого сумматора, третий вход шестого сумматора соединен с выходом датчика массы, пятый вход четвертого сумматора через седьмой блок умножения, второй вход которого соединен с выходом второго блока умножения, подключен к выходу второго датчика скорости, последовательно соединенные четвертый задатчик постоянного сигнала, восьмой сумматор, второй вход которого подключен к выходу датчика массы, и восьмой блок умножения, второй вход которого через третий функциональный преобразователь соединен с выходом первого датчика положения, а его выход - с шестым входом четвертого сумматора, последовательно соединенные девятый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго датчиков положения, четвертый функциональный преобразователь и девятый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а выход - к седьмому входу четвертого сумматора, последовательно соединенные второй усилитель, пятый функциональный преобразователь, десятый блок умножения, десятый сумматор и одиннадцатый блок умножения, второй вход которого через квадратор подключен к выходу третьего датчика скорости, а выход - к восьмому входу четвертого сумматора, последовательно соединенные пятый задатчик постоянного сигнала, одиннадцатый сумматор и двенадцатый блок умножения, второй вход которого через последовательно соединенные третий усилитель и шестой функциональный преобразователь подключен к выходу девятого сумматора, а его выход - ко второму входу десятого сумматора, последовательно соединенные двенадцатый сумматор, первый и второй входы которого подключены соответственно к выходам второго датчика положения и второго усилителя, седьмой функциональный преобразователь и тринадцатый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а его выход - к третьему входу десятого сумматора, последовательно соединенные шестой задатчик постоянного сигнала и тринадцатый сумматор, второй вход которого подключен ко второму входу одиннадцатого сумматора и выходу датчика массы, а выход - ко второму входу десятого блока умножения, причем вход второго усилителя соединен с выходом первого датчика положения, последовательно соединенные третий датчик положения, восьмой функциональный преобразователь, четырнадцатый блок умножения, второй вход которого подключен к выходу второго датчика ускорения, и пятнадцатый блок умножения, выход которого подключен к девятому входу четвертого сумматора, последовательно соединенные девятый функциональный преобразователь, вход которого подключен к выходу первого датчика положения, шестнадцатый блок умножения, второй вход которого подключен к выходу восьмого сумматора, и четырнадцатый сумматор, выход которого подключен ко второму входу пятнадцатого блока умножения, последовательно соединенные десятый функциональный преобразователь, вход которого подключен к выходу девятого сумматора, и семнадцатый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а выход - ко второму входу четырнадцатого сумматора (см. Патент РФ №2372185, Б.И. №31, 2009).

Данное устройство по своей технической сущности является наиболее близким к предлагаемому решению.

Недостатком данного устройства является то, что оно не учитывает электрическую постоянную времени электродвигателя. В результате это устройство не будет точно компенсировать все переменные нагрузочные характеристики рассматриваемого электропривода и обеспечивать требуемую динамическую точность его работы.

Задачей, на решение которой направлено заявляемое техническое решение, является обеспечение полной инвариантности динамических свойств рассматриваемого электропривода к непрерывным и быстрым изменениям его динамических моментных нагрузочных характеристик при движении манипулятора с заданной кинематической схемой по всем его степеням подвижности с учетом электрической постоянной времени электродвигателя.

Технический результат, который может быть получен при реализации заявляемого технического решения, выражается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия, необходимого для обеспечения полной инвариантности его показателей качества к непрерывно изменяющимся параметрам нагрузки.

Поставленная задача решается тем, что в самонастраивающийся электропривод манипулятора, содержащий последовательно соединенные первый сумматор, второй сумматор, первый блок умножения, третий сумматор, первый усилитель и электродвигатель, связанный непосредственно с первым датчиком скорости и через редуктор с первым датчиком положения, выход которого подключен к первому входу первого сумматора, соединенного вторым входом со входом устройства, последовательно соединенные второй датчик скорости, второй блок умножения, третий блок умножения и четвертый сумматор, второй вход которого соединен со вторым входом второго сумматора и выходом первого датчика скорости, третий вход - с выходом релейного элемента, подключенного входом ко второму входу третьего блока умножения и выходу первого датчика скорости, а выход - ко второму входу третьего сумматора, последовательно соединенные датчик массы и пятый сумматор, второй вход которого подключен к выходу первого задатчика постоянного сигнала, а выход - ко второму входу первого блока умножения, последовательно соединенные второй датчик положения, первый косинусный функциональный преобразователь, четвертый блок умножения, шестой сумматор, второй вход которого подключен к выходу второго задатчика постоянного сигнала, и пятый блок умножения, второй вход которого подключен к выходу первого датчика ускорения, а выход - к четвертому входу четвертого сумматора, последовательно соединенные третий задатчик постоянного сигнала, седьмой сумматор, второй вход которого подключен к выходу датчика массы, и шестой блок умножения, второй вход которого через второй синусный функциональный преобразователь подключен к выходу второго датчика положения, а выход - к второму входу второго блока умножения, причем второй вход четвертого блока умножения соединен с выходом седьмого сумматора, его выход - с третьим входом пятого сумматора, третий вход шестого сумматора соединен с выходом датчика массы, пятый вход четвертого сумматора через седьмой блок умножения, второй вход которого соединен с выходом второго блока умножения, подключен к выходу второго датчика скорости, последовательно соединенные четвертый задатчик постоянного сигнала, восьмой сумматор, второй вход которого подключен к выходу датчика массы, и восьмой блок умножения, второй вход которого через третий синусный функциональный преобразователь соединен с выходом первого датчика положения, а его выход - с шестым входом четвертого сумматора, последовательно соединенные девятый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго датчиков положения, четвертый синусный функциональный преобразователь и девятый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а выход - к седьмому входу четвертого сумматора, последовательно соединенные второй усилитель, пятый синусный функциональный преобразователь, десятый блок умножения, десятый сумматор и одиннадцатый блок умножения, второй вход которого через квадратор подключен к выходу третьего датчика скорости, а выход - к восьмому входу четвертого сумматора, последовательно соединенные пятый задатчик постоянного сигнала, одиннадцатый сумматор и двенадцатый блок умножения, второй вход которого через последовательно соединенные третий усилитель и шестой синусный функциональный преобразователь подключен к выходу девятого сумматора, а его выход - ко второму входу десятого сумматора, последовательно соединенные двенадцатый сумматор, первый и второй входы которого подключены соответственно к выходам второго датчика положения и второго усилителя, седьмой синусный функциональный преобразователь и тринадцатый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а его выход - к третьему входу десятого сумматора, последовательно соединенные шестой задатчик постоянного сигнала и тринадцатый сумматор, второй вход которого подключен ко второму входу одиннадцатого сумматора и выходу датчика массы, а выход - ко второму входу десятого блока умножения, причем вход второго усилителя соединен с выходом первого датчика положения, последовательно соединенные третий датчик положения, восьмой косинусный функциональный преобразователь, четырнадцатый блок умножения, второй вход которого подключен к выходу второго датчика ускорения, и пятнадцатый блок умножения, выход которого подключен к девятому входу четвертого сумматора, последовательно соединенные девятый косинусный функциональный преобразователь, вход которого подключен к выходу первого датчика положения, шестнадцатый блок умножения, второй вход которого подключен к выходу восьмого сумматора, и четырнадцатый сумматор, выход которого подключен ко второму входу пятнадцатого блока умножения, последовательно соединенные десятый косинусный функциональный преобразователь, вход которого подключен к выходу девятого сумматора, и семнадцатый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а выход - ко второму входу четырнадцатого сумматора, дополнительно вводятся последовательно соединенные пятнадцатый сумматор, первый вход которого подключен к выходу седьмого задатчика постоянного сигнала, а второй вход подключен к выходу второго блока умножения, восемнадцатый блок умножения, второй вход которого подключен к выходу третьего датчика ускорения, установленного на выходном валу электродвигателя, а выход - к третьему входу третьего сумматора, последовательно соединенные девятнадцатый блок умножения, двадцатый блок умножения, второй вход которого через одиннадцатый синусный функциональный преобразователь подключен к выходу третьего датчика положения, двадцать первый блок умножения, выход которого подключен к четвертому входу третьего сумматора, последовательно соединенные четвертый датчик скорости, шестнадцатый сумматор, двадцать второй блок умножения, второй вход которого подключен к выходу седьмого сумматора, двадцать третий блок умножения, второй вход которого через двенадцатый косинусный функциональный преобразователь подключен к выходу двенадцатого сумматора, семнадцатый сумматор, двадцать четвертый блок умножения, второй вход которого подключен к выходу квадратора, а выход - к пятому входу третьего сумматора, последовательно соединенные двадцать пятый блок умножения, первый вход которого через первый дифференциатор подключен к выходу второго датчика ускорения и первому входу девятнадцатого блока умножения, а второй - к выходу восьмого функционального преобразователя, и двадцать шестой блок умножения, второй вход которого подключен к второму входу двадцать первого блока умножения и выходу четырнадцатого сумматора, выход которого подключен к шестому входу третьего сумматора, последовательно соединенные двадцать седьмой блок умножения, первый вход которого подключен к выходу восьмого блока умножения, восемнадцатый сумматор и двадцать восьмой блок умножения, второй вход которого подключен к выходу четырнадцатого блока умножения, а выход - к седьмому входу третьего сумматора, а также двадцать девятый блок умножения, выход которого подключен к восьмому входу третьего сумматора, последовательно соединенные четвертый датчик ускорения, тридцатый блок умножения, второй вход которого подключен к выходу третьего датчика скорости и второму входу девятнадцатого блока умножения, и тридцать первый блок умножения, второй вход которого подключен к выходу десятого сумматора, а выход - к девятому входу третьего сумматора, последовательно соединенные девятнадцатый сумматор и тридцать второй блок умножения, второй вход которого подключен к выходу семнадцатого блока умножения, а выход - к десятому входу третьего сумматора, последовательно соединенные тридцать третий блок умножения, первый вход которого подключен к выходу одиннадцатого сумматора, тридцать четвертый блок умножения, второй вход которого через тринадцатый косинусный функциональный преобразователь подключен к выходу третьего усилителя, а выход - ко второму входу семнадцатого сумматора, последовательно соединенные тридцать пятый блок умножения, первый вход которого подключен к выходу тринадцатого сумматора, и тридцать шестой блок умножения, второй вход которого через четырнадцатый косинусный функциональный преобразователь подключен к выходу второго усилителя, а выход - к третьему входу семнадцатого сумматора, а также тридцать седьмой блок умножения, первый вход которого подключен к выходу шестнадцатого блока умножения, второй вход - к вторым входам двадцать седьмого и тридцать пятого блоков умножения и первому входу девятнадцатого сумматора, а выход - к одиннадцатому входу третьего сумматора, последовательно соединенные тридцать восьмой блок умножения, первый вход которого подключен к выходу шестого блока умножения, двадцатый сумматор, второй вход которого подключен к выходу тридцать девятого блока умножения, первый вход которого через квадратор подключен к выходу второго датчика скорости, и сороковой блок умножения, второй вход которого подключен к выходу первого датчика скорости, а выход - к двенадцатому входу третьего сумматора, а также сорок первый блок умножения, первый вход которого подключен к выходу девятнадцатого сумматора и второму входу тридцать третьего блока умножения, второй вход - к выходу девятого блока умножения, а выход - ко второму входу восемнадцатого сумматора, последовательно соединенные сорок второй блок умножения, первый вход которого подключен к выходу квадратора, а второй - к выходу второго датчика скорости, к вторым входам шестнадцатого и девятнадцатого сумматоров, к первому входу двадцать девятого блока умножения, второй вход которого подключен к выходу тридцать восьмого блока умножения, и сорок третий блок умножения, второй вход которого подключен к выходу четвертого блока умножения и второму входу тридцать девятого блока умножения, а выход - к тринадцатому входу третьего сумматора, а также сорок четвертый блок умножения, первый вход которого через второй дифференциатор подключен к выходу первого датчика ускорения и к второму входу тридцать восьмого блока умножения, второй вход - к выходу шестого сумматора, а выход - к четырнадцатому входу третьего сумматора.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения обеспечивают высокую точность и устойчивость работы электропривода робота в условиях существенного изменения его параметров нагрузки.

На фиг.1 дана блок-схема предлагаемого электропривода робота, а на фиг.2 - кинематическая схема исполнительного органа этого робота.

Самонастраивающийся электропривод манипулятора содержит последовательно соединенные первый сумматор 1, второй сумматор 2, первый блок 3 умножения, третий сумматор 4, первый усилитель 5 и электродвигатель 6, связанный непосредственно с первым датчиком 7 скорости и через редуктор 8 с первым датчиком 9 положения, выход которого подключен к первому входу первого сумматора 1, соединенного вторым входом с входом устройства, последовательно соединенные второй датчик 10 скорости, второй блок 11 умножения, третий блок 12 умножения и четвертый сумматор 13, второй вход которого соединен со вторым входом второго сумматора 2 и выходом первого датчика 7 скорости, третий вход - с выходом релейного элемента 14, подключенного входом ко второму входу третьего блока 12 умножения и выходу первого датчика 7 скорости, а выход - ко второму входу третьего сумматора 4, последовательно соединенные датчик 15 массы и пятый сумматор 16, второй вход которого подключен к выходу первого задатчика 17 постоянного сигнала, а выход - ко второму входу первого блока 3 умножения, последовательно соединенные второй датчик 18 положения, первый косинусный функциональный преобразователь 19, четвертый блок 20 умножения, шестой сумматор 21, второй вход которого подключен к выходу второго задатчика 22 постоянного сигнала, и пятый блок 23 умножения, второй вход которого подключен к выходу первого датчика 24 ускорения, а выход - к четвертому входу четвертого сумматора 13, последовательно соединенные третий задатчик 25 постоянного сигнала, седьмой сумматор 26, второй вход которого подключен к выходу датчика 15 массы, и шестой блок 27 умножения, второй вход которого через второй синусный функциональный преобразователь 28 подключен к выходу второго датчика 18 положения, а выход - к второму входу второго блока 11 умножения, причем второй вход четвертого блока 20 умножения соединен с выходом седьмого сумматора 26, его выход - с третьим входом пятого сумматора 16, третий вход шестого сумматора 21 соединен с выходом датчика 15 массы, пятый вход четвертого сумматора 13 через седьмой блок 29 умножения, второй вход которого соединен с выходом второго блока 11 умножения, подключен к выходу второго датчика 10 скорости, последовательно соединенные четвертый задатчик 30 постоянного сигнала, восьмой сумматор 31, второй вход которого подключен к выходу датчика 15 массы, и восьмой блок 32 умножения, второй вход которого через третий синусный функциональный преобразователь 33 соединен с выходом первого датчика 9 положения, а его выход - с шестым входом четвертого сумматора 13, последовательно соединенные девятый сумматор 34, первый и второй входы которого подключены соответственно к выходам первого 9 и второго 18 датчиков положения, четвертый синусный функциональный преобразователь 35 и девятый блок 36 умножения, второй вход которого подключен к выходу седьмого сумматора 26, а выход - к седьмому входу четвертого сумматора 13, последовательно соединенные второй усилитель 37, пятый синусный функциональный преобразователь 38, десятый блок 39 умножения, десятый сумматор 40 и одиннадцатый блок 41 умножения, второй вход которого через квадратор 42 подключен к выходу третьего датчика 43 скорости, а выход - к восьмому входу четвертого сумматора 13, последовательно соединенные пятый задатчик 44 постоянного сигнала, одиннадцатый сумматор 45 и двенадцатый блок 46 умножения, второй вход которого через последовательно соединенные третий усилитель 47 и шестой синусный функциональный преобразователь 48 подключен к выходу девятого сумматора 34, а его выход - ко второму входу десятого сумматора 40, последовательно соединенные двенадцатый сумматор 49, первый и второй входы которого подключены соответственно к выходам второго датчика 18 положения и второго усилителя 37, седьмой синусный функциональный преобразователь 50 и тринадцатый блок 51 умножения, второй вход которого подключен к выходу седьмого сумматора 26, а его выход - к третьему входу десятого сумматора 40, последовательно соединенные шестой задатчик 52 постоянного сигнала и тринадцатый сумматор 53, второй вход которого подключен ко второму входу одиннадцатого сумматора 45 и выходу датчика 15 массы, а выход - ко второму входу десятого блока 39 умножения, причем вход второго усилителя 37 соединен с выходом первого датчика 9 положения, последовательно соединенные третий датчик 54 положения, восьмой косинусный функциональный преобразователь 55, четырнадцатый блок 56 умножения, второй вход которого подключен к выходу второго датчика 57 ускорения, и пятнадцатый блок 58 умножения, выход которого подключен к девятому входу четвертого сумматора 13, последовательно соединенные девятый косинусный функциональный преобразователь 59, вход которого подключен к выходу первого датчика 9 положения, шестнадцатый блок 60 умножения, второй вход которого подключен к выходу восьмого сумматора 31, и четырнадцатый сумматор 61, выход которого подключен ко второму входу пятнадцатого блока 58 умножения, последовательно соединенные десятый косинусный функциональный преобразователь 62, вход которого подключен к выходу девятого сумматора 34, и семнадцатый блок 63 умножения, второй вход которого подключен к выходу седьмого сумматора 26, а выход - ко второму входу четырнадцатого сумматора 61, последовательно соединенные пятнадцатый сумматор 64, первый вход которого подключен к выходу седьмого задатчика 65 постоянного сигнала, а второй вход подключен к выходу второго блока 11 умножения, восемнадцатый блок 66 умножения, второй вход которого подключен к выходу третьего датчика 67 ускорения, установленного на выходном валу электродвигателя 6, а выход - к третьему входу третьего сумматора 4, последовательно соединенные девятнадцатый блок 68 умножения, двадцатый блок 69 умножения, второй вход которого через одиннадцатый синусный функциональный преобразователь 70 подключен к выходу третьего датчика 54 положения, двадцать первый блок 71 умножения, выход которого подключен к четвертому входу третьего сумматора 4, последовательно соединенные четвертый датчик 72 скорости, шестнадцатый сумматор 73, двадцать второй блок 74 умножения, второй вход которого подключен к выходу седьмого сумматора 26, двадцать третий блок 75 умножения, второй вход которого через двенадцатый косинусный функциональный преобразователь 76 подключен к выходу двенадцатого сумматора 49, семнадцатый сумматор 77, двадцать четвертый блок 78 умножения, второй вход которого подключен к выходу квадратора 42, а выход - к пятому входу третьего сумматора 4, последовательно соединенные двадцать пятый блок 79 умножения, первый вход которого через первый дифференциатор 80 подключен к выходу второго датчика 57 ускорения и первому входу девятнадцатого блока 68 умножения, а второй - к выходу восьмого функционального преобразователя 55, и двадцать шестой блок 81 умножения, второй вход которого подключен к второму входу двадцать первого блока 71 умножения и выходу четырнадцатого сумматора 61, выход которого подключен к шестому входу третьего сумматора 4, последовательно соединенные двадцать седьмой блок 82 умножения, первый вход которого подключен к выходу восьмого блока 32 умножения, восемнадцатый сумматор 83 и двадцать восьмой блок 84 умножения, второй вход которого подключен к выходу четырнадцатого блока 56 умножения, а выход - к седьмому входу третьего сумматора 4, а также двадцать девятый блок 85 умножения, выход которого подключен к восьмому входу третьего сумматора 4, последовательно соединенные четвертый датчик 86 ускорения, тридцатый блок 87 умножения, второй вход которого подключен к выходу третьего датчика 43 скорости и второму входу девятнадцатого блока 68 умножения, и тридцать первый блок 88 умножения, второй вход которого подключен к выходу десятого сумматора 40, а выход - к девятому входу третьего сумматора 4, последовательно соединенные девятнадцатый сумматор 89 и тридцать второй блок 90 умножения, второй вход которого подключен к выходу семнадцатого блока 63 умножения, а выход - к десятому входу третьего сумматора 4, последовательно соединенные тридцать третий блок 91 умножения, первый вход которого подключен к выходу одиннадцатого сумматора 45, тридцать четвертый блок 92 умножения, второй вход которого через тринадцатый косинусный функциональный преобразователь 93 подключен к выходу третьего усилителя 47, а выход - ко второму входу семнадцатого сумматора 77, последовательно соединенные тридцать пятый блок 94 умножения, первый вход которого подключен к выходу тринадцатого сумматора 53, и тридцать шестой блок 95 умножения, второй вход которого через четырнадцатый косинусный функциональный преобразователь 96 подключен к выходу второго усилителя 37, а выход - к третьему входу семнадцатого сумматора 77, а также тридцать седьмой блок 97 умножения, первый вход которого подключен к выходу шестнадцатого блока 60 умножения, второй вход - ко вторым входам двадцать седьмого 82 и тридцать пятого 94 блоков умножения и первому входу девятнадцатого сумматора 89, а выход - к одиннадцатому входу третьего сумматора 4, последовательно соединенные тридцать восьмой блок 98 умножения, первый вход которого подключен к выходу шестого блока 27 умножения, двадцатый сумматор 99, второй вход которого подключен к выходу тридцать девятого блока 100 умножения, первый вход которого через квадратор 101 подключен к выходу второго датчика скорости 10, и сороковой блок 102 умножения, второй вход которого подключен к выходу первого датчика 7 скорости, а выход - к двенадцатому входу третьего сумматора 4, а также сорок первый блок 103 умножения, первый вход которого подключен к выходу девятнадцатого сумматора 89 и второму входу тридцать третьего блока 91 умножения, второй вход - к выходу девятого блока 36 умножения, а выход - ко второму входу восемнадцатого сумматора 83, последовательно соединенные сорок второй блок 104 умножения, первый вход которого подключен к выходу квадратора 101, а второй - к выходу второго датчика скорости 10, ко вторым входам шестнадцатого 73 и девятнадцатого 89 сумматоров, к первому входу двадцать девятого блока 85 умножения, второй вход которого подключен к выходу тридцать восьмого блока 98 умножения, и сорок третий блок 105 умножения, второй вход которого подключен к выходу четвертого блока 20 умножения и второму входу тридцать девятого блока 100 умножения, а выход - к тринадцатому входу третьего сумматора 4, а также сорок четвертый блок 106 умножения, первый вход которого через второй дифференциатор 107 подключен к выходу первого датчика 24 ускорения и ко второму входу тридцать восьмого блока 98 умножения, второй вход - к выходу шестого сумматора 21, а выход - к четырнадцатому входу третьего сумматора 4. Объект 108 управления.

На чертежах введены следующие обозначения: αвх - сигнал желаемого положения; ε - ошибка электропривода (величина рассогласования); q1, q2, q3, q4 - соответствующие обобщенные координаты исполнительного органа робота; q ˙ 2 , q ˙ 3 - скорости изменения соответствующих обобщенных координат; q ¨ 2 , q ¨ 3 , q ¨ 4 - ускорения изменения соответствующих обобщенных координат; m1, m2, m3, mг - соответственно массы первого, второго, третьего звеньев исполнительного органа и захваченного груза; 1 2 * , 1 3 * - расстояния от осей вращения соответствующих звеньев до их центров масс; 12, 13 - длины соответствующих звеньев; α ˙ 2 , α ¨ 2 - соответственно, скорость и ускорение вращения ротора электродвигателя; U*, U - соответственно усиливаемый сигнал и сигнал управления электродвигателем 6.

Кроме того, принимается, что JSi - моменты инерции соответствующих звеньев манипулятора относительно их продольных осей ( i = 1,  3 ¯ ) ; JNi - моменты инерции соответствующих звеньев манипулятора относительно поперечных осей, проходящих через их центры масс (i=2, 3).

Устройство работает следующим образом. Сигнал ошибки ε с сумматора 1 после коррекции в блоках 2-4, усиливаясь, поступает на электродвигатель 6, приводя его вал во вращательное движение с направлением и скоростью (ускорением), зависящими от величины поступающего сигнала U, моментов трения и внешнего моментного воздействия Мв. Электропривод при работе с различными грузами, а также за счет взаимовлияния степеней подвижности манипулятора обладает переменными моментными характеристиками, которые могут меняться в широких пределах. Это снижает качественные показатели электропривода и даже приводит к потере устойчивости его работы. В результате возникает задача, связанная с обеспечением инвариантности динамических свойств электропривода к непрерывным и быстрым изменениям его моментных нагрузочных характеристик, что позволяет обеспечить стабильность заданного качества системы управления.

Рассматриваемый электропривод управляет обобщенной координатой q2 манипулятора, конструкция которого позволяет осуществлять горизонтальное прямолинейное перемещение (координата q4) и три вращательных движения (координаты q1, q2 и q3).

На основании уравнений Лагранжа II рода можно записать, что моментное воздействие на выходной вал электропривода, управляющего координатой q2, при движении манипулятора (фиг.2) с грузом имеет вид

где ,

,

g - ускорение свободного падения.

С учетом соотношения (1), а также уравнений электрической U = L d i d t + R i + k ω α ˙ 2 и механической i K M = ( H * + J ) α ¨ 2 + ( h * + K В ) α ˙ 2 + М С Т Р + М В Н * цепей электродвигателя постоянного тока с постоянными магнитами или независимого возбуждения, управляющего координатой q2, можно описать этот электродвигатель следующим дифференциальным уравнением

где ,

,

L, R - соответственно, индуктивность и активное сопротивление якорной цепи электродвигателя; J - момент инерции ротора электродвигателя и вращающихся частей редуктора, приведенных к валу электродвигателя; КМ - коэффициент крутящегося момента; Kω - коэффициент противо-ЭДС; КВ - коэффициент вязкого трения; iP - передаточное отношение редуктора; МСТР - момент сухого трения; Ку - коэффициент усиления усилителя 5; i - ток якоря электродвигателя.

Очевидно, что параметры уравнения (3), а следовательно, и параметры электропривода, управляющего координатой q2, являются существенно переменными, зависящими от величин q2, q3, q ˙ 1 , q ˙ 2 , q ˙ 3 , q ¨ 1 , q ¨ 3 , q ¨ 4 , q 3 , q 4 и mГ. В результате в процессе работы электропривода меняются (и при том существенно) его динамические свойства. Для реализации поставленной выше задачи необходимо сформировать корректирующее устройство, стабилизирующее параметры этого электропривода и дифференциального уравнения, которым он описывается.

Первый положительный вход сумматора 2 (со стороны сумматора 1) имеет единичный коэффициент усиления, а его второй отрицательный вход - коэффициент усиления Кωу. Следовательно, на выходе сумматора 2 формируется сигнал ε K ω K у α ˙ 2 . Первый положительный вход сумматора 26 имеет единичный коэффициент усиления, а задатчик 25 подает на него сигнал 1 2 1 3 * + m 3 . Второй положительный вход этого сумматора имеет коэффициент усиления 1213. В результате на его выходе формируется сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) .

Датчик 18 измеряет обобщенную координату q3 манипулятора, а функциональный преобразователь 19 реализует функцию cosq3. В результате на выходе блока 20 формируется сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) cos q 3 . Все входы сумматора 16 положительные. Его второй вход имеет единичный коэффициент усиления. Задатчик 17 подает на этот вход сигнал J + ( J N 2 + J N 3 + m 2 1 2 * 2 + m 3 1 3 * 2 + m 3 1 2 2 ) / i P 2 / J H где JH - желаемое значение суммарного момента инерции электродвигателя. На первый вход сумматора 16 с коэффициентом усиления ( 1 2 2 + 1 3 2 ) / ( i P 2 J H ) датчик 15 подает сигнал mГ. Третий вход этого сумматора имеет коэффициент усиления 2 / ( i P 2 J H ) . В результате на его выходе формируется сигнал A = ( J + H * ) / J H = { J + [ J N 2 + J N 3 + m 2 1 2 * 2 + m 3 1 2 * 2 + m 3 1 2 2 + m Г ( 1 2 2 + 1 3 2 ) + 21 2 ( m 3 1 3 * + m Г 1 3 ) cos q 3 ] / i P 2 } / J H , а на выходе блока 3 - сигнал A = ( ε K ω K у α ˙ 2 ) .

Функциональный преобразователь 28 реализует зависимость sinq3. В результате на выходе блока 27 формируется сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) sin q 3 .

Датчик 10 измеряет скорость q3. В результате на первый отрицательный вход сумматора 13 (со стороны блока 12), имеющий коэффициент усиления 2 / i P 2 , поступает сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) sin ( q 3 ) q ˙ 3 α ˙ 2 , а на пятый отрицательный вход этого сумматора (со стороны блока 29), имеющий коэффициент усиления 1/iP,- сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) sin ( q 3 ) q ˙ 3 2 .

Первый и второй положительные входы сумматора 21 (со стороны блока 20 и задатчика 22) имеют единичные коэффициенты усиления, а его третий положительный вход - коэффициент усиления 1 3 2 . Задатчик 22 формирует сигнал J N 3 + m 3 1 3 * 2 , а датчик 24 измеряет ускорение q ¨ 3 . В результате на выходе блока 23 формируется сигнал J N 3 + m 3 1 3 * 2 + m Г 1 3 2 + 1 2 ( m 3 1 3 * + m Г 1 3 ) cos q 3 q ¨ 3 , который поступает на четвертый положительный вход сумматора 13 с коэффициентом усиления 1/iP. Третий и второй положительные входы сумматора 13 (соответственно, со стороны элемента 14 и датчика 7) соответственно имеют единичный коэффициент усиления и коэффициент усиления, равный КMКω/R+KB.

Выходной сигнал элемента 14 имеет вид

где МТ - величина момента сухого трения при движении.

Первый и второй положительные входы сумматора 34 имеют единичные коэффициенты усиления, а функциональный преобразователь 35 реализует зависимость sin(q2+q3). В результате на выходе блока 36 формируется сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) sin ( q 2 + q 3 ) , который поступает на седьмой положительный вход сумматора 13 с коэффициентом усиления g/(12iP).

Задатчик 30 вырабатывает сигнал m 2 1 2 * + m 3 1 2 и подает его на первый положительный вход сумматора 31, имеющий единичный коэффициент усиления, второй положительный вход этого сумматора имеет коэффициент усиления 12. Функциональный преобразователь 33 реализует зависимость sinq2. В результате на выходе блока 32 формируется сигнал [ m 2 1 2 * + ( m 3 + m Г ) 1 2 ) sin q 2 , который поступает на шестой положительный вход сумматора 13, имеющий коэффициент усиления g/iP.

Положительные входы сумматора 49 имеют единичные коэффициенты усиления. Усилители 37 и 47 имеют коэффициенты усиления, равные 2. Функциональные преобразователи 38, 48 и 50 реализуют функцию sin. В результате на выходе блока 51 формируется сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) sin ( 2 q 2 + q 3 ) .

Задатчик 44 вырабатывает сигнал J N 3 J S 3 + m 3 1 3 * 2 . Первый (со стороны этого задатчика) положительный вход сумматора 45 имеет единичный коэффициент усиления, а его второй положительный вход - коэффициент усиления, равный 1 3 2 . В результате на выходе блока 46 формируется сигнал ( J N 3 J S 3 + m 3 1 3 * 2 + m Г 1 3 2 ) sin 2 ( q 2 + q 3 ) .

Задатчик 52 вырабатывает сигнал, равный J N 2 J S 2 + m 2 1 2 * 2 + m 3 1 2 2 . Первый (со стороны этого задатчика) положительный вход сумматора 53 имеет единичный коэффициент усиления, а его второй положительный вход - коэффициент усиления, равный 1 2 2 . В результате на выходе блока 39 формируется сигнал [ J N 2 J S 2 + m 2 1 2 * 2 + ( m 3 + m Г ) 1 2 2 ] sin 2 q 2 .

Первый (со стороны блока 39) и второй (со стороны блока 46) положительные входы сумматора 40 имеют единичные коэффициенты усиления, а его третий положительный вход - коэффициент усиления, равный 2.

Датчик 43 измеряет скорость изменения координаты q ˙ 1 . В результате на выходе блока 41 формируется сигнал , который с коэффициентом усиления 1/(2iP) подается на восьмой отрицательный вход сумматора 13.

Датчик 54 измеряет координату q1. Функциональные преобразователи 55, 59 и 62 реализует функцию cos. Датчик 57 измеряет ускорение q ¨ 4 . В результате на выходе блока 56 формируется сигнал q ¨ 4 cos q1 на выходе блока 60 - сигнал m 2 1 2 * + ( m 3 + m Г ) 1 2 cos q 2 , а на выходе блока 63 - сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) cos ( q 2 + q 3 ) . Первый (со стороны блока 60) и второй положительные входы сумматора 61 имеют, соответственно, единичный коэффициент усиления и коэффициент усиления, равный 1/12. В результате на выходе блока 58 формируется сигнал { m 2 1 2 * + ( m 3 + m Г ) 1 2 cos q 2 + ( m 3 1 3 * + m Г 1 3 ) cos ( q 2 + q 3 ) } q ¨ 4 cos q 1 , который идет на девятый положительный вход сумматора 13, имеющий коэффициент усиления, равный 1/iP. В результате на выходе этого сумматора формируется сигнал B = [ K M K ω R + K в + h / i p 2 ] α ˙ 2 + M T s i g α ˙ 2 + M в н / i p .

На выходе задатчика 65 формируется сигнал Кв, который подается на первый положительный вход сумматора 64, имеющий единичный коэффициент усиления. Его второй отрицательный вход имеет коэффициент усиления, равный 4 / i P 2 . В результате на выходе сумматора 64 формируется сигнал (2h*+Kв), а на выходе блока 66 - сигнал ( 2 h * + K в ) α ¨ 2 , который подается на третий положительный вход сумматора 4, имеющий коэффициент усиления, равный L/(KMKу).

На выходе блока 100 формируется сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) cos ( q 3 ) q ˙ 3 2 , а на выходе блока 98 - сигнал 1 2 ( m 3 1 3 * + m Г 1 3 ) sin ( q 3 ) q ¨ 3 . Первый и второй отрицательные входы сумматора 99 имеют коэффициенты усиления, равные 2 / i p 2 . В результате на выходе блока 102 формируется сигнал h ˙ * α ˙ 2 , поступающий на двенадцатый положительный вход сумматора 4, имеющий коэффициент усиления, равный L/(KMKу).

Датчик 67 измеряет ускорение α ¨ 2 , датчик 72 - скорость q ˙ 2 , датчик 86 - ускорение q ¨ 1 . Дифференциаторы 80 и 107 используются для получения сигналов q 4 и q 3 , соответственно. На выходе блоков 106 и 105 формируются сигналы q 3 [ J N 3 + m 3 1 3 * 2 + m Г 1 3 2 + 1 2 ( m 3 1 3 * + m Г 1 3 ) cos q 3 ] и q ˙ 3 3 1 2 ( m 3 1 3 * + m Г 1 3 ) cos q 3 , поступающие на четырнадцатый положительный и тринадцатый отрицательный входы сумматора 4, соответственно, имеющие коэффициенты усиления, равные L/(KMKуip).

На выходе блока 85 формируется сигнал q ˙ 3 q ¨ 3 1 2 ( m 3 1 3 * + m Г 1 3 ) sin q 3 , подаваемый на восьмой отрицательный вход сумматора 4, имеющий коэффициент усиления, равный 3L/(KMKуip), а на выходе блока 97 - сигнал q ˙ 2 [ m 2 1 2 * + ( m 3 + m Г ) 1 2 ] cos q 2 , подаваемый на одиннадцатый положительный вход сумматора 4, имеющий коэффициент усиления, равный gL/(KMKуip). На выходе сумматора 89, имеющего положительные входы с единичными коэффициентами усиления, формируется сигнал q ˙ 2 + q ˙ 3 , а на выходе блока 90 - сигнал ( q ˙ 2 + q ˙ 3 ) 1 2 ( m 3 1 3 * + m Г 1 3 ) cos ( q 2 + q 3 ) , подаваемый на десятый положительный вход сумматора 4, имеющий коэффициент усиления, равный gL/(KMKу12ip).

На выходе блока 88 формируется сигнал { [ J N 2 J S 2 + m 2 1 2 * 2 + ( m 3 + m Г ) 1 2 2 sin 2 q 2 + 21 2 ( m 3 1 3 * + m Г 1 3 ) sin ( 2 q 2 + q 3 ) + + ( J N 3 J S 3 + m 3 1 3 * 2 + m Г 1 3 2 ) sin 2 ( q 2 + q 3 ) } q ˙ 1 q ¨ 1 подаваемый на девятый отрицательный вход сумматора 4, имеющий коэффициент усиления, равный L/(KMKуip).

Первый (со стороны датчика 72) и второй (со стороны датчика 10) положительные входы сумматора 73 имеют коэффициенты усиления, равные 2 и 1, соответственно. В результате на его выходе формируется сигнал, равный 2 q ˙ 2 + q ˙ 3 . Все входы сумматора 77 положительны и имеют единичные коэффициенты усиления. В результате на выходе блока 78 формируется сигнал подаваемый на пятый отрицательный вход сумматора 4, имеющий коэффициент усиления, равный L/(KMKуip).

На выходе блока 81 формируется сигнал q 4 cos q 1 { [ m 2 1 2 * + ( m 3 + m Г ) 1 2 ] cos q 2 + ( m 3 1 3 * + m Г 1 3 ) cos ( q 2 + q 3 ) } , подаваемый на шестой положительный вход сумматора 4, имеющий коэффициент усиления, равный L/(KMKуip).

Функциональный преобразователь 70 реализует функцию sinq1. В результате на выходе блока 71 формируется сигнал q ˙ 4 q ¨ 4 sin q 1 { [ m 2 1 2 * + ( m 3 + m Г ) 1 2 ] cos q 2 + ( m 3 1 3 * + m Г 1 3 ) cos ( q 2 + q 3 ) } , подаваемый на четвертый отрицательный вход сумматора 4, имеющий коэффициент усиления, равный L/(KMKуip).

Первый (со стороны блока 82) и второй положительные входы сумматора 83 имеют, соответственно, единичный коэффициент усиления и коэффициент усиления, равный 1/12. В результате на выходе блока 84 формируется сигнал q 4 cos q 1 { [ m 2 1 2 * + ( m 3 + m Г ) 1 2 ] sin q 2 + ( m 3 1 3 * + m Г 1 3 ) ( q ˙ 2 + q ˙ 3 ) sin ( q 2 + q 3 ) } , подаваемый на седьмой отрицательный вход сумматора 4, имеющий коэффициент усиления равный L/(KMKуip).

Первый положительный вход сумматора 4 (со стороны блока 3) имеет единичный коэффициент усиления, а его второй положительный вход (со стороны сумматора 13) - коэффициент усиления R/(KMKу). B результате на выходе сумматора 4 формируется сигнал U*, равный

Поскольку при движении электропривода M T s i g n α ˙ 2 достаточно точно соответствует Мстр, то сигнал U* (3), как несложно убедиться, обеспечивает превращение уравнения (2) с существенно переменными параметрами в уравнение L J H α 2 + K M K ω α ˙ 2 = K у K M ε с постоянными номинальными желаемыми параметрами, обеспечивающими рассматриваемому электроприводу заданные динамические свойства и показатели качества.

Таким образом, за счет введения дополнительных элементов и связей удалось обеспечить полную инвариантность рассматриваемого электропривода к эффектам взаимовлияния между всеми степенями подвижности манипулятора и моментам трения. Это позволяет получить стабильно высокое качество управления в любых режимах работы этого электропривода. Практическая реализация предлагаемого устройства не вызывает затруднений, так как в нем использованы только типовые электронные элементы.

Самонастраивающийся электропривод манипулятора, содержащий последовательно соединенные первый сумматор, второй сумматор, первый блок умножения, третий сумматор, первый усилитель и электродвигатель, связанный непосредственно с первым датчиком скорости и через редуктор с первым датчиком положения, выход которого подключен к первому входу первого сумматора, соединенного вторым входом с входом устройства, последовательно соединенные второй датчик скорости, второй блок умножения, третий блок умножения и четвертый сумматор, второй вход которого соединен со вторым входом второго сумматора и выходом первого датчика скорости, третий вход - с выходом релейного элемента, подключенного входом ко второму входу третьего блока умножения и выходу первого датчика скорости, а выход - ко второму входу третьего сумматора, последовательно соединенные датчик массы и пятый сумматор, второй вход которого подключен к выходу первого задатчика постоянного сигнала, а выход - ко второму входу первого блока умножения, последовательно соединенные второй датчик положения, первый косинусный функциональный преобразователь, четвертый блок умножения, шестой сумматор, второй вход которого подключен к выходу второго задатчика постоянного сигнала, и пятый блок умножения, второй вход которого подключен к выходу первого датчика ускорения, а выход - к четвертому входу четвертого сумматора, последовательно соединенные третий задатчик постоянного сигнала, седьмой сумматор, второй вход которого подключен к выходу датчика массы, и шестой блок умножения, второй вход которого через второй синусный функциональный преобразователь подключен к выходу второго датчика положения, а выход - ко второму входу второго блока умножения, причем второй вход четвертого блока умножения соединен с выходом седьмого сумматора, его выход - с третьим входом пятого сумматора, третий вход шестого сумматора соединен с выходом датчика массы, пятый вход четвертого сумматора через седьмой блок умножения, второй вход которого соединен с выходом второго блока умножения, подключен к выходу второго датчика скорости, последовательно соединенные четвертый задатчик постоянного сигнала, восьмой сумматор, второй вход которого подключен к выходу датчика массы, и восьмой блок умножения, второй вход которого через третий синусный функциональный преобразователь соединен с выходом первого датчика положения, а его выход - с шестым входом четвертого сумматора, последовательно соединенные девятый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго датчиков положения, четвертый синусный функциональный преобразователь и девятый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а выход - к седьмому входу четвертого сумматора, последовательно соединенные второй усилитель, пятый синусный функциональный преобразователь, десятый блок умножения, десятый сумматор и одиннадцатый блок умножения, второй вход которого через квадратор подключен к выходу третьего датчика скорости, а выход - к восьмому входу четвертого сумматора, последовательно соединенные пятый задатчик постоянного сигнала, одиннадцатый сумматор и двенадцатый блок умножения, второй вход которого через последовательно соединенные третий усилитель и шестой синусный функциональный преобразователь подключен к выходу девятого сумматора, а его выход - ко второму входу десятого сумматора, последовательно соединенные двенадцатый сумматор, первый и второй входы которого подключены соответственно к выходам второго датчика положения и второго усилителя, седьмой синусный функциональный преобразователь и тринадцатый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а его выход - к третьему входу десятого сумматора, последовательно соединенные шестой задатчик постоянного сигнала и тринадцатый сумматор, второй вход которого подключен ко второму входу одиннадцатого сумматора и выходу датчика массы, а выход - ко второму входу десятого блока умножения, причем вход второго усилителя соединен с выходом первого датчика положения, последовательно соединенные третий датчик положения, восьмой косинусный функциональный преобразователь, четырнадцатый блок умножения, второй вход которого подключен к выходу второго датчика ускорения, и пятнадцатый блок умножения, выход которого подключен к девятому входу четвертого сумматора, последовательно соединенные девятый косинусный функциональный преобразователь, вход которого подключен к выходу первого датчика положения, шестнадцатый блок умножения, второй вход которого подключен к выходу восьмого сумматора, и четырнадцатый сумматор, выход которого подключен ко второму входу пятнадцатого блока умножения, последовательно соединенные десятый косинусный функциональный преобразователь, вход которого подключен к выходу девятого сумматора, и семнадцатый блок умножения, второй вход которого подключен к выходу седьмого сумматора, а выход - ко второму входу четырнадцатого сумматора, отличающийся тем, что в него дополнительно введены последовательно соединенные пятнадцатый сумматор, первый вход которого подключен к выходу седьмого задатчика постоянного сигнала, а второй вход подключен к выходу второго блока умножения, восемнадцатый блок умножения, второй вход которого подключен к выходу третьего датчика ускорения, установленного на выходном валу электродвигателя, а выход - к третьему входу третьего сумматора, последовательно соединенные девятнадцатый блок умножения, двадцатый блок умножения, второй вход которого через одиннадцатый синусный функциональный преобразователь подключен к выходу третьего датчика положения, двадцать первый блок умножения, выход которого подключен к четвертому входу третьего сумматора, последовательно соединенные четвертый датчик скорости, шестнадцатый сумматор, двадцать второй блок умножения, второй вход которого подключен к выходу седьмого сумматора, двадцать третий блок умножения, второй вход которого через двенадцатый косинусный функциональный преобразователь подключен к выходу двенадцатого сумматора, семнадцатый сумматор, двадцать четвертый блок умножения, второй вход которого подключен к выходу квадратора, а выход - к пятому входу третьего сумматора, последовательно соединенные двадцать пятый блок умножения, первый вход которого через первый дифференциатор подключен к выходу второго датчика ускорения и первому входу девятнадцатого блока умножения, а второй - к выходу восьмого функционального преобразователя, и двадцать шестой блок умножения, второй вход которого подключен к второму входу двадцать первого блока умножения и выходу четырнадцатого сумматора, выход которого подключен к шестому входу третьего сумматора, последовательно соединенные двадцать седьмой блок умножения, первый вход которого подключен к выходу восьмого блока умножения, восемнадцатый сумматор и двадцать восьмой блок умножения, второй вход которого подключен к выходу четырнадцатого блока умножения, а выход - к седьмому входу третьего сумматора, а также двадцать девятый блок умножения, выход которого подключен к восьмому входу третьего сумматора, последовательно соединенные четвертый датчик ускорения, тридцатый блок умножения, второй вход которого подключен к выходу третьего датчика скорости и второму входу девятнадцатого блока умножения, и тридцать первый блок умножения, второй вход которого подключен к выходу десятого сумматора, а выход - к девятому входу третьего сумматора, последовательно соединенные девятнадцатый сумматор и тридцать второй блок умножения, второй вход которого подключен к выходу семнадцатого блока умножения, а выход - к десятому входу третьего сумматора, последовательно соединенные тридцать третий блок умножения, первый вход которого подключен к выходу одиннадцатого сумматора, тридцать четвертый блок умножения, второй вход которого через тринадцатый косинусный функциональный преобразователь подключен к выходу третьего усилителя, а выход - ко второму входу семнадцатого сумматора, последовательно соединенные тридцать пятый блок умножения, первый вход которого подключен к выходу тринадцатого сумматора и тридцать шестой блок умножения, второй вход которого через четырнадцатый косинусный функциональный преобразователь подключен к выходу второго усилителя, а выход - к третьему входу семнадцатого сумматора, а также тридцать седьмой блок умножения, первый вход которого подключен к выходу шестнадцатого блока умножения, второй вход к вторым входам двадцать седьмого и тридцать пятого блоков умножения и первому входу девятнадцатого сумматора, а выход - к одиннадцатому входу третьего сумматора, последовательно соединенные тридцать восьмой блок умножения, первый вход которого подключен к выходу шестого блока умножения, двадцатый сумматор, второй вход которого подключен к выходу тридцать девятого блока умножения, первый вход которого через квадратор подключен к выходу второго датчика скорости, и сороковой блок умножения, второй вход которого подключен к выходу первого датчика скорости, а выход - к двенадцатому входу третьего сумматора, а также сорок первый блок умножения, первый вход которого подключен к выходу девятнадцатого сумматора и второму входу тридцать третьего блока умножения, второй вход к выходу девятого блока умножения, а выход - ко второму входу восемнадцатого сумматора, последовательно соединенные сорок второй блок умножения, первый вход которого подключен к выходу квадратора, а второй - к выходу второго датчика скорости, ко вторым входам шестнадцатого и девятнадцатого сумматоров, к первому входу двадцать девятого блока умножения, второй вход которого подключен к выходу тридцать восьмого блока умножения, и сорок третий блок умножения, второй вход которого подключен к выходу четвертого блока умножения и второму входу тридцать девятого блока умножения, а выход - к тринадцатому входу третьего сумматора, а также сорок четвертый блок умножения, первый вход которого через второй дифференциатор подключен к выходу первого датчика ускорения и ко второму входу тридцать восьмого блока умножения, второй вход к выходу шестого сумматора, а выход - к четырнадцатому входу третьего сумматора.



 

Похожие патенты:

Изобретение относится к управлению производственным процессом с использованием экономической целевой функции. Технический результат - оптимизация управления процессом при наличии возмущений.

Изобретение относится к области электротехники и может быть использовано для выбора оптимального по точности режима работы электрического двигателя. Технический результат - увеличение точности управления за счет применения эффективного математического метода решения обратных задач.

Изобретение относится к области систем автоматического управления электромеханическими объектами, в частности объектами с неконтролируемыми возмущениями и неизвестными переменными параметрами.

Изобретение относится к области сельскохозяйственного машиностроения, в частности к способу автоматической настройки, по меньшей мере, одного из нескольких участвующих в процессе уборки рабочих органов самоходной уборочной машины.

Изобретение относится к системам управления и контроля за функционированием оборудования систем жизнеобеспечения и защиты в заданных режимах специальных объектов и предназначена для системы жизнеобеспечения специальных объектов Министерства обороны Российской Федерации.

Изобретение относится к робототехнике. Технический результат - компенсация переменных воздействий на электропривод.

Изобретение относится к робототехнике. Технический результат - компенсация вредных переменных моментных воздействий на электропривод при движении манипулятора.

Устройство пеленгации источников лазерного излучения относится к области оптико-электронного приборостроения, а более конкретно к устройствам обнаружения и пеленгации источников лазерного излучения для систем защиты подвижных объектов военной техники.

Изобретение относится к области цифровой вычислительной техники и может быть использовано в автоматических и автоматизированных системах управления объектами с терминальным управлением.

Изобретение относится к автоматическому управлению. Технический результат - расширение функциональных возможностей и обеспечение работоспособности системы регулирования объекта с рециклом при смене режимов технологического процесса.

Изобретение относится к робототехнике и может быть использовано для систем управления электроприводами манипулятора. Технический результат - повышение качества управления манипулятором.

Изобретение относится к области автоматического управления динамическими объектами. Для стабилизации подводного аппарата в режиме зависания включают подачу сигналов управления на входы его движителей и компенсируют силовые и моментные воздействия на аппарат, которые вызывают его отклонение от исходного положения.

Изобретение относится к робототехнике и может быть использовано для создания систем управления электроприводами манипулятора. Изобретение направлено на обеспечение полной инвариантности динамических свойств электропривода к изменениям его моментных (нагрузочных) характеристик при движении манипулятора сразу по всем пяти степеням подвижности и, тем самым, повышение динамической точности управления.

Изобретение относится к робототехнике и может быть использовано для создания систем управления подводными роботами. Для формирования необходимых корректирующих сигналов устройство дополнительно содержит третий блок умножения, четвертый сумматор, второй усилитель, второй движитель, третий задатчик сигнала, пятый сумматор, третий усилитель, третий движитель, первый, второй и третий датчики положения, второй датчик скорости, четвертый и пятый блоки умножения, третий датчик скорости, первый синусный функциональный преобразователь, блок деления, шестой и седьмой блоки умножения, первый косинусный функциональный преобразователь, первый квадратор, шестой сумматор, восьмой, девятый и десятый блоки умножения, седьмой сумматор, одиннадцатый, двенадцатый, тринадцатый и четырнадцатый блоки умножения, второй косинусный функциональный преобразователь, второй квадратор, пятнадцатый блок умножения, восьмой сумматор, шестнадцатый блок умножения, второй синусный функциональный преобразователь, третий квадратор, семнадцатый и восемнадцатый блоки умножения, четвертый квадратор, девятнадцатый, двадцатый, двадцать первый и двадцать второй блоки умножения.

Изобретение относится к робототехнике и может быть использовано для создания систем управления подводными роботами. Для формирования необходимых корректирующих сигналов и обеспечения полной компенсации эффектов взаимовлияния между степенями подвижности подводного робота и вязкого трения со стороны жидкости устройство для управления подводным роботом дополнительно снабжено третьим блоком умножения, четвертым сумматором, вторым усилителем, вторым движителем, третьим задатчиком сигнала, пятым сумматором, третьим усилителем, третьим движителем, первым, вторым и третьим датчиками положения, вторым и третьим датчиками скорости, четвертым блоком умножения, синусным и косинусным функциональными преобразователями.

Изобретение относится к робототехнике и может быть использовано для создания систем управления электроприводами манипулятора. .

Изобретение относится к робототехнике и может быть использовано для создания электроприводов роботов. .

Изобретение относится к робототехнике и может быть использовано для создания электроприводов роботов. .

Изобретение относится к робототехнике и может быть использовано для создания электроприводов роботов. .

Изобретение относится к робототехнике и может быть использовано при создании систем управления электроприводами манипуляторов. .

Изобретение относится к управляемым приводам для преобразования энергии управления в механическую энергию перемещения рабочего органа и может быть использовано в машиностроении, робототехнике, медицине при создании гидравлических и пневматических приводов, работающих от воздействия газа или жидкости. Изобретение предусматривает создание избыточного давления рабочей среды в торообразной герметичной нерастяжимой камере с кольцеобразными торцевыми поверхностями, охватывающей шток и связанной боковой поверхностью с корпусом, и управление направлением перемещения штока относительно корпуса. При этом управляют направлением перемещения и величиной хода штока путем изменения эффективной площади по меньшей мере одной кольцеобразной торцевой поверхности камеры. Причем изменяют эффективную площадь торцевой поверхности камеры посредством силового воздействия на торцевую поверхность камеры с обеспечением изменения площади ее внутреннего или наружного кольца. Возможно также изменение величины давления в камере путем изменения объема камеры. Изобретение расширяет функциональные возможности камерного привода путем регулирования эффективной площади торцевых поверхностей камеры. 3 з.п. ф-лы, 2 ил.
Наверх