Способ определения октанового числа н-алканов

Изобретение относится к области определения октановых чисел н-алканов исследовательским методом. Согласно способу проводят измерение такого информационного параметра, как удельная магнитная восприимчивость и последующий расчет соответствующего значения октанового числа по эмпирической зависимости вида

где Z - октановое число по исследовательскому методу, ед.;

χ - удельная магнитная восприимчивость, 106, г-1. Достигается ускорение и повышение надежности определения. 1 пр., 1 табл.

 

Изобретение относится к области определения эксплуатационных характеристик веществ и материалов, в частности октановых чисел углеводородов, а также к области нефтепереработки, нефтехимии и химической технологии. Правильное и быстрое определение эксплуатационных характеристик вещества, основанное на результатах прямого измерения, резко сокращает время технических расчетов; делает возможным создание продуктов с заданными свойствами. Определение эксплуатационных характеристик моторных топлив, основанное на полученных ранее и проверенных данных, может быть эффективно использовано в компьютерных моделях производств нефтепереработки, нефтехимии и химической технологии.

Повсеместно применяется способ определения октанового числа бензинов исследовательским методом по ГОСТ 8226-82 «ИССЛЕДОВАТЕЛЬСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА» в диапазоне 100-110 пунктов, включающий испытание исследуемого продукта на установке, состоящей из карбюраторного двигателя внутреннего сгорания с изменяемой степенью сжатия, устройства измерения интенсивности детонации, сравнения интенсивности детонации исследуемого топлива с двумя эталонными топливами с известным октановым числом при степени сжатия, обеспечивающей средний уровень детонации при прочих равных условиях, причем в качестве эталонных топлив с известным октановым числом используют смеси толуола с изооктаном. Недостатками данного метода являются: обязательное использование эталонных образцов, дополнительное количество времени, затраченное на приготовление эталонных образцов, и неточное определение их детонационной стойкости, а также возможность различного рода ошибок, в том числе связанных с работой лабораторных установок типа УИТ-65, которые могут возникнуть в результате сравнения одного исследуемого образца с двумя эталонными, высокая стоимость специализированного аналитического оборудования.

Известен СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНА (2002131395/28; 22.11.2002; МПК G01N 27/22; автор: Кавтарадзе Альберт Иванович), относящийся к измерительной технике, который включает измерение температуры бензина и его диэлектрической проницаемости при этой температуре. Октановое число определяют в соответствии с зависимостью

где А - октановое число бензина,

X - коэффициент пропорциональности, определяемый экспериментально,

ε - диэлектрическая проницаемость бензина,

α - температурный коэффициент, равный 2,5·10-2, °С-1,

Δt=(T-20)°C, где Τ - температура бензина, °С.

Данный способ обеспечивает снижение трудоемкости и уменьшение времени определения. Главным недостатком данного метода можно считать зависимость результата определения диэлектрической проницаемости от частоты сигнала, при которой производится измерение.

Также известны способы определения октановых чисел автомобильных бензинов, в которых в качестве информационных параметров для определения октанового числа образца используют диэлектрическую проницаемость (RU 2100803 С1; 22.12.1997; МПК G01N 27/22, G01N 33/22; авторы: Шатохин В.Н., Чечкенев И.В., Скавинский В.П. и др.) и резонансную частоту, которая зависит от диэлектрической проницаемости и магнитной проницаемости образца (RU 2196321 С2; 10.01.2003; МПК G01N 27/22; авторы: Пащенко В.М., Ванцов В.И., Чуклов B.C. и др.). Главным недостатком данных методов можно считать зависимость результата определения октанового числа как минимум от трех самостоятельных факторов.

При создании изобретения ставилась задача определения октанового числа н-алканов с помощью данных об удельной магнитной восприимчивости, что позволит сократить время определения параметра, сэкономить средства, а также обеспечить определение данных характеристик для ряда н-алканов С210.

Вышеуказанная задача решается способом определения октанового числа н-алканов по исследовательскому методу, включающим измерение такого информационного параметра, как удельная магнитная восприимчивость и последующий расчет соответствующего значения октанового числа по эмпирической зависимости вида

где Ζ - октановое число по исследовательскому методу, ед;

χ - удельная магнитная восприимчивость, 106, г-1.

Предлагаемый способ реализуется следующим образом:

- на первом этапе определяется значение удельной магнитной восприимчивости прямым измерением на приборе;

- на втором этапе по зависимости (2) определяется соответствие октановому числу измеренного значения удельной магнитной восприимчивости.

В рамках заявленного способа возможно решение обратной задачи - расчет удельной магнитной восприимчивости н-алканов по данным измерения октановых чисел. В этом случае будет наблюдаться следующий порядок действий:

- на первом этапе производят прямое измерение октанового числа стандартным исследовательским методом;

- на втором этапе по выражению (2) с известными эмпирическими коэффициентами рассчитывают значение удельной магнитной восприимчивости при нормальных условиях (давление атмосферное, температура 293 К).

Данный способ имеет универсальное применение для прогнозирования октановых чисел и удельной магнитной восприимчивости при получении продуктов с заданными свойствами, в том числе моторных топлив на основе углеводородов.

Ниже приведен пример реализации предлагаемого способа. Самым удобным объектом для примера являются углеводороды ряда н-алканов с числом атомов углерода от 2 до 10, для которых октановые числа изучены наиболее полно [Ахметов С.А. Технология глубокой переработки нефти и газа. - Уфа: изд.-во «Гилем». - 2002. - 670 с.; Физико-химические свойства индивидуальных углеводородов / Под ред. проф. В.М. Татевского /. - М.: Гостоптехиздат. - 1960. - 412 с.; Нефтепродукты. Свойства, качество, применение. Справочник. / Под ред. Лосикова Б.В. /. - M.: Химия, 1966. - 776 с.; Ергин Ю.В., Яруллин К.С. Магнитные свойства нефтей. - М.: Наука, 1979. - 200 с.]. Метан по некоторым показателям является исключением из общего ряда н-алканов из-за своих особенностей строения молекулы и связанных с этим специфических свойств, выбивающихся из общей корреляции. Ниже приводится расчет октанового числа по полученной зависимости (2) для н-гексана.

На первом этапе определяют удельную магнитную восприимчивость прямым измерением на приборе (таблица 1). На втором этапе по зависимости (2) рассчитывают значение октанового числа по исследовательскому методу.

Ζ=-8·1011·0,85865+3·1012·0,85864-6·1012·0,85863+5·1012·0,85862-2·1012·0,8586+4·1011=24,79

В таблице 1 приведены справочные данные по энергиям ионизации и некоторым эксплуатационным характеристикам углеводородов ряда н-алканов от метана до н-гептана.

Исследуя различия между экспериментальными и расчетными значениями в таблице 1, можно сделать вывод о том, что уравнение (2), описывающее корреляционную связь между ОЧИМ и удельной магнитной восприимчивостью с помощью полинома пятой степени, адекватно для требуемой математической модели.

Способ определения октанового числа н-алканов по исследовательскому методу, включающий измерение такого информационного параметра, как удельная магнитная восприимчивость и последующий расчет соответствующего значения октанового числа по эмпирической зависимости вида

где Z - октановое число по исследовательскому методу, ед.;
χ - удельная магнитная восприимчивость, 106, г-1.



 

Похожие патенты:

Изобретение относится к способам оценки склонности автомобильных бензинов к образованию отложений на инжекторах двигателей внутреннего сгорания. Согласно предложенному способу осуществляют прокачку испытываемого бензина через нагретый до температуры 180±3°С инжектор в течение не более четырех суток, в каждые сутки из которых в течение 18 часов осуществляют впрыск топлива через нагретый инжектор в течение 0,2 с, с интервалом между впрысками 300 с, а в течение последующих 6 часов этих суток, при выключенном нагреве, инжектор выдерживают в нерабочем состоянии.

Изобретение относится к области дезинфекции, дезактивации поверхностей объектов и обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа тетранитротолуола.

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив, в частности позволяет оценить стойкость к окислению бензинов, содержащих антиокислительную присадку Агидол-1, и рассчитать оптимальную дозировку присадки для получения бензина с требуемым индукционным периодом.

Изобретения могут быть использованы в коксохимической промышленности. Способ производства кокса включает формирование смеси углей путем смешения двух или более типов угля и карбонизацию указанной смеси углей.

Группа изобретений относится к испытанию топлив и масел и может быть использована для оценки их эксплуатационных свойств. Способ оценки диспергирующих и солюбилизирующих свойств топлив и масел включает испытание пробы исследуемого материала при оптимальной температуре в замкнутой циркуляционной системе, при котором осуществляют контакт циркулирующего оцениваемого масла или топлива с поверхностью растворяемого контрольного вещества, предварительную подготовку которого осуществляют путем его постепенного нагрева до температуры 360°C с последующей выдержкой в течение 4 часов, растворяют это вещество в процессе контакта с потоком циркулирующего масла или топлива, периодически фиксируют параметры его растворения в зависимости от температуры циркулирующего масла или топлива, интенсивности их циркуляции, величины поверхности контакта контрольного вещества с потоком циркулирующего масла или топлива, времени контакта циркулирующего масла или топлива с поверхностью контрольного вещества, при этом диспергирующие и солюбилизирующие свойства масла или топлива оценивают по скорости растворения контрольного вещества, которую оценивают по убыли веса контрольного вещества по мере его контактирования с потоком масла или топлива и по содержанию контрольного вещества в составе циркулирующего потока масла или топлива.

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком.

Использование: для определения объемного содержания воды в нефти. Сущность изобретения заключается в том, что способ основан на определении изменений параметров электромагнитного поля в потоке исследуемой жидкой среды при изменении ее компонентного состава, поток жидкости в зоне измерений разбивают на множество изолированных потоков, каждый из которых взаимодействует с резонатором электромагнитного поля через выделенный участок поверхности контакта, в результате чего в резонаторе формируется электромагнитное поле, обобщающее влияния всех изолированных потоков жидкости, параметры которого принимают за среднее взвешенное для совокупности потоков в изолированных каналах и сопоставляют с соответствующими показателями продукта-аналога, обладающего известными свойствами, которые могут быть эмпирически идентифицированы как доля воды в смеси с углеводородной жидкостью.

Изобретение относится к области дезинфекции и предназначено для дезактивации поверхностей объектов с одновременным обнаружением следов взрывчатых веществ на основе тринитротолуола.

Изобретение относится к области дезинфекции, дезактивации поверхностей объектов и обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа динитротолуола.

Группа изобретений относится к ракетной технике, а именно к измерению характеристик новых композиций твердого ракетного топлива. Способ включает сжигание образца исследуемого топлива в объеме газа, измерение реактивной силы истекающих продуктов сгорания, причем сжигание образца топлива проводят в потоке кислородсодержащего высокотемпературного газа с параметрами, соответствующими обдуву заряда твердого топлива натурного двигателя, одновременно с образцом исследуемого топлива обдувают таким же расходом газа в противоположном направлении геометрически одинаковый с ним инертный имитатор, при этом образец исследуемого топлива и имитатор размещают в отдельных одинаковых модулях, каждый из которых выполнен с возможностью моделирования камеры дожигания натурного двигателя.

Изобретение относится к области исследования материалов без нарушения их структуры и свойств с помощью электромагнитных средств, например, путем измерения магнитной восприимчивости, и может использоваться при разработке способов обнаружения нарушения целостности, в частности, контейнеров с содержимым, без их вскрытия.

Изобретение относится к исследованию свойств веществ без нарушения их структуры и состава, в частности, к контролю содержания в материале f-элементов или их соединений, и может быть использовано, например, на предприятиях атомной промышленности и связанных с ними сферами деятельности, когда есть необходимость в определении бесконтактным методом их наличия без вскрытия упаковки или контейнера, в котором они находятся.

Изобретение относится к области измерительной техники и может быть использовано при разработке энергетических устройств, действие которых основано на свойстве магнитной вязкости ферромагнетиков.

Изобретение относится к области измерительной техники и может быть использовано при разработке энергетических устройств, действие которых основано на свойстве магнитной вязкости ферромагнетиков.

Изобретение относится к геохимическому мониторингу окружающей среды для контроля состояния снегового покрова промышленных предприятий и населенных пунктов. .

Изобретение относится к способам контроля качества катализаторов гидрирования и может быть использовано в препаративном органическом синтезе, в химической, нефтехимической, химико-фармацевтической и масложировой промышленности.

Изобретение относится к области физических методов измерения магнитных характеристик веществ, а точнее к тем из них, которые используются при повышенных и высоких температурах.

Изобретение относится к исследованию жидких углеводородных топлив и может быть использовано при разработке новых и оценке существующих топлив. Способ включает определение цетанового индекса (ЦИ) по номограмме жидких углеводородных топлив с использованием шкал плотности при 20°С, температуры выкипания 50% об. и кинематической вязкости при 50°С и дополнительное измерение кинематической вязкости при 50°С для остаточного топлива, дизельного и утяжеленного дизельного топлив; температуры выкипания 50% об. - бензина, реактивного топлива, дизельного и утяжеленного дизельного топлив, расчет оптимального цетанового индекса (ЦИо) анализируемого топлива по полученным экспериментально математическим зависимостям от температуры выкипания 50% об., от кинематической вязкости при 50°С или от среднеарифметического значения по обоим этим показателям на совмещенном участке температуры выкипания 50% об. и кинематической вязкости при 50°С, определение разности ЦИ и ЦИо, а по его величине - дифференциацию жидких углеводородных топлив (от бензина до остаточного) по эффективности их сгорания в дизельных двигателях. Достигается повышение достоверности дифференциации жидких углеводородных топлив по эффективности их сгорания в дизельных двигателях. 1 з.п. ф-лы, 6 пр., 2 табл., 3 ил.
Наверх