Способ получения нанокапсул 2,4-дихлорфеноксиуксусной кислоты


 


Владельцы патента RU 2577598:

Кролевец Александр Александрович (RU)

Изобретение относится к нанотехнологии. Для получения оболочки нанокапсул 2,4-Д используют натрий карбоксиметилцеллюлозу методом осаждения нерастворителем с применением бензола в качестве осадителя. Изобретение позволяет упростить и ускорить процесс получения нанокапсул, а также увеличить их выход по массе. 3 пр.

 

Изобретение относится к области нанотехнологии, в частности к растениеводству.

Ранее были известны способы получения микрокапсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул 2,4-дихлорфеноксиуксусной кислоты (2,4-Д), отличающийся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - 2,4-Д при получении нанокапсул методом осаждения нерастворителем с применением бензола в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бензола в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки частиц и 2,4-Д - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул 2,4-Д.

ПРИМЕР 1 Получение нанокапсул 2,4-Д в натрий карбоксиметилцеллюлозе, соотношение ядро : оболочка 1:1

100 мг 2,4-Д добавляют небольшими порциями в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем 100 мг указанного полимера в присутствии 0,005 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/мин. Далее приливают 5 мл бензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул 2,4-Д в натрий карбоксиметилцеллюлозе, соотношение ядро : оболочка 5:1

500 мг 2,4-Д добавляют небольшими порциями в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем 100 мг указанного полимера в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 7 мл бензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул 2,4-Д в натрий карбоксиметилцеллюлозе, соотношение ядро : оболочка 1:3

100 мг 2,4-Д добавляют небольшими порциями в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем 300 мг указанного полимера в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 5 мл бензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Способ получения нанокапсул 2,4-Д, характеризующийся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза при получении нанокапсул методом осаждения нерастворителем с применением бензола в качестве осадителя.



 

Похожие патенты:

Изобретение относится к составу и способу изготовления наноцемента (НЦ) на основе портландцементного клинкера (ПК) и модификатора (М) -нафталинсульфонатов (НС). Состав и способ могут быть использованы в цементной промышленности и строительной индустрии.

Изобретение относится к области медицины, а именно к контрастным средствам, предназначенным для увеличения контрастности визуализируемого изображения при МРТ-диагностике печени и может быть использовано в экспериментальных и клинических исследованиях.

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок в виде изделий с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, которые могут использоваться для получения покрытий, поглощающих и/или отражающих электромагнитное излучение, звукопоглощающих композитов, а также носителей биологически активных объектов.

Изобретение относится к датчикам оптического излучения. Чувствительный элемент оптического датчика содержит подложку 1, массив углеродных нанотрубок 2, электропроводящий слой 3, диэлектрический слой 4, а также верхний оптически прозрачный слой 5.

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве термостойкой керамики.

Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас.
Изобретение относится к технологии получения нанопористых полимерных материалов с открытыми порами и может быть использовано, например, при создании пористых полимерных мембран, сорбентов, газопроницаемых материалов, матриц для получения нанокомпозитов.
Изобретение относится к фармацевтике. Описан способ получения фармацевтической композиции для фотодинамической терапии в форме фосфолипидных наночастиц на основе бис(N-метил-D-глюкамин)мононатриевой соли хлорина E6, мальтозы и фосфатидилхолина.

Изобретение относится к области геофизики и может быть использовано для получения информации о подземной формации. В некоторых вариантах осуществления способ получения информации о по меньшей мере одной переменной, существующей при целевом местоположении в стволе подземной скважины и/или окружающей подземной формации, включает в себя этапы, на которых доставляют множество генерирующих сигнал устройств в целевое местоположение(я), излучают по меньшей мере один детектируемый сигнал из целевого местоположения и принимают по меньшей мере один такой сигнал.

Группа изобретений относится к химической энзимологии, к способу создания дисперсии, содержащей полимерные наночастицы с инкапсулированным антиоксидантным ферментом, в частности к получению водной дисперсии наночастиц состава супероксиддисмутаза/поликатион/полианион, которая предназначена для медицинского применения.

Изобретение относится к гербицидным композициям. Композиция содержит эффективное соотношение модификаций действующих веществ и вспомогательных компонентов в массовой доли на единицу массы диметилалкиламинной соли 2,4-дихлорфеноксиуксусной кислоты: неионогенное ПАВ - не менее 0,4, или катионактивное поверхностно-активное вещество, или их смесь - не менее 0,3, диметилалкиламинная соль 2-метокси-3,6-дихлорбензойная кислоты - не более 0,2, 2-этилгексиловый эфир 2,4-дихлорфеноксиуксусной кислоты - не более 0,4, органический растворитель - не более 0,1.

Изобретение относится к сельскохозяйственной промышленности, в частности к производству гербицидов. Композиция гербицидов на основе ауксинового ряда включает, по меньшей мере, одно вспомогательное вещество, которое представляет собой смесь, по меньшей мере, одного поверхностно-активного вещества на основе алкоксилированного спирта и, по меньшей мере, одного поверхностно-активного вещества на основе алкоксилированного четвертичного соединения общей формулы: где R2 выбран из насыщенной или ненасыщенной, замещенной или незамещенной углеводородной группы с прямой или разветвленной цепью, содержащей от 8 до 22 углеродных атомов; R3 представляет собой C1-C4 алкил; р и р′ выбраны из целых чисел от 1 до 30; и X- представляет собой совместимый анион.

Изобретение относится к сельскому хозяйству. Для снижения раздражающего действия на глаза водных гербицидных концентратов, применяемых аммониевых солей ауксиновых карбоновых кислот, полученных из моно-, ди- или триалкиламинов, используют аммониевую соль, содержащую катион N,N,N-диметилэтаноламмония, в качестве аммониевой соли ауксиновой карбоновой кислоты.
Гербицидная композиция содержит (а) аминопиралид и (b) 2,4-Д. Изобретение позволяет обеспечивать синергический контроль селективных широколиственных сорняков.
Изобретение относится к сельскому хозяйству. Гербицидное средство содержит гербицидно эффективное количество обладающей поверхностно-активными свойствами триалкиламинной соли 2,4-дихлорфеноксиуксусной кислоты, в которой один алкильный радикал включает не менее 8 атомов углерода, и поверхностно-активное вещество.

Изобретение относится к сельскому хозяйству. Композиция для борьбы с сорняками содержит синергически эффективное количество комбинации 4-амино-5-изопропил-2-(трет-бутиламинокарбонил)-2,4-дигидро-3Н-1,2,4-триазол-3-она и второго компонента, выбранного из 2-(4-мезил-2-нитробензоил)циклогексан-1,3-диона (мезотрион) или 2-хлор-N-(2-этил-6-метилфенил)-N-[(1-метилэтокси)метил]ацетамида (пропизохлор) и их смесей.

Изобретение относится к биоцидам. Биоцидная композиция содержит смесь N-(2-нитробутил)морфолина, 2-этил-2-нитро-1,3-диморфолинопропана и феноксиэтанола.

Изобретение относится к сельскому хозяйству. Пестицидная композиция в виде смеси для разбрызгивания содержит по меньшей мере одно азотсодержащее поверхностно-активное вещество и по меньшей мере один пестицид.
Изобретение относится к биоцидам. Биоцидная композиция содержит глютеральдегид и биоцидное оксазолидиновое соединение.

Изобретение относится к сельскому хозяйству. Гербицидная композиция содержит в качестве активных ингредиентов (a) гербицидное соединение бензилпиразола, представленное формулой (I), или его соль: где R1 представляет собой алкил или циклоалкил, R2 представляет собой атом водорода или алкил, R3 представляет собой алкил, R4 представляет собой алкил, галогеналкил или тому подобное, R5 представляет собой атом водорода, алкил или тому подобное, R6 представляет собой галогеналкил, галоген или тому подобное и A представляет собой алкилен, замещенный алкилом, и (b) другое гербицидное соединение.

Изобретение относится к способу получения нанокапсул ауксинов. Указанный способ характеризуется тем, что ауксин добавляют в суспензию каррагинана в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании, затем приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1.
Наверх