Устройство для радиационного измерения плотности

Использование: для бесконтактного измерения плотности вещества с помощью нейтронного и гамма-излучения. Сущность изобретения заключается в том, что устройство для радиационного измерения плотности включает в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий возможность менять положение с помощью устройства перемещения, сцинтилляционные детекторы со сцинтилляторами, расположенными в одной плоскости в форме соосных с источником излучения и блоком радиационной защиты вставленных друг в друга колец, при этом в качестве источника излучения используется электронный генератор импульсного излучения быстрых нейтронов, подключенный к блоку управления, сцинтилляторы в кольцах дополнительно разбиты на равные угловые сектора, количество угловых секторов составляет не менее двух, каждый из угловых секторов содержит сцинтилляторы для регистрации одного или нескольких видов излучений: эпитепловых или тепловых нейтронов, а также гамма-излучения, сцинтилляторы в кольцах и угловых секторах расположены по отношению друг к другу с зазором, сцинтилляторы, предназначенные для регистрации разных видов излучения, располагаются в каждом кольце чередующимся образом, сцинтилляторы, предназначенные для регистрации определенного вида излучения, располагаются в смежных кольцах по одному радиусу, фотоприемные устройства сцинтилляционных детекторов эпитепловых и/или тепловых нейтронов подключены к временным анализаторам, а фотоприемные устройства сцинтилляционных детекторов гамма-излучения подключены к амплитудным анализаторам, выходы амплитудных и временных анализаторов, а также блок управления подключены к процессору. Технический результат: обеспечение возможности измерения азимутального распределения плотности исследуемого вещества. 1 ил.

 

Изобретение относится к устройствам бесконтактного измерения плотности вещества с помощью нейтронного и гамма-излучения и может быть использовано, например, в установках, предназначенных для измерения плотности дорожных покрытий, грунтов, газов, жидких и сыпучих материалов, азимутального распределения плотности измеряемого вещества.

Известен «Метод идентификации газовой формации на основе импульсного источника быстрых нейтронов со снятием показаний в процессе бурения». Устройство для его реализации включает в себя:

- электронный нейтронный генератор с возможностью излучения в породу, окружающую устройство, нейтронный импульс для образования гамма-квантов неупругого рассеяния и радиационного захвата;

- гамма-детектор с возможностью регистрации гамма-квантов неупругого рассеяния и радиационного захвата, рассеянных в окружающей породе и вернувшихся в устройство;

- устройство обработки данных измерения, основанное, по крайней мере, частично на соотношении гамма-квантов неупругого рассеяния и радиационного захвата, а также на экспериментальных данных или данных расчета для породы. Заявка на патент США №2013/0234012, МПК: G01V 5/10, 2013. Аналог.

Недостатком аналога является невозможность измерения азимутального распределения плотности породы.

Известны «Способ и устройство получения уточненного значения плотности породы с использованием импульсного источника нейтронов», содержащее источник нейтронов, доставляемый в ствол скважины, по меньшей мере, три детектора гамма-излучения, вырабатывающие сигналы отклика на гамма-излучение, создаваемое в породе в результате облучения импульсным источником нейтронов, и процессор, способный определять значение плотности для каждой из, по меньшей мере, двух пар сигналов с использованием числа отсчетов зарегистрированных гамма-квантов для двух сигналов, образующих каждую из пар, и уточненное значение плотности породы на основе, по меньшей мере, двух значений плотности. Патент РФ №2396579, МПК: G01V 5/10, 2010 г. Аналог.

Недостатком аналога является невозможность измерения азимутального распределения плотности породы.

Известны «Системы и методы для азимутального снятия показаний насыщения», включающие средство измерения гамма-плотности, средство измерения нейтронной плотности и акустическое средство измерения. Патент США №2013/0282289, МПК: G01V 3/38, G01V 11/00; 2013. Аналог.

Недостатком аналога является наличие дополнительной погрешности измерения азимутального распределения плотности из-за того, что азимутальные данные получают за счет вращения бурового инструмента, сопровождаемого его смещением вдоль оси скважины.

Известны «Способ и устройство для радиационного измерения плотности твердых тел», в котором устройство включает в себя источник гамма-излучения в радиационной защите и детектор со счетчиком импульсов и сцинтиллятором, в двухканальном детекторе сцинтиллятор выполнен в виде диска из двух колец разных диаметров, причем в кольцо большего диаметра вставлено кольцо меньшего диаметра, внутрь которого вставлен кольцевой блок радиационной защиты, в центре которого размещен источник гамма-излучения и при этом каждый из двух кольцевых сцинтилляторов снабжен кольцевым счетчиком импульсов, причем источник в канале радиационной защиты имеет возможность менять положение с помощью устройства перемещения источника. Патент РФ №2345353, МПК: G01N 23/06, G01N 9/24. 2009. Прототип.

Недостатком прототипа является невозможность измерения азимутального распределения плотности исследуемого вещества.

Техническим результатом изобретения является возможность измерения азимутального распределения плотности исследуемого вещества.

Технический результат достигается тем, что устройство для радиационного измерения плотности, включающее в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий возможность менять положение с помощью устройства перемещения, сцинтилляционные детекторы со сцинтилляторами, расположенными в одной плоскости в форме соосных с источником излучения и блоком радиационной защиты вставленных друг в друга колец, в качестве источника излучения используется электронный генератор импульсного излучения быстрых нейтронов, подключенный к блоку управления, сцинтилляторы в кольцах дополнительно разбиты на равные угловые сектора, количество угловых секторов составляет не менее двух, каждый из угловых секторов содержит сцинтилляторы для регистрации одного или нескольких видов излучений: эпитепловых или тепловых нейтронов, а также гамма-излучения, сцинтилляторы в кольцах и угловых секторах расположены по отношению друг к другу с зазором, сцинтилляторы, предназначенные для регистрации разных видов излучения, располагаются в каждом кольце чередующимся образом, сцинтилляторы, предназначенные для регистрации определенного вида излучения, располагаются в смежных кольцах по одному радиусу, фотоприемные устройства сцинтилляционных детекторов эпитепловых и/или тепловых нейтронов подключены к временным анализаторам, а фотоприемные устройства сцинтилляционных детекторов гамма-излучения подключены к амплитудным анализаторам, выходы амплитудных и временных анализаторов, а также блок управления подключены к процессору.

Сущность изобретения поясняется на чертеже, где схематично показано устройство, в котором применяются сцинтилляторы для регистрации трех видов излучения: тепловых и эпитепловых нейтронов, а также гамма-излучения. Сцинтилляторы находятся в одной плоскости в форме трех соосных колец, разбитых на четыре угловых сектора. На чертеже показаны:

1, 2 и 3 - сцинтилляторы, входящие в состав сцинтилляционных детекторов и предназначенные для регистрации различных видов излучения: тепловых и эпитепловых нейтронов, а также гамма-излучения;

4 - фотоприемные устройства с первичной электроникой, входящие в состав сцинтилляционных детекторов,

5 - угловые сектора сцинтиллятора,

6 - кольца сцинтиллятора,

7 - электронный генератор импульсного излучения быстрых нейтронов,

8 - блок радиационной защиты,

9 - временные или амплитудные анализаторы,

10 - блок управления электронным генератором импульсного излучения быстрых нейтронов,

11 - процессор.

На чертеже не показаны устройства, обеспечивающие электрическое питание электронных блоков устройства. Не показано также устройство перемещения электронного генератора 7.

Устройство содержит: электронный генератор 7 импульсного излучения быстрых нейтронов, который подключен к блоку 10, служащему для управления его работой, и находится на оси блока 8 радиационной защиты с возможностью перемещения вдоль этой оси; сцинтилляционные детекторы, расположенные в одной плоскости, перпендикулярной оси блока 8, и выполненные в форме колец 6, разбитых на угловые сектора 5. Сцинтилляционные детекторы включают в себя сцинтилляторы 1-3, соединенные с оптическим контактом с фотоприемными устройствами 4, которые соединены электрически с первичной электроникой (на чертеже не показана). Выход первичной электроники фотоприемных устройств 4 подключен через временные (для нейтронных детекторов) или амплитудные (для гамма-детекторов) анализаторы 9 к процессору 11.

Сцинтилляторы 1-3 располагаются в одной плоскости и относительно оси устройства могут быть геометрически представлены в форме колец и угловых секторов. Минимальное количество секторов 5 и колец 6, обеспечивающее работоспособность устройства, составляет два. Максимальное количество секторов 5 и колец 6 зависит от технических требований к устройству, условий эксплуатации и ценовых ограничений.

В качестве сцинтилляторов 1-3 могут быть использованы следующие материалы. В случае тепловых нейтронов это могут быть, например: Gd2O2S:Tb или 6LiOH+ZnS и др. Эти же материалы могут быть использованы для регистрации и эпитепловых нейтронов. Для этого сцинтиллятор тепловых нейтронов окружают слоем замедлителя толщиной около 1 см и помещают внутрь экрана из материала, поглощающего тепловые нейтроны, обычно из кадмия толщиной около 1 мм. Для регистрации гамма-излучения могут использоваться спектрометрические кристаллы, например: NaI:T1, BGO и др.

В качестве фотоприемного устройства 4 могут использоваться, например, ФЭУ, фотодиоды или кремниевые фотоумножители. Фотоприемное устройство 4 служит для регистрации сцинтилляционных вспышек, возникших в сцинтилляторах 1-3 под действием регистрируемых излучений, и выработки электрических импульсов. Первичная электроника фотоприемного устройства 4 включают в себя дискриминатор и формирователь этих импульсов. Первичная электроника фотоприемного устройства 4 подключена к анализатору 9, который при регистрации нейтронов представляет собой временной анализатор, а при регистрации гамма-излучения - амплитудный анализатор.

Временные и амплитудные анализаторы 9 предназначены для измерения соответственно временного спада плотности потока тепловых и/или эпитепловых нейтронов и амплитудного распределения гамма-квантов, вытекающих из исследуемого вещества на сцинтилляторы. Временные и амплитудные анализаторы 9 подключены к процессору 11.

В качестве электронного генератора 7 импульсного излучения быстрых нейтронов могут использоваться портативные импульсные нейтронные генераторы 2,5 МэВ и 14 МэВ нейтронов.

Процессор 11 служит для контроля работы первичной электроники фотоприемных устройств 4, временных и амплитудных анализаторов 9 и блока управления 10, а также для первичной обработки информации, поступающей с временных и амплитудных анализаторов 9, и передачи ее к внешней ЭВМ для окончательной обработки.

Состав блока радиационной защиты 8 зависит от энергии быстрых нейтронов и в общем случае может включать в себя вольфрамовый конвертер быстрых нейтронов толщиной несколько сантиметров, предназначенный для сброса энергии 14 МэВ нейтронов за счет реакции неупругого рассеяния, дополнительный замедлитель быстрых нейтронов толщиной до 10 см, поглотитель тепловых нейтронов, например, в виде карбида бора и свинцовую защиту от гамма-излучения, возникающего в замедлителе и электронном генераторе 7.

Устройство работает следующим образом.

На электронные блоки устройства подается питание. С внешней ЭВМ производится установка программы работы устройства в процессор 11. Из процессора 11 в блок управления 10 передается программа работы генератора 7. Генератор 7 включается в частотный режим работы. Блок радиационной защиты 8 препятствует попаданию излучения генератора 7 на сцинтилляторы 1-3 и фотоприемные устройства 4.

Быстрые нейтроны, попавшие в вещество во время импульса генератора 7, рассеиваются на ядрах вещества, постепенно теряя энергию и замедляясь до энергий, при которых нейтроны приходят в тепловое равновесие с веществом. Потеря энергии происходит вследствие как упругих, так и неупругих столкновений быстрого нейтрона с ядрами вещества. При этом неупругие столкновения сопровождаются излучением гамма-квантов неупругого рассеяния.

Замедлившиеся нейтроны имеют различные энергии. Нейтроны с энергией ≈0,4-10 эВ относятся к так называемым эпитепловым нейтронам, а нейтроны, находящиеся в тепловом равновесии с веществом, - к тепловым. Средняя энергия последних при комнатной температуре составляет ≈0,025 эВ. Замедлившиеся нейтроны поглощаются ядрами вещества. Вероятность поглощения нейтрона растет с уменьшением его энергии и поэтому значительно выше для тепловых нейтронов, чем для эпитепловых. При этом в большинстве случаев излучаются гамма-кванты радиационного захвата. В частности, при поглощении тепловых нейтронов водородом излучаются гамма-кванты с энергией 2,223 МэВ.

Во время импульса генератора 7 на сцинтилляторы 1-3, находящиеся в угловом секторе 5 кольца 6, падает излучение гамма-квантов неупругого рассеяния, а в промежутках между импульсами - излучение эпитепловых и тепловых нейтронов, а также гамма-квантов радиационного захвата. Возникающие под действием этих излучений на выходе фотоприемных устройств 4 электрические импульсы поступают на входы временных или амплитудных анализаторов 9. С помощью временных анализаторов 9 регистрируется зависимость потока тепловых и/или эпитепловых нейтронов от времени после импульса, а с помощью амплитудных анализаторов 9 - амплитудный спектр поступающего гамма-излучения. Данные с временных и амплитудных анализаторов 9 поступают в процессор 11 для предварительной обработки и передаются во внешнюю ЭВМ.

С помощью внешней ЭВМ определяют отношение интенсивностей излучений, регистрируемых смежными детекторами, находящимися в разных кольцах (на различных расстояниях от источника излучения) в различные моменты времени после импульса быстрых нейтронов.

Плотность вещества определяют путем сравнения полученных отношений для смежных в кольцах детекторов с данными калибровочных графиков и/или результатов численного моделирования (ГОСТ 23061-90. Грунт. Методы радиоизотопных измерений плотности. ОКСТУ 2009. Патент RU №2249836, МПК: G01V 5/12, 2005. Патент RU №2386946, МПК: G01N 9/00, 2010 ).

Получение азимутального распределения плотности вещества обеспечивается путем обработки данных, полученных с помощью детекторов, находящихся в различных угловых секторах.

Устройство для радиационного измерения плотности, включающее в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий возможность менять положение с помощью устройства перемещения, сцинтилляционные детекторы со сцинтилляторами, расположенными в одной плоскости в форме соосных с источником излучения и блоком радиационной защиты вставленных друг в друга колец, отличающееся тем, что в качестве источника излучения используется электронный генератор импульсного излучения быстрых нейтронов, подключенный к блоку управления, сцинтилляторы в кольцах дополнительно разбиты на равные угловые сектора, количество угловых секторов составляет не менее двух, каждый из угловых секторов содержит сцинтилляторы для регистрации одного или нескольких видов излучений: эпитепловых или тепловых нейтронов, а также гамма-излучения, сцинтилляторы в кольцах и угловых секторах расположены по отношению друг к другу с зазором, сцинтилляторы, предназначенные для регистрации разных видов излучения, располагаются в каждом кольце чередующимся образом, сцинтилляторы, предназначенные для регистрации определенного вида излучения, располагаются в смежных кольцах по одному радиусу, фотоприемные устройства сцинтилляционных детекторов эпитепловых и/или тепловых нейтронов подключены к временным анализаторам, а фотоприемные устройства сцинтилляционных детекторов гамма-излучения подключены к амплитудным анализаторам, выходы амплитудных и временных анализаторов, а также блок управления подключены к процессору.



 

Похожие патенты:

Использование: для регистрации нейтронного и гамма-излучений, применяемых для измерения ядерно-физических характеристик породы при каротаже нефтяных и газовых скважин.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов. Цилиндрический позиционно-чувствительный детектор содержит множество сцинтилляторов, разделенных отражающим материалом, помещенным между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотоприемником, при этом сцинтиллятор состоит из одного или нескольких цилиндрических наборов, составленных из сцинтиллирующих волокон, обеспечивающих регистрацию нейтронного или гамма-излучения, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы сцинтиллирующих волокон соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон.

Изобретение относится к ядерной геофизики и служит для оценки плотности цементного камня скважин подземных хранилищ газа (ПХГ) в процессе их эксплуатации без подъема насосно-компрессорных труб (НКТ).

Использование: для определения текущей нефтенасыщенности пластов-коллекторов, пересеченных скважиной. Сущность изобретения заключается в том, что согласно способу выполняют периодическое облучение горных пород импульсами генератора быстрых нейтронов, регистрацию гамма-излучения неупругого рассеяния (ГИНР) нейтронов и гамма-излучения радиационного захвата (ГИРЗ) тепловых нейтронов детектором гамма-излучения в реальном режиме времени при непрерывном перемещении скважинного прибора и заданном шаге квантования по глубине характеризуется тем, что перед процессом измерений дополнительно определяют оптимальную длительность импульса.

Использование: для определения плотности подземных пластов. Сущность изобретения заключается в том, что определение плотности подземного пласта, окружающего буровую скважину, производят на основании измерения гамма-излучения, возникающего в результате облучения пласта ядерным источником в корпусе прибора, расположенного в буровой скважине, и измерения потока гамма-излучения в корпусе прибора при двух различных расстояниях детекторов от источника, при этом способ содержит определение по существу прямолинейного соотношения между измерениями потоков гамма-излучения при каждом отличающемся расстоянии детекторов применительно к плотности пласта в случае отсутствия отклонения корпуса прибора; определение соотношения, устанавливающего девиацию плотности за счет отклонения прибора, определяемой на основании измерений измеряемого потока гамма-излучения при двух различных расстояниях детекторов, по плотности, вычисляемой на основании прямолинейных соотношений; и для данной пары измерений потока гамма-излучения при различных расстояниях детекторов определение пересечения соотношения, устанавливающего девиацию, с прямолинейным соотношением с тем, чтобы обозначить плотность пласта, окружающего буровую скважину; при этом источник представляет собой нейтронный источник, а гамма-излучение, измеряемое в корпусе прибора, представляет собой наведенное нейтронами гамма-излучение, являющееся результатом нейтронного облучения пласта.

Использование: для измерения пористости методом нейтронного каротажа. Сущность изобретения заключается в том, что представлены система, способ и прибор для определения значений пористости подземного пласта, скорректированных с учетом влияния скважины.

Использование: для определения состояния продуктивного пласта импульсным нейтронным методом. Сущность изобретения заключается в том, что перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ плотности потока тепловых нейтронов на каждом кванте глубины, на которые разбивается пласт, определяют значения фоновых декрементов спада плотности тепловых нейтронов, при этом закачивают в скважину под давлением раствор-реагент, содержащий соединения элементов с аномально высоким макросечением радиационного захвата нейтронов, вторично определяют значения декрементов спада плотности тепловых нейтронов, генерируют в скважине ультразвуковое излучение, воздействуют этим излучением на пласт, после чего снова определяют значения декрементов спада плотности тепловых нейтронов по выполнению соответствующей системы неравенств, содержащих значения декрементов, полученные на трех этапах измерений.

Использование: для измерения пористости. Сущность изобретения заключается в том, что нейтронный скважинный прибор для определения пористости включает источник нейтронов, устройство контроля нейтронов, детектор нейтронов и схему обработки данных.

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт.

Использование: для определения коэффициента нефтегазонасыщенности. Сущность: заключается в том, что выполняют измерения методом ИНК и расчет макроскопического сечения поглощения тепловых нейтронов горной породы, определяют по комплексу ГИС макрокомпонентный состав пород, включая пористость, при этом для расчета макроскопического сечения поглощения тепловых нейтронов пластовой водой и углеводородами используют их элементный состав и плотность, а сам расчет углеводородонасыщенности осуществляют по определенной зависимости, при этом для расчета макроскопических сечений поглощений тепловых нейтронов макрокомпонентами, образующими твердую фазу пород, дополнительно подготавливают коллекцию образцов керна из опорных скважин, на которой проводят измерения минерального, элементного состава образцов и потери веса образца при нагревании, формируют минерально-компонентную модель породы и рассчитывают макроскопические сечения поглощения тепловых нейтронов для каждой макрокомпоненты, образующей твердую фазу породы.

Использование: для измерения плотности и пористости породы с использованием нейтронного излучения. Сущность изобретения заключается в том, что скважинное устройство с двухсторонним расположением измерительных зондов содержит нейтронный источник, расположенный соосно с корпусом скважинного устройства, а также два нейтронных и два гамма-зонда, находящиеся по разные стороны от нейтронного источника, при этом в качестве нейтронного источника применяется нейтронный генератор, каждый нейтронный зонд содержит не менее двух детекторов, которые располагаются между корпусом скважинного устройства и корпусом нейтронного генератора параллельно оси скважинного устройства, одинаково удаленно от оси скважинного устройства и одинаково удаленно от мишени нейтронного генератора, равномерно по углу вокруг оси скважинного устройства, причем детекторы в различных нейтронных зондах повернуты вокруг оси скважинного устройства по отношению друг к другу. Технический результат: уменьшение длины нейтронных измерительных зондов в случае применения в качестве нейтронного источника нейтронного генератора и, как следствие, уменьшение времени измерений. 1 ил.

Использование: для оценки формаций, смежных со стволом скважины. Сущность изобретения заключается в том, что описан прибор нейтронного каротажа с мульти-источником. Прибор каротажа с несколькими источниками содержит выровненные по оси детектор гамма-излучения и детектор тепловых нейтронов, которые расположены с двух сторон от мульти-источника нейтронов. Технический результат: обеспечение возможности регулировки угла интерференционного поля для расположения предпочтительной точки фокусирования нейтронной активности ближе к детектору, чем в случае с одним стандартным источником нейтронов. 6 н. и 13 з.п. ф-лы, 1 табл., 13 ил.

Изобретение относится к нефтяной промышленности и может найти применение при подсчете запасов углеводородов в коллекторах доманиковых отложений. Технический результат - подсчет запасов углеводородов в коллекторах доманиковых отложений на основании проведения геофизических исследований существующих скважин. В способе подсчета запасов углеводородов в коллекторах доманиковых отложений проводят геофизические исследования в существующих скважинах, проходящих через интервалы доманиковых отложений. В качестве метода геофизических исследований используют метод импульсного спектрометрического нейтронного гамма-каротажа. Для базы сравнения при определении продуктивных интервалов используют данные метода импульсного спектрометрического нейтронного гамма-каротажа скважины, перфорированной в интервале доманиковых отложений, в которой проведен гидроразрыв пласта и получен промышленный дебит нефти. Помимо метода импульсного спектрометрического нейтронного гамма-каротажа при обсчете полученных данных дополнительно используют данные прочих методов геофизических исследований. 1 з.п. ф-лы.

Изобретение относится к разработке нефтяных залежей и может быть применено для проведения геолого-технических мероприятий по увеличению добычи нефти. Способ заключается в том, что до осуществления ГРП проводят предварительные комплексные геофизические исследования скважины (ГИС) и производят закачку в интервалы перфорации поочередно жидкости разной минерализации с выполнением ГИС после каждой закачки. Затем осуществляют ГРП с проппантом и повторно производят закачку жидкости разной минерализации с выполнением ГИС после каждой закачки. Далее производят сравнительный анализ ГИС до и после ГРП, основываясь на показаниях импульсного нейтронного каротажа. Геофизические исследования скважины включают гамма-каротаж, метод термометрии, локацию муфт и импульсно-нейтронный каротаж. Технический результат заключается в определении показателей проницаемых участков перфорированных интервалов скважины как до воздействия, так и после воздействия гидравлического разрыва пласта, по результатам анализа которых судят о продуктивности скважины. 1 з.п. ф-лы.

Использование: для измерения свойств пласта. Сущность изобретения заключается в том, что инструмент для измерения свойств пласта содержит корпус инструмента, источник нейтронов для излучения нейтронов, расположенный внутри корпуса инструмента, нейтронный детектор, расположенный внутри корпуса инструмента на расстоянии от источника нейтронов, и нейтронный защитный экран, расположенный в рабочем положении относительно нейтронного детектора, причем указанный нейтронный защитный экран имеет наружную поверхность и ограничивает внутренний объем, при этом нейтронный защитный экран выполнен с возможностью предотвращения проникновения нейтронов, имеющих энергию ниже первого заданного порога, от наружной поверхности во внутренний объем. Нейтронный защитный экран с возможностью перемещения связан с корпусом инструмента, причем нейтронный защитный экран имеет незакрытое положение относительно нейтронного детектора таким образом, что нейтронный детектор по меньшей мере частично находится во внутреннем объеме, и нейтронный защитный экран имеет закрытое положение относительно нейтронного детектора таким образом, что нейтронный детектор находится во внутреннем объеме. Технический результат: обеспечение возможности повышения достоверности определения пористости пласта. 2 н. и 20 з.п. ф-лы, 9 ил.

Использование: для регистрации нейтронов с использованием эффекта сцинтилляции в скважинах и других областях применения на нефтяных месторождениях. Сущность изобретения заключается в том, что выполняют позиционирование в скважине, по меньшей мере, одного сцинтиллятора, содержащего эльпасолит, причем эльпасолит представлен формулой Cs2LiMN6, где M представляет собой, по меньшей мере, один элемент из группы, содержащей иттрий и лантан, и N представляет собой, по меньшей мере, один элемент из группы, содержащей хлор и бром, подают нейтроны в область геологической формации, находящуюся вблизи скважины; принимают оптическое излучение от сцинтиллятора, генерирующего оптическое излучение в результате взаимодействия с нейтронами, отраженными от геологической формации; и преобразуют оптическое излучение, поданное сцинтиллятором, в электрический сигнал, принимают электрический сигнал в процессоре и применяют процессор, сконфигурированный для применения метода дискриминации по форме импульсов для различения: а) форм импульсов, полученных в результате взаимодействия между нейтронами и сцинтиллятором, и b) форм импульсов, полученных в результате взаимодействия между гамма-излучением и сцинтиллятором. Технический результат: обеспечение возможности сохранения высокого разрешения измерений, проводимых при повышенных температурах. 2 н. и 15 з.п. ф-лы, 16 ил.

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных и рентгеновских генераторов. Технический результат - расширение функциональных и эксплуатационных возможностей нейтронного генератора. В импульсном нейтронном генераторе, содержащем размещенные коаксиально в герметичном корпусе, залитом жидким диэлектриком, нейтронную трубку, накопительный конденсатор и высоковольтный трансформатор с многорядной вторичной обмоткой и межрядной изоляцией, выступающей за пределы рядов, выполненной на каркасе, и параллельно с вторичной обмоткой трансформатора дополнительную обмотку, намотанную проводом с высоким удельным сопротивлением и высокой магнитной проницаемостью, нейтронная трубка снабжена дополнительным управляемым трехэлектродным источником ионов, мишенный электрод размещен посередине корпуса нейтронной трубки и имеет две симметричные мишени, насыщенные одним или разными изотопами водорода, вторичная обмотка трансформатора и дополнительная обмотка выполнены в виде двух симметричных усеченных конусов, имеющих общее малое основание, при этом крайние витки обмоток, расположенных на малом основании, подключены к мишенному электроду, а крайние витки, расположенные на больших основаниях, подключены к корпусу нейтронного генератора. 1 ил.

Использование: для исследования нефтегазовых скважин. Сущность изобретения заключается в том, что комплексная аппаратура для исследования нефтегазовых скважин включает модуль ядерного каротажа, содержащий спектрометрические зонды с детекторами гамма-излучения радиационного захвата – СНГК, зонды с детекторами тепловых нейтронов - ННК-Т и спектрометрический зонд с детектором естественной радиоактивности - СГК, а также модуль электромагнитного дефектоскопа - ЭД. В процессе работы производят регистрацию интенсивностей гамма-излучения с помощью модуля СНГК и зонда СГК с одновременной периодической регистрацией ЭДС, наведенной в приемной катушке ЭД вихревыми токами, возбуждаемыми в стальных трубах процессом спада электромагнитного поля, вызванного зондирующим импульсом тока намагничивания генераторной катушки, при этом зарегистрированные сигналы модуля СНГК и зонда СГК накапливают, разбивают на фрагменты данных и передают их на поверхность в период каждого цикла подачи зондирующих импульсов тока намагничивания генераторной катушки, после чего фрагменты данных восстанавливают в единый массив в наземной станции. Технический результат: повышение достоверности исследования нефтегазовых скважин. 2 н. и 4 з.п. ф-лы, 3 ил.

Использование: для определения содержания урана в ураново-рудных формациях, пересеченных скважиной, посредством нейтронного каротажа. Сущность изобретения заключается в том, что получают во множестве точек записи значений скорости счета мгновенных нейтронов деления и значений скорости счета тепловых нейтронов, определяют в процессе обработки спада скорости счета мгновенных нейтронов деления и тепловых нейтронов в каждой точке каротажа, получают во множестве точек записи каротажа вторичными методами физических характеристик скважины и пласта ураново-рудной формации, в котором данные каротажа получены испусканием пачек нейтронов с энергией 14 МэВ, рассеивающих свою энергию до уровня тепловых, а детектируют эпитепловые мгновенные нейтроны деления, испускаемые ураном, делящимся тепловыми нейтронами. При этом в качестве основы для расчета содержания урана принимают значение интегральной скорости счета детектора эпитепловых нейтронов, приведенное посредством данных монитора нейтронного потока к единому потоку нейтронов, в качестве эталона содержания урана используют параметрическую скважину, аттестованную в пласте ураново-рудной формации и рудовмещающей толще по содержанию урана, мощности, времени жизни теплового нейтрона в пласте, вышеназванный эталон хранит и воспроизводит совокупность физических характеристик скважины и пласта ураново-рудной формации, проводят цикл каротажных исследований, который включает в себя проведение двух аппаратурных проверок эталона до проведения каротажа поисковой скважины и после проведения каротажа поисковой скважины для получения среднего значения пересчетного коэффициента Kп, оцениваемого по определенному математическому отношению, который используют в расчете содержания урана по разрезу, пересеченному поисковой скважиной. Технический результат: снижение погрешности оценки содержания урана. 4 ил.

Изобретение относится к горному делу и может быть применено для определения ориентации трещины, полученной в результате гидроразрыва пласта. Способ определения пространственной ориентации трещины гидроразрыва включает проведение гидроразрыва пласта - ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва после проведения ГРП. Перед проведением ГРП в скважину в интервал пласта, подлежащего гидроразрыву, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта, извлекают колонну труб с геофизическим прибором из скважины, производят ГРП с образованием и креплением трещины разрыва проппантом. Причем в процессе крепления трещины проппант закачивают двумя порциями, первой порцией закачивают проппант в 4/5 части от его общей массы, а второй порцией закачивают маркированный проппант, содержащий 0,4 мас.% гадолиния (Gd64157,25) в 1/5 части от общей массы проппанта. При этом фракции проппанта одинаковы в обеих порциях. По окончании крепления трещины стравливают давление из скважины и промывают забой скважины от излишков маркированного проппанта, извлекают колонну труб с пакером из скважины, в скважину в интервал пласта с трещиной, закрепленной в призабойной зоне маркированным проппантом, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта и трещины разрыва и определяют пространственную ориентацию трещины гидроразрыва. Технический результат заключается в упрощении технологии определения пространственной ориентации трещины гидроразрыва; повышении надежности и эффективности определения направления пространственной ориентации трещины; сокращении продолжительности процесса реализации способа. 6 ил.

Использование: для бесконтактного измерения плотности вещества с помощью нейтронного и гамма-излучения. Сущность изобретения заключается в том, что устройство для радиационного измерения плотности включает в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий возможность менять положение с помощью устройства перемещения, сцинтилляционные детекторы со сцинтилляторами, расположенными в одной плоскости в форме соосных с источником излучения и блоком радиационной защиты вставленных друг в друга колец, при этом в качестве источника излучения используется электронный генератор импульсного излучения быстрых нейтронов, подключенный к блоку управления, сцинтилляторы в кольцах дополнительно разбиты на равные угловые сектора, количество угловых секторов составляет не менее двух, каждый из угловых секторов содержит сцинтилляторы для регистрации одного или нескольких видов излучений: эпитепловых или тепловых нейтронов, а также гамма-излучения, сцинтилляторы в кольцах и угловых секторах расположены по отношению друг к другу с зазором, сцинтилляторы, предназначенные для регистрации разных видов излучения, располагаются в каждом кольце чередующимся образом, сцинтилляторы, предназначенные для регистрации определенного вида излучения, располагаются в смежных кольцах по одному радиусу, фотоприемные устройства сцинтилляционных детекторов эпитепловых иили тепловых нейтронов подключены к временным анализаторам, а фотоприемные устройства сцинтилляционных детекторов гамма-излучения подключены к амплитудным анализаторам, выходы амплитудных и временных анализаторов, а также блок управления подключены к процессору. Технический результат: обеспечение возможности измерения азимутального распределения плотности исследуемого вещества. 1 ил.

Наверх