Способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей

Изобретение относится к системам обнаружения объектов и определения их местоположения. Технический результат состоит в уменьшении или компенсации ошибок определения направления (пеленга) и местоположения объекта, с которого излучаются оптические сигналы, для этого при определении направления на источник оптического излучения по рассеянной в атмосфере составляющей обнаруживают рассеянное в атмосфере излучение оптической системы сканирования земной поверхности элементами системы из четырех матричных фотоприемников, установленных таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определении линейки элементов, в которых обнаружены сигналы, и решении задачи восстановления угловых координат источника оптического излучения по линии пересечения двух плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях прямоугольного параллелепипеда. 4 ил.

 

Изобретение относится к системам обнаружения объектов и определения их местоположения (пеленгаторам), а более конкретно - к способам и устройствам для уменьшения или компенсации ошибок определения направления (пеленга) и местоположения объекта, с которого излучаются оптические сигналы.

Известен способ определения угловых координат (пеленгования) лазерного источника по прямому излучению с помощью совокупности одноэлементных или матричных фотоприемников, объединенных в одно ФПУ - датчик лазерного облучения (ДЛО) объекта. В основу этого способа положены регистрация оптического излучения элементом фотоприемника и определение координат этого элемента [см., например, журналы: Защита и безопасность. - 1999. - №3. - С. 47; Защита и безопасность. - 2002. - №1. - С. 26, 27; Зарубежное военное обозрение. - 1995. - №2. - С. 53-57; Сб. трудов 8-й Всероссийской НТК «Актуальные проблемы защиты и безопасности» (приложение к журналу «Известия РАРАН»). - 2005. - С-Пб. - Т. 3. - С. 131-136; Вестник Воронежского государственного технического университета. - 2009. - Т. 5. - №11. - С. 91-98].

Проведенный в журнале [Вестник Воронежского государственного технического университета. - 2009. - Т. 5. - №11. - С. 91-98] анализ состояния и перспектив развития ДЛО позволил сделать следующие выводы.

Абсолютное большинство (порядка 80%) ДЛО позволяют обнаруживать импульсное излучение лазерных средств, работающих в ближнем инфракрасном (ИК) диапазоне. Основным информативным признаком существующих ДЛО является короткая (до 100 нс) длительность импульсов. Регистрация же непрерывного и квазинепрерывного лазерного излучения, наиболее характерного для лазерно-лучевых систем наведения боеприпасов, невозможна. Кроме того, пороговая чувствительность современных ДЛО, составляющая величину порядка 10-2…10-7 Вт/см2, не позволяет регистрировать импульсные маломощные лазерные сигналы авиационных лазерных систем сканирования земной поверхности. И, наконец, использование ДЛО такого класса в ряде случаев может оказаться неэффективным по следующим соображениям:

1) недостаточной точности пеленгации лазерной системы, составляющей для разных типов датчиков 2…3,75 градуса [см., например, Евдокимов В.И. Неконтактная защита боевой техники. / В.И. Евдокимов, Г.А. Гуменюк, М.С. Андрющенко / Под ред. В.Я. Соколова. - СПб.: Реноме, 2009. - 176 с.; Зарубежное военное обозрение. - 1995. - №2. - С. 53-57];

2) необходимости применения большого количества ДЛО (до сотен штук) для пеленгования лазерных излучений в широком секторе обзора при обеспечении защиты группы объектов, расположенных на больших площадях (в сотни и тысячи квадратных метров) из-за необходимости установки ДЛО на всех защищаемых объектах [см., например, журналы: Радиотехника (журнал в журнале «Информационный конфликт в спектре электромагнитных волн»). - 2005. - №14. - С. 14-18; Радиотехника (журнал в журнале «Информационный конфликт в спектре электромагнитных волн»). - 2007. - №5. - С. 44-46].

Наиболее близким к предлагаемому способу (прототипом) по технической сущности и достигаемому положительному эффекту является способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей [см. патент РФ №2285275 от 21.06.2006 г. по классу G01S 17/06 по заявке №2005106700 от 09.03 2005 г.]. Этот способ заключается в обнаружении рассеянного в атмосфере оптического излучения элементами системы двух матричных фотоприемников (ФП), расположенных в двух взаимно перпендикулярных плоскостях, формировании изображения луча в каждом из них, осуществлении координатной привязки элементов первого и второго фотоприемников и пространственно-временной обработке этих изображений.

Однако для обеспечения пеленгования оптического луча с высокой точностью (в несколько угловых минут) при применении этого способа, основанного на многопозиционном (триангуляционном) методе пассивной оптической локации рассеянного атмосферой излучения с последующей пространственно-временной обработкой сигналов, требуется размещать матричные фотоприемники на большом удалении друг от друга (сотни и тысячи метров), что невозможно реализовать в случае близко расположенных объектов (например, колонны объектов), а также при размещении пеленгатора только на одном из них. Кроме того, пеленгование авиационных оптических систем со сканированием земной поверхности оптическим лучом является проблематичным [см., например, журнал: Радиотехника (журнал в журнале «Информационный конфликт в спектре электромагнитных волн»). - 2005. - №14. - С. 14-18].

Недостатком прототипа является низкая точность пеленгования оптических систем со сканированием оптическим лучом земной поверхности в случае близко расположенных объектов, а также при размещении пеленгатора только на одном из них.

Техническим результатом заявляемого способа является повышение точности пеленгования систем со сканированием оптическим лучом земной поверхности при размещении пеленгатора на одном объекте.

Технический результат достигается за счет того, что в известном способе определения направления на источник оптического излучения по рассеянной в атмосфере составляющей, заключающемся в обнаружении рассеянного в атмосфере оптического излучения элементами системы матричных фотоприемников и формировании изображения луча в каждом из них, четыре матричных фотоприемника устанавливают таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определяют в каждом матричном фотоприемнике линейку элементов, в которых обнаружены (зарегистрированы) сигналы, осуществляют построение двух плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях параллелепипеда, находят линию пересечения этих плоскостей и по этой линии определяют направление на источник оптического излучения.

Сущность изобретения заключается в обнаружении рассеянного в атмосфере излучения оптической системы сканирования земной поверхности элементами системы из четырех матричных фотоприемников, установленных таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определении линейки элементов, в которых обнаружены сигналы, и решении задачи восстановления угловых координат источника оптического излучения по линии пересечения двух плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях прямоугольного параллелепипеда.

Предлагаемый способ поясняется фиг. 1, на которой показано взаимное расположение системы из четырех матричных фотоприемников и сканирующей оптической системы, находящейся на высоте Н и расстоянии d от системы матричных фотоприемников. С каждым из этих четырех фотоприемников (i-м ФП) связана система координат OiXiYiZi, начало которой совпадает с центром i-го ФП, а плоскость OiXiZi совпадает с плоскостью i-го фотоприемника.

При сканировании оптическим лучом земной поверхности происходит последовательное обнаружение рассеянного атмосферой излучения элементами матричных фотоприемников и формирование изображения луча в каждом из них. Затем в каждом из этих фотоприемников определяют линейку элементов (проекцию изображения оси луча сканирующей оптической системы), соответствующую максимальному числу элементов, в которых зарегистрированы (обнаружены) сигналы с элементов матричных фотоприемников. На фиг. 2 показана динамика изменения положения линейки элементов, в которых обнаружены сигналы, как во времени (в каждом из четырех ФП для трех моментов времени сканирования луча), так и в пространстве (в одном цикле сканирования, но для разных фотоприемников, плоскости которых образуют в пространстве боковые грани параллелепипеда). Определив уравнения, описывающие положения этих линеек элементов в каждом матричном фотоприемнике, осуществляют построение двух плоскостей, проходящих через линейки элементов в двух матричных фотоприемниках, плоскости которых образуют в пространстве боковые грани прямоугольного параллелепипеда, расположенные напротив друг друга. Затем находят линию пересечения проходящих через линейки элементов в двух матричных фотоприемниках плоскостей и по этой линии определяют направление на источник оптического излучения.

Предлагаемый способ может быть реализован, например, с помощью устройства, структурная схема которого показана на фиг. 3, на которой обозначено: 1.1, 1.2, 1.3 и 1.4 - четыре матричных фотоприемника для обнаружения рассеянного в атмосфере излучения оптической системы сканирования земной поверхности, установленные таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой; 2.1, 2.2, 2.3 и 2.4 - четыре многоканальных блока определения линейки элементов (проекции изображения оси луча сканирующей оптической системы), соответствующей максимальному числу элементов, в которых зарегистрированы (обнаружены) сигналы; 3.1 и 3.2 - два многоканальных блока определения плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, плоскости которых образуют в пространстве боковые грани параллелепипеда, расположенные напротив друг друга; 4 - блок определения линии пересечения плоскостей, проходящих через проекции луча в каждой паре матричных фотоприемников, расположенных напротив друг друга.

Устройство содержит четыре матричных фотоприемника 1.1, 1.2, 1.3 и 1.4, выходы элементов каждого из которых соединены со входами соответствующих многоканальных блоков 2.1, 2.2, 2.3 и 2.4 определения линеек элементов, в которых обнаружены (зарегистрированы) сигналы элементами матричных фотоприемников 1.1, 1.2, 1.3 и 1.4, соответственно, причем выходы блоков 2.1 и 2.3 подключены ко входам блока 3.1, а выходы блоков 2.2 и 2.4 соединены со входами блока 3.2.

Первый 3.1 и второй 3.2 многоканальные блоки предназначены для определения плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных гранях параллелепипеда для пар фотоприемников 1.1 и 1.3 и 1.2 и 1.4, соответственно. Двухвходовой блок 4 служит для определения линии пересечения плоскостей, проходящих через проекции луча в каждой паре матричных фотоприемников, расположенных напротив друг друга, и оценки угловых координат оптической системы сканирования земной поверхности. Входы блока 4 соединены с выходами блоков 3.1 и 3.2.

Устройство, реализующее предлагаемый способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей, работает следующим образом.

Рассеянное излучение оптической системы сканирования земной поверхности принимается матричными фотоприемниками 1.1, 1.2, 1.3 и 1.4. Затем в многоканальных блоках 2.1, 2.2, 2.3 и 2.4 определяются элементы, в которых обнаружены (зарегистрированы) сигналы, производится определение координат элементов приемников, в каждом из которых наблюдается центр энергетической яркости (максимум числа фотоотсчетов сигнала в этом элементе), и осуществляется построение линеек элементов, в которых обнаружены сигналы в каждом матричном фотоприемнике 1.1, 1.2, 1.3 и 1.4. Блоки 2.1, 2.2, 2.3 и 2.4 могут быть реализованы, например, с помощью устройства, структурная схема построения которого приведена на стр. 155 в журнале «Вестник Воронежского государственного технического университета». - 2007. - Т. 3. - №4, а изображения линеек элементов, в которых обнаружены сигналы, показаны на фиг. 2.

С использованием построенных в многоканальных блоках 2.1, 2.2, 2.3 и 2.4 линеек элементов, в которых обнаружены сигналы в каждом матричном фотоприемнике 1.1, 1.2, 1.3 и 1.4, в блоках 3.1 и 3.2 решаются уравнения, описывающие плоскости, проходящие через линейки элементов в матричных фотоприемниках 1.1 и 1.3 и 1.2 и 1.4, соответственно, расположенных на противоположных боковых гранях параллелепипеда. В блоках 3.1 и 3.2 для решения уравнений, описывающих плоскости, проходящие через линейки элементов в матричных фотоприемниках 1.1 и 1.3 и 1.2 и 1.4, соответственно, может быть реализован алгоритм, описание которого содержится на стр. 157 в журнале «Вестник Воронежского государственного технического университета». - 2007. - Т. 3. - №4.

Затем в блоке 4 с использованием полученных в блоках 3.1 и 3.2 результатов находится линия пересечения этих плоскостей и по этой линии определяется положение оси лазерного луча в пространстве и, соответственно, определяется направление (пеленг) на оптическую систему сканирования земной поверхности. В блоке 4 для решения задачи пересечения плоскостей, проходящих через проекции луча в каждой паре фотоприемников 1.1, 1.3 и 1.2., 1.4, может быть реализован алгоритм, описание которого содержится на стр. 157 в журнале «Вестник Воронежского государственного технического университета». - 2007. - Т. 3. - №4.

Эффективность изобретения выражается в повышении точности пеленгования оптических систем со сканированием лучом земной поверхности при размещении пеленгатора на одном объекте.

Обеспечение повышения точности пеленгования оптической системы со сканированием лучом земной поверхности подтверждается данными моделирования процесса определения положения оптического луча в пространстве. Результаты расчета суммарных среднеквадратических ошибок σ (по азимуту и углу места) определения положения луча в пространстве системой матричных фотоприемников приведены на фиг. 4, на которой показаны зависимости этих ошибок σ от дальности d и высоты Н подсвета земной поверхности.

Из фиг. 4 видно, что реализация предлагаемого способа позволит обеспечить высокоточное (со среднеквадратической ошибкой, не превышающей несколько угловых минут) определение направления на оптическую систему со сканированием лучом земной поверхности при размещении пеленгатора на одном объекте.

Сопоставительный анализ заявленного технического решения с прототипом показывает, что предложенный способ отличается от известного наличием, во-первых, новых действий над сигналом (определяют в каждом из матричных фотоприемников положение проекции изображения оси луча по максимальному числу элементов матричного фотоприемника, в которых зарегистрированы (обнаружены) сигналы), и, во-вторых, новых условий выполнения действий (размещении матричных фотоприемников на боковых гранях прямоугольного параллелепипеда, стороны основания которого равны между собой, построении плоскостей, проходящих через проекции изображений луча пеленгуемой оптической системы в каждой паре матричных фотоприемников, расположенных на противоположных боковых гранях параллелепипеда, и нахождении линии пересечения этих плоскостей).

Таким образом, использование особенностей части операций, выполняемых над сигналами в известном способе, учет информации о расположении плоскостей, проходящих через проекции изображений оси луча пеленгуемой системы в каждой паре матричных фотоприемников в соответствии с предложенными новыми действиями и условиями их выполнения, позволяют сделать вывод о наличии существенных отличий предлагаемого способа от прототипа. Эти действия обеспечивают повышение точности пеленгования систем со сканированием оптическим лучом земной поверхности при размещении пеленгатора на одном объекте.

Способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей, заключающийся в обнаружении рассеянного в атмосфере оптического излучения элементами системы матричных фотоприемников и формировании изображения луча в каждом из них, отличающийся тем, что четыре матричных фотоприемника устанавливают таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определяют в каждом матричном фотоприемнике линейку элементов, в которых обнаружены и зарегистрированы сигналы, осуществляют построение двух плоскостей, каждая их которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях параллелепипеда, находят линию пересечения этих плоскостей и по этой линии определяют направление на источник оптического излучения.



 

Похожие патенты:

Изобретение относится к области радиотехники. Достигаемый технический результат - повышение точности измерения угла места объекта и сокращение времени пеленгования.

Изобретение может использоваться в радиоразведке, радиомониторинге, при поиске специальных электронных устройств перехвата информации для определения местоположения источника радиоизлучения (ИРИ).

Изобретение относится к области радиотехники и может быть использовано в фазовых и амплитудных пеленгатора сверхвысокочастотного диапазона. Достигаемый технический результат - увеличение точности пеленгования и расширение рабочего диапазона в сторону высоких частот.

Изобретение относится к области радиопеленгации и предназначено для измерения пространственно-частотного распределения систематической ошибки пеленгования (СОП) в ходе испытаний, экспериментальных исследований, эксплуатации радиопеленгаторных систем (РПС).

Изобретение относится к области радиосвязи и может быть использовано при решении задач, связанных с местоопределением источников радиоизлучений. .

Изобретение относится к радиолокации и может быть использовано в каналах углового сопровождения цели радиолокационных станций и координаторах ракет. .

Изобретение относится к радиолокации и может быть использовано в каналах углового сопровождения цели радиолокационных станций и в координаторах ракет. .

Изобретение относится к радиолокационному обнаружению и измерению дальности до целей на фоне пассивных помех и может найти применение в РЛС, использующих высокую частоту следования зондирующих импульсов.

Изобретение относится к радиолокации и может быть использовано в каналах углового сопровождения цели радиолокационных станций и координаторах ракет. .

Изобретение относится к области радиолокации. .

Изобретение относится к области радиотехнических систем определения угловых координат источника сигнала. Достигаемый результат - повышение точности пеленгования источника радиоизлучения широкополосного сигнала при сохранении единственности измерения сигналов на выходах пеленгационных каналов. Указанный результат достигается тем, что до приема пеленгуемого сигнала, используя источник тестового сигнала для различных частот калибровки и всех пеленгационных каналов, каждый из которых включает элемент антенной решетки, производят оценку калибровочных коэффициентов, каждый из которых определяет неидентичность амплитудно-фазовых характеристик соответствующего пеленгационного канала, в процессе пеленгования до вычисления пространственных спектров Фурье пеленгуемого сигнала выполняют оценку частоты калибровки, делят сигналы, принятые пеленгационными каналами, на соответствующие, по каналу и частоте, калибровочные коэффициенты. 2 табл., 3 ил.

Изобретение относится к радиотехнике и может использоваться при построении фазовых пеленгаторов в составе радиоизмерительных устройств, систем и комплексов сверхвысокочастотного (СВЧ) диапазона. Достигаемый технический результат - исключение неопределенности фазовой неидентичности приемных радиоканалов, что позволяет исключить необходимость предварительной регулировки приемных радиоканалов. Указанный результат достигается за счет того, что пеленгатор СВЧ диапазона содержит N приемных радиоканалов (состоящих из приемной антенны, узла связи, преобразователя частоты и усилителя промежуточной частоты), частотно-генерирующее устройство (ЧГУ), первый, второй и третий двухканальные коммутаторы, кроме первого, нагруженные соответственно первой и второй согласованными нагрузками, гетеродин, подключенный к гетеродинным входам преобразователей частоты, блок обработки сигналов и управления (БОСУ), при этом ЧГУ формирует М сигналов калибровки на отличных друг от друга частотах, которые выбираются таким образом, чтобы на соседних частотах приращение разностей фаз сигнала калибровки с выходов приемных радиоканалов, для которых определяется фазовая неидентичность, не превышало по модулю значения π. БОСУ выполнен с возможностью управления алгоритмом работы частотно-генерирующего устройства. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области радиопеленгования импульсных радиоизлучателей электромагнитной энергии (например, молниевых разрядов) в приземном волноводе Земля - ионосфера. Достигаемый технический результат - повышение точности измерения положения фронта ионосферной волны. Указанный результат достигается за счет осуществления широкополосного приема ортогональных компонент электромагнитного поля, что позволяет регистрировать ионосферные волны в точке приема раздельно и безошибочно определять угловое положение фронта падения каждой из них, за счет устранения ошибок многолучевости, вызванных интерференцией многократно отраженных от ионосферы электромагнитных волн. 1 ил.
Наверх