Способ получения метилпропионата и метилметакрилата

Изобретение относится к процессам переработки углеводородных газов с получением жидких химических продуктов с высокой добавленной стоимостью. Способ переработки природных и попутных нефтяных газов, а также углеводородных нефтяных газов с повышенным содержанием тяжелых гомологов метана и низким метановым числом, с получением метилпропионата и метилметакрилата, заключается в двухступенчатом селективном прямом гомогенном окислении углеводородного газа и последующем каталитическим карбонилировании смеси с получением метилпропионата, конденсации части полученного метилпропионата с формальдегидом для получения метилметакрилата, причем на одной ступени окисления углеводородного газа, проводимой при температуре 700-800°C и давлении 1-30 бар, получают газовую смесь, содержащую этилен и СО, а на другой ступени, проводимой при давлении 30-80 бар и начальной температуре 350-420°C, получают метанол и СО, причем либо сначала углеводородный газ окисляют на ступени, проводимой при температуре 700-800°C, с получением этилена, а затем окисляют на ступени, проводимой при начальной температуре 350-420°C, либо сначала углеводородный газ окисляют на ступени, проводимой при начальной температуре 350-420°C, с последующей конденсацией полученного метанола, формальдегида и воды, а затем окисляют полученную газовую смесь на ступени, проводимой при температуре 700-800°C, с последующим добавлением метанола первой ступени; затем полученную в результате двухступенчатого окисления смесь обрабатывают при повышенных давлениях и температурах в присутствии катализатора карбонилирования для взаимодействия этилена, метанола и СО и получают углеводородный газ с повышенным метановым числом и жидкие продукты, из которых выделяют метилпропионат, часть которого дополнительно обрабатывают формальдегидом. Способ переработки природных и попутных нефтяных газов, а также углеводородных нефтяных газов с повышенным содержанием тяжелых гомологов метана и низким метановым числом, с получением метилпропионата и метилметакрилата, заключается в селективном прямом гомогенном окислении углеводородного газа и последующем каталитическим карбонилировании смеси с получением метилпропионата, конденсации части полученного метилпропионата с формальдегидом для получения метилметакрилата, причем часть исходного углеводородного газа подвергают окислительной конверсии на стадии, проводимой при давлении 30-80 бар и начальной температуре 350-420°C, с последующей конденсацией жидких продуктов и выделением метанола, а другую часть исходного углеводородного газа подвергают окислительной конверсии на стадии, проводимой при температуре 700-800°C и давлении 1-30 бар с получением газовой смеси, содержащей этилен и СО, которую после охлаждения барботируют через полученный метанол в присутствии катализатора карбонилирования для взаимодействия этилен, метанола и СО при повышенных температурах и давлениях, и получают углеводородный газ с повышенным метановым числом и жидкие продукты, из которых выделяют метилпропионат, часть которого дополнительно обрабатывают формальдегидом. Техническим результатом является создание более простого и экономичного способа получения целевых продуктов при одновременном получении очищенного «сухого» газа с повышенным по сравнению с исходным углеводородным газом метановым числом. 2 н.п. ф-лы, 3 пр.

 

Изобретение относится к процессам переработки углеводородных газов с получением жидких химических продуктов с высокой добавленной стоимостью (процессам «газ-в-жидкость»), в частности, к получению метилпропионата, используемого в химической промышленности в качестве растворителя и полупродукта для синтезов ряда продуктов. Особенно перспективным процессом, в котором используется метилпропионат, является альтернативный способ получения одного из важнейших продуктов - метилметакрилата (ММА). В настоящее время метилметакрилат получают ацетонциангидринным методом, исходными полупродуктами в котором являются ацетон и цианистый водород [Химическая энциклопедия. М., 1998. Научное из-во БРЭ. Т. 5, с. 510]. Недостатком этого способа является использование дорогостоящего и токсичного сырья, а также большое количество токсичных стоков и отходов.

Известен также альтернативный способ получения метилметакрилата конденсацией метилпропионата с формальдегидом в присутствии катализаторов [US Patent 3089902]. Одним из способов получения метилпропионата является взаимодействие этилена с СО в присутствии метанола на катализаторе, содержащем карбонил никеля [DE Patent 915567, 1953, BASF].

Наиболее близким по технической сущности и достигаемому результату является способ получения метилметакрилата из простых химических веществ: этилена, метанола и окиси углерода через стадию получения метилпропионата метоксикарбонилированием этилена с последующей конденсацией с формальдегидом (Lucite′s Alpha technology - Альфа ММА - процесс компании Lucite International) [G.R. Eastham, Μ. Waugh and Ph.-I. Richards, Lucite International UK Limited, "Carbonylation of ethylenically unsaturated compounds", WO Patent 2007/057640 A1; 2007]):

По сравнению с вышеизложенным способом, этот процесс на 30-40% дешевле по капиталовложениям и производит ММА практически без отходов.

Центральной стадией этого процесса является получение метилпропионата метоксикарбонилированием этилена. Предложено большое число катализаторов, преимущественно на основе комплексов палладия, которые в отличие от комплексов кобальта и никеля, активных в этой реакции при температурах 150-200°C и давлениях 150-200 бар, катализируют процесс при 70-120°C и давлении ниже 100 бар. Например, в присутствии каталитической системы, содержащей 1,2-бис(ди-mpem-бутил-метил-фосфино)бензол, соли палладия и добавки сульфоновых кислот, метоксикарбонилирование этилена протекает при 80°C и давлении 10 бар со скоростью 50000 моль/моль[Рd]×ч с 99,98% селективностью по метилпропионату. [R.A.M. Robertson, D.J. Cole-Hamilton / Coordination Chemistry Reviews 225 (2002) 67-90. The production of low molecular weight oxygenates from carbon monoxide and ethane].

Известно также [С. Bianchini, A. Meli, W. Oberhauser et. al Methoxycarbonylation of Ethene by Palladium (II) Complexes with 1,1′-Bis(diphenylphosphino)ferrocene (dppf) and 1,1′-Bis(diphenylphosphino)octamethylferrocene (dppomf) Organometallics, 2003, 22 (12), pp 2409-2421], что плоскоквадратные комплексы Pd (II): [Pd(H2O)2(dppf)](OTs)2 и [Pd(H2O)2(dppomf)](OTs)2 являются эффективными катализаторами метоксикарбонилирования этилена, но проявляют разную селективность, причем катализатор с 1,1′-бис(дифенилфосфино)октаметилферроценовым лигандом дает исключительно метилпропионат. Условия проведения реакции: температура 85°C, давление 40 бар, соотношение СО:С2Н4 1:1, концентрация катализатора - 10-4 М.

Недостатком предложенного способа получения метилпропионата и метилметакрилата является необходимость организации самостоятельного производства каждого индивидуального компонента реакции: этилена, метанола и СО, а для получения метилметакрилата - дополнительно формальдегида. Этилен, как известно, преимущественно получают термическим пиролизом нефтяных фракций (нафты), метанол получают из синтез-газа, который, в свою очередь, получают паровой или окислительной конверсией «сухого» (метанового) газа. Источником СО также является синтез-газ, содержащий, помимо СО, водород в соотношении 1:2 или выше. Для получения формальдегида необходимо еще одно производство по окислению метанола.

Техническим результатом заявленного изобретения является усовершенствование способа получения метилпропионата и метилметакрилата, направленного на получение всех исходных соединений для получения метилпропионата из одного сырья путем переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана («жирных газов») в едином технологическом цикле с одновременной очисткой сырьевого газа от гомологов метана, то есть создание более простого и экономичного способа получения целевых продуктов при одновременном получении очищенного «сухого» газа с повышенным по сравнению с исходным углеводородным газом метановым числом.

Указанный технический результат достигается тем, что переработка природных и попутных нефтяных газов, а также углеводородных газов с повышенным содержанием тяжелых гомологов метана и низким метановым числом, осуществляется путем двухступенчатого прямого гомогенного окисления углеводородного газа и последующего карбонилирования смеси с получением целевых продуктов, причем на одной ступени окисления, проводимой при температуре 700-800°C и давлении 1-30 бар получают газовую смесь, содержащую этилен и СО, а на другой ступени, проводимой при давлении 30-80 бар, и начальной температуре 350-420°C, получают метанол и СО, полученную смесь обрабатывают при повышенных давлениях и температурах в присутствии катализаторов карбонилирования и получают при этом углеводородный газ с повышенным метановым числом и жидкие продукты, из которых известными приемами выделяют метилпропионат, часть которого дополнительно обрабатывают формальдегидом.

Возможны различные варианты осуществления ступеней процесса окисления и комбинирования процессов окисления и карбонилирования:

- первоначальная окислительная конверсия легкоуглеводородного газового сырья при температурах выше 700°C с получением этилена и последующая окислительная конверсия газовой смеси при температурах около 400°C и давлениях выше 20 бар с получением дополнительно метанола и формальдегида;

- первоначальная окислительная конверсия легкоуглеводородного газового сырья при температурах около 400°C и давлениях выше 20 бар с получением метанола и формальдегида, конденсация метанола, формальдегида и воды, и последующее окисление газовой смеси при температурах около 700°C с дополнительным получением этилена;

- параллельное осуществление ступеней окислительной конверсии части исходного газового сырья при температурах выше 700°C и окислительной конверсии другой части сырья при температурах около 400°C и давлениях выше 20 бар.

Метилпропионат выделяют из жидких продуктов известными приемами. Для получения метилметакрилата очищенный метилпропионат обрабатывают формальдегидом, который также получают на стадии прямого окисления исходного углеводородного газа, либо вводят дополнительно.

Благодаря такому способу осуществления процесса не требуется организация отдельных производств исходных продуктов для синтеза метилпропионата, так как в едином технологическом цикле получают одновременно все три основных сырьевых компонента, необходимых для синтеза метилпропионата: этилен, метанол и СО, и одновременно в виде газофазного продукта получают очищенный от примесей тяжелых компонентов углеводородный газ с более высоким метановым числом по сравнению с исходным углеводородным газом, который может использоваться как топливо для энергоустановок. Одновременно также получатся небольшое количество формальдегида, который с дополнительно вводимым извне формальдегидом используется на последующей стадии получения метилметакрилата конденсацией метилпропионата с формальдегидом.

Ранее такие варианты организации процесса одновременного получения олефинов, метанола и СО и последующего карбонилирования получаемой смеси с получением ценных жидких продуктов с высокой добавленной стоимостью и углеводородного газа с более высоким метановым числом по сравнению с исходным углеводородным газом в едином технологическом цикле в патентной литературе не рассматривались. Проблема является особенно актуальной для России с ее огромными запасами попутных нефтяных и «жирных» углеводородных газов

Примеры осуществления предложенного способа.

Пример 1.

Пример 1. Смесь углеводородных газов состава: метан - 93,7%, этан - 6,3% (метановое число - 84) при давлении 30 бар и расходе 400 л/час подвергают окислительной конверсии при температуре 740°C техническим кислородом, который подают в количестве 80 л/час. Полученную на первой ступени окисления газовую смесь, содержащую непрореагировавшие метан и этан, этилен, СО, метанол и примеси, охлаждают, компримируют до давления 70 бар и подают на вторую ступень, на которой при начальной температуре 400°C осуществляют окислительную конверсию с участием кислорода, который подают в реактор, разделенный на две секции, порциями в количестве по 11,2 л/час каждая. В результате окисления получают газовую смесь в количестве 520 л/час, содержащую (% объемные) 1,9% этилена, 2,5% метанола, 7,1% моноксида углерода, 16,3% воды, 65,5% метана, 3,9% водорода. Смесь охлаждают до температуры 200°C и дополнительно обрабатывают с участием катализаторов карбонилирования, при этом СО взаимодействует с этиленом и метанолом с образованием метилпропионата, который конденсируют в виде водно-спиртово-формальдегидного раствора, из которого известными приемами выделяют 35 г/час метилпропионата; указанный раствор отделяют от газового продукта, представляющего собой очищенный от примесей этана углеводородный газ в количестве 400 л/час, имеющий состав 85% метана, 6,7% моноксида углерода, 5% водорода, 2,3% диоксида углерода, 1% азота, имеющий метановое число 95.

Взаимодействием полученного метилпропионата с поступающим из внешних источников формальдегидом известными приемами получают метилметакрилат.

Пример 2. Углеводородсодержащий газ состава: метан - 88,2% этан - 11,7% (объемн.) при давлении 30 бар в количестве 500 л/час нагревают до температуры 350°C и подвергают окислению техническим кислородом, который подают в две секции окисления суммарно в количестве 36 л/час. В результате парциального окисления получают газовую смесь в количестве 550 л/час, содержащую (% объемные) 2,4% метанола, 1,4% формальдегида, 0,4% этанола, 3,6% моноксида углерода, 4,0% воды, 82,2% метана, 5,1% этана, 0,4% азота. Газовую смесь охлаждают до температуры 0-20°C и отделяют жидкую фазу в количестве 52 г, содержащую 10 г формальдегида, 18 г метанола, 17 г Н2O, 5 г этанола. Оставшийся газ нагревают до температуры 700°C и подвергают окислительной конверсии на второй ступени окисления при температуре 750°C техническим кислородом, который подают в количестве 15 л/час. В результате окислительной конверсии получают газовую смесь в количестве 525 л/час, содержащую (% объемные) 2,0% этилена, 0,25% пропилена, 6,6% мооксида углерода, 0,25% воды, 86,2% метана, 3,9% водорода. Смесь охлаждают до температуры 200°C, добавляют в нее метанол первой ступени и дополнительно обрабатывают с участием катализаторов карбонилирования, при этом СО взаимодействует с этиленом и метанолом с образованием метилпропионата, который конденсируют в виде водно-спиртового раствора. Полученный раствор отделяют от газового продукта и из него известными приемами выделяют 39,5 г/час метилпропионата, часть которого дополнительно обрабатывают формальдегидом первой стадии и получают 27 г/час метилметакрилата. Одновременно получают газовый поток второй ступени окисления в количестве 500 л/час, содержащий 90% метана, 0,6% этана, 4,5% моноксида углерода, 4% водорода, 1% диоксида углерода, имеющий метановое число 95.

Пример 3. Углеводородсодержащий газ состава: СН4 - 82%, С2Н6 - 6%, С3Н8 - 8%, С4Н10 - 4% (метановое число смеси 54) в количестве 2000 л/ч разделяют на два потока, каждый по 1000 л/ч. Один поток газа подвергают гомогенному парциальному окислению при давлении 40 бар и начальной температуре 350°C техническим кислородом, который подают в количестве 332,5 л/ч, с последующей конденсацией жидких продуктов и с рециркуляцией части газа после окисления в количестве 5000 л/ч. В результате окисления получают поток жидких продуктов в количестве 400 г/ч, содержащий 160 г/ч метанола и 37,5 г/ч формальдегида и поток отходящего газа в количестве 1135 л/ч, содержащий 72% метана, 21% моноксида углерода, 3.3% этана, 1,3% пропана, 1,5% азота. Из потока жидких продуктов методом ректификации выделяют чистый метанол в количестве 155 г/ч.

Другой поток исходного углеводородного газа нагревают до температуры 700°C и подвергают окислительной конверсии на второй ступени окисления при температуре 750°C техническим кислородом, который подают в количестве 170 л/час. В результате окислительной конверсии получают газовую смесь в количестве 1350 л/час, содержащую (% объемные) 6,8% этилена, 0,8% пропилена, 8,4% моноксида углерода, 10,2% воды, 64,0% метана, 3,3% водорода, 2.4% кислорода.

Смесь охлаждают до температуры 200°C, компримируют и дополнительно обрабатывают путем барботирования под давлением 40 бар через метанол первой ступени с участием катализаторов карбонилирования; при этом СО взаимодействует с этиленом и метанолом с образованием метилпропионата, который конденсируют в виде водно-спиртового раствора. Полученный раствор отделяют от газового продукта и из него известными приемами выделяют 342 г/час метилпропионата. Газовый поток после второй ступени окисления в количестве 995 л/час, содержащий 86% метана, 3,6% этана, 1,5% моноксида углерода, 4% водорода, объединяют с газовым потоком после первой ступени окисления в количестве 1135 л/ч, содержащим 72% метана, 21% моноксида углерода, 3.3% этана, 1,3% пропана, 1,5% азота, и получают углеводородный газ в количестве 2120 л/ч (метан - 79%, этан - 3,5%, пропан - 1%, СО - 11.6%), водород - 2%, 3% - инертные газы) с метановым числом 84, более высоким, чем исходный углеводородный газ (54).

Взаимодействием полученного метилпропионата с поступающим из внешних источников формальдегидом известными приемами получают метилметакрилат.

По сравнению с известным способом заявляемое изобретение позволяет достигнуть существенного упрощения технологии, уменьшения капитальных затрат за счет снижения числа создаваемых производств и устранения высоко энерго- и капиталоемкой стадии получения синтез-газа, а также обеспечивает возможность одновременного получения очищенного от примесей тяжелых компонентов углеводородного газа с более высоким метановым числом по сравнению с исходным углеводородным газом, который может использоваться как топливо для энергоустановок.

1. Способ переработки природных и попутных нефтяных газов, а также углеводородных нефтяных газов с повышенным содержанием тяжелых гомологов метана и низким метановым числом, с получением метилпропионата и метилметакрилата, заключающийся в двухступенчатом селективном прямом гомогенном окислении углеводородного газа и последующем каталитическим карбонилировании смеси с получением метилпропионата, конденсации части полученного метилпропионата с формальдегидом для получения метилметакрилата, причем на одной ступени окисления углеводородного газа, проводимой при температуре 700-800°C и давлении 1-30 бар, получают газовую смесь, содержащую этилен и СО, а на другой ступени, проводимой при давлении 30-80 бар и начальной температуре 350-420°C, получают метанол и СО, причем либо сначала углеводородный газ окисляют на ступени, проводимой при температуре 700-800°C, с получением этилена, а затем окисляют на ступени, проводимой при начальной температуре 350-420°C, либо сначала углеводородный газ окисляют на ступени, проводимой при начальной температуре 350-420°C, с последующей конденсацией полученного метанола, формальдегида и воды, а затем окисляют полученную газовую смесь на ступени, проводимой при температуре 700-800°C, с последующим добавлением метанола первой ступени; затем полученную в результате двухступенчатого окисления смесь обрабатывают при повышенных давлениях и температурах в присутствии катализатора карбонилирования для взаимодействия этилена, метанола и СО и получают углеводородный газ с повышенным метановым числом и жидкие продукты, из которых выделяют метилпропионат, часть которого дополнительно обрабатывают формальдегидом.

2. Способ переработки природных и попутных нефтяных газов, а также углеводородных нефтяных газов с повышенным содержанием тяжелых гомологов метана и низким метановым числом, с получением метилпропионата и метилметакрилата, заключающийся в селективном прямом гомогенном окислении углеводородного газа и последующем каталитическим карбонилировании смеси с получением метилпропионата, конденсации части полученного метилпропионата с формальдегидом для получения метилметакрилата, причем часть исходного углеводородного газа подвергают окислительной конверсии на стадии, проводимой при давлении 30-80 бар и начальной температуре 350-420°C, с последующей конденсацией жидких продуктов и выделением метанола, а другую часть исходного углеводородного газа подвергают окислительной конверсии на стадии, проводимой при температуре 700-800°C и давлении 1-30 бар с получением газовой смеси, содержащей этилен и СО, которую после охлаждения барботируют через полученный метанол в присутствии катализатора карбонилирования для взаимодействия этилен, метанола и СО при повышенных температурах и давлениях, и получают углеводородный газ с повышенным метановым числом и жидкие продукты, из которых выделяют метилпропионат, часть которого дополнительно обрабатывают формальдегидом.



 

Похожие патенты:

Изобретение относится к соединению структурной формулы I, которое может быть использовано для предотвращения, лечения или уменьшения интенсивности симптомов заболевания или состояния, восприимчивого к стимуляции окислительного взрыва нейтрофилов, восприимчивого к стимуляции высвобождения IL-8 кератиноцитов или восприимчивого к индуцированию некроза.
Изобретение относится к способу ингибирования полимеризации (мет)акриловой кислоты и/или сложных эфиров (мет)акриловой кислоты посредством введения кислородсодержащего газа в (мет)акриловую кислоту и/или сложный эфир (мет)акриловой кислоты, причем (мет)акриловая кислота и/или эфир (мет)акриловой кислоты имеет степень чистоты по меньшей мере 95%, содержит стабилизатор против полимеризации и находится в жидком агрегатном состоянии, при этом осуществляют введение кислородсодержащего газа в трубопровод, содержащий жидкую (мет)акриловую кислоту и/или жидкий сложный эфир (мет)акриловой кислоты, которую в качестве чистого продукта после дистилляционной или ректификационной очистки в колонне направляют через боковое выходное отверстие на наполнение емкости.

Изобретение относится к способу получения амида карбоновой кислоты из алифатического кетона с 3-5 атомами углерода и цианистоводородной кислоты. Способ включает стадии: А) взаимодействие кетона, взятого в молярном избытке, с цианистоводородной кислотой с получением нитрила соответствующей гидроксикарбоновой кислоты, Б) гидролиз полученного нитрила гидроксикарбоновой кислоты в присутствии содержащего диоксид марганца катализатора, В) переработку реакционной смеси, полученной после стадии Б), путем дистилляции.

Изобретение относится к способу получения бензофенон(мет)акрилатов, в котором проводят взаимодействие гидроксибензофенонов и ангидрида (мет)акриловой кислоты в присутствии каталитических количеств концентрированной серной кислоты, алкил- или арилсульфокислоты с последующей нейтрализацией катализатора и последующей очисткой сырого мономера.

Настоящее изобретение относится к способу очистки (мет)акрилатов, ангидридов метакриловой кислоты или ангидридов акриловой кислоты в качестве мономеров, при котором, по меньшей мере, часть содержащихся в исходном составе мономеров испаряют и затем конденсируют.

Настоящее изобретение относится к способу получения (мет)акрилатного мономера. Описан способ получения (мет)акрилатного мономера общей формулы (I): в которой R1 означает водород или метильную группу, X означает кислород, R2 означает остаток алкильной группы с 3-6 атомами углерода и одной альдегидной группой, отличающийся тем, что исходный продукт формулы (III): в которой R1 означает водород или метильную группу, X означает кислород, и R5 означает ненасыщенный алкильный остаток по меньшей мере с одной двойной связью и 3-6 атомами углерода, подвергают взаимодействию с монооксидом углерода и водородом в присутствии катализатора, который является комплексом, содержащим родий, иридий, палладий и/или кобальт и фосфорсодержащее соединение в качестве лиганда, причем отношение металла к лиганду предпочтительно составляет от 1:1 до 1:1000, особенно предпочтительно от 1:2 до 1:200.

Изобретение относится к способу очистки метилметакрилата (ММА), включающему осуществление контакта содержащего примеси жидкого ММА с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже, где R5 и R6 независимо выбирают из углеводородов C1-C12 или Н; Х представляет собой О; n является целым числом от 1 до 100; и m имеет значение 1 или 2, и в котором сульфокислотная смола, необязательно, по меньшей мере, частично деактивирована.

Изобретение относится к усовершенствованному способу получения эфиров (мет)акриловой кислоты, включающему переэтерификацию низкокипящего эфира (мет)акриловой кислоты, температура кипения которого ниже, чем температура кипения образующегося в результате переэтерификации сложного эфира, исходным спиртом в присутствии основного ионообменного вещества, в качестве катализатора, и ингибитора полимеризации, причем переэтерификацию проводят при температуре в пределах от 50°C до 140°C.
Изобретение относится к способу получения сложного эфира акриловой кислоты формулы CH2=CH-COO-R, в которой R обозначает алкильный радикал, линейный или разветвленный, содержащий от 1 до 18 атомов углерода и содержащий, возможно, гетероатом азот, причем на первой стадии подвергают глицерин CH2OH-СНОН-CH2OH реакции дегидратации в присутствии кислотного катализатора с получением акролеина формулы CH2=СН-СНО, затем, на второй стадии, каталитическим окислением превращают полученный таким образом акролеин в акриловую кислоту CH2=СН-СООН, затем, на третьей стадии, подвергают кислоту, полученную на второй стадии, либо реакции этерификации спиртом R0OH, в котором R0 представляет собой СН3, С2Н5, С3Н7 или С4Н9, с последующей реакцией переэтерификации полученного сложного эфира спиртом ROH, в котором R имеет значение, данное выше, либо реакции этерификации спиртом ROH, в котором R имеет значение, данное выше, где содержание фурфураля в сложном эфире акриловой кислоты составляет менее 3 ч/млн.

Изобретение относится к способу обратного расщепления аддуктов Михаэля, содержащихся в жидкости F с массовой долей ≥ 10 мас.%, в пересчете на массу жидкости F, которые образовались при получении акриловой кислоты или ее сложных эфиров, в установке для обратного расщепления, которая включает по меньшей мере один насос Р, разделительную колонну К, которая снизу вверх состоит из кубовой части, примыкающей к кубовой части, содержащей внутренние устройства с разделяющим эффектом разделяющей части и следующей за ней головной части, и в которой давление в газовой фазе уменьшается снизу вверх, а также непрямой теплообменник с циркуляцией теплоносителя UW, который имеет по меньшей мере один вторичный объем и по меньшей мере один первичный объем, отделенный от этого по меньшей мере одного вторичного объема с помощью реальной разделительной стенки D, при котором жидкость F с температурой подачи TZ непрерывно вводят в разделительную колонну К в точке подачи I, которая находится в этой разделительной колонне К выше самого нижнего внутреннего устройства с разделяющим эффектом, а в расположенной на самом низком уровне точке кубовой части разделительной колонны К с помощью насоса Р непрерывно отбирают расходный поток M ˙ стекающей в кубовую часть через внутренние устройства с разделяющим эффектом, содержащей аддукты Михаэля жидкости с температурой TSU, так что в кубовой части в качестве кубовой жидкости устанавливается уровень S стекающей в него жидкости, который составляет менее половины расстояния А, измеренного от точки разделительной колонны К, расположенной на самом низком уровне, до нижней поверхности самого нижнего внутреннего устройства с разделяющим эффектом в разделительной колонне К, в то время как в остальном объеме кубовой части, расположенном над этим уровнем жидкости, существует давление газа GD, а также по меньшей мере один частичный поток I из расходного потока M ˙ пропускают по меньшей мере через один вторичный объем непрямого теплообменника с циркуляцией теплоносителя UW и при этом путем непрямого теплообмена с жидким теплоносителем, пропущенным одновременно по меньшей мере через один первичный объем этого непрямого теплообменника с циркуляцией теплоносителя UW, нагревают до температуры обратного расщепления TRS, лежащей выше температуры TSU, а из выводимого по меньшей мере из одного вторичного объема непрямого теплообменника с циркуляцией теплоносителя UW с температурой TRS потока вещества M ˙ * в точке подачи II, которая находится ниже самого нижнего внутреннего элемента с разделяющим эффектом разделительной колонны К и выше уровня S кубовой жидкости, по меньшей мере один частичный поток II подается обратно в кубовую часть разделительной колонны К таким образом, что этот по меньшей мере один частичный поток II в кубовой части разделительной колонны К не направлен на кубовую жидкость, и по меньшей мере из одного из двух потоков M ˙ , M ˙ * отводится частичный поток в качестве остаточного потока, при условии, что температура обратного расщепления TRS установлена так, что, с одной стороны, при прохождении по меньшей мере одного вторичного объема непрямого теплообменника с циркуляцией теплоносителя UW по меньшей мере часть количества аддуктов Михаэля, содержащихся в по меньшей мере одном частичном потоке I, расщепляется с образованием соответствующих им продуктов обратного расщепления, а также, с другой стороны, по меньшей мере один частичный поток II, подаваемый обратно в разделительную колонну К, при существующем в кубовой части в точке подачи II давлении газа GD кипит, а образующаяся при кипении газовая фаза, содержащая по меньшей мере частичное количество продукта обратного расщепления, поступает в головную часть колонны К в качестве газового потока G, содержащего продукт обратного расщепления, следуя за убывающим в направлении головной части колонны К давлением газа, а этот газовый поток G путем прямого и/или непрямого охлаждения частично конденсируется еще в головной части разделительной колонны К и/или будучи выведенным из головной части разделительной колонны К, образующийся при этом конденсат по меньшей мере частично возвращается в разделительную колонну К в качестве флегмовой жидкости, а газовый поток, остающийся при частичной конденсации, отводится, причем насос Р представляет собой радиальный центробежный насос с полуоткрытым радиальным рабочим колесом.
Изобретение относится к способам получения сложных эфиров амиловых спиртов и простейших карбоновых кислот C1-C4. В качестве сырья используют спиртосодержащие отходы производства капролактама.

Изобретение относится к способам получения диарилкарбонатов, которые позволяют получать диарилкарбонаты из газов, вызывающих парниковый эффект, таких как диоксид углерода.

Настоящее изобретение относится к вариантам соединения формулы (I): R1 представляет собой атом водорода; R2 представляет собой низшую алкильную группу; P представляет собой H; где P1, P2 и P3 являются одинаковыми или разными и выбраны из атома водорода, низшей алкильной группы и C14-C22 алкенильной группы, замещенной низшей алкильной группой; где P1 представляет собой алкенильную группу, а каждый из P2 и P3 представляет собой атом водорода; и Y является C14-C22 алкенильной группой, по меньшей мере, с одной двойной связью, имеющей Z-конфигурацию и имеющей первую двойную связь у третьей углерод-углеродной связи от омега (ω)-конца углеродной цепи, обладающего способностью снижать уровень триглицеридов и холестерина, к фармацевтической и липидной композициям на основе заявленных соединений, а также к применению (варианты) предложенных соединений.

Изобретение относится к области органической химии, в частности к способу получения (2Е,4Е)-додека-2,4-диен-1-илизовалерата, включающему гидроалюминирование-галогенирование 1-нонина с получением (1Е)-1-галогенной-1-ена, кросс-сочетание (1Е)-1-галогеннон-1-ена с метилакрилатом с получением метилового эфира (2Е,4Е)-додека-2,4-диеновой кислоты, восстановление метилового эфира (2Е,4Е)-додека-2,4-диеновой кислоты литийалюминийгидридом с получением (2Е,4Е)-додека-2,4-диен-1-ола, ацилирование (2Е,4Е)-додека-2,4-диен-1-ола хлорангидридом изовалериановой кислоты с получением (2Е,4Е)-додека-2,4-диен-1-илизовалерата, где синтез метилового эфира (2Е,4Е)-додека-2,4-диеновой кислоты осуществляется взаимодействием (1Е)-1-иоднон-1-ена, полученного гидроалюминированием-иодированием 1-нонина, с метилакрилатом в присутствии Pd(OAc)2, K2CO3 , Bu4NCl в среде N-метилпирролидона при следующем мольном соотношении: [(1Е)-1-иоднон-1-ен]: [метилакрилат]: [Pd(OAc) 2]:[K2CO3]:[Bu4NCl]: [N-метилпирролидон]=1:2:0,02:2,5:1:5,5 в течение 8 ч в атмосфере аргона при 18-25°С.
Изобретение относится к усовершенствованному способу переэтерификации по меньшей мере одного соединения, содержащего по меньшей мере одну функциональную группу сложного эфира, по меньшей мере одним соединением, содержащим по меньшей мере одну гидроксильную группу, в котором используют красный шлам, образующийся при производстве алюминия по способу Байера, в качестве соединения, ускоряющего реакцию.
Изобретение относится к усовершенствованному способу получения сложных эфиров карбоновых кислот путем этерификации карбоновых кислот и/или переэтерификации сложных эфиров карбоновых кислот метанолом или этанолом в присутствии металлического катализатора, в котором реакцию проводят при температуре выше чем 150°С, указанный металлический катализатор является солью щелочноземельного металла и алифатической карбоновой кислоты, содержащей от 10 до 24 атомов углерода, и по окончании этерификации или переэтерификации соответственно металлический катализатор выделяют и этот выделенный катализатор снова используют в качестве жидкого катализатора в способе получения сложных эфиров карбоновых кислот путем этерификации карбоновых кислот и/или переэтерификации сложных эфиров карбоновых кислот метанолом или этанолом в присутствии катализатора.

Изобретение относится к новым соединениям общей формулы (I), в которой Х обозначает группу СНО, СН2 ОН или CH2OC(O)R, где R обозначает линейную или разветвленную алкильную цепь С1-С5, а также к их способу получения, в частности к получению 6,8-диметилнон-7-еналя (1) гидроформилированием 5,7-диметилокта-1,6-диена.

Изобретение относится к способу получения низшего сложного алкилового эфира низшей алифатической карбоновой кислоты, имеющего формулу R1-COO-R2 заключающемуся во взаимодействии предварительно высушенного низшего простого алкилового эфира, имеющего формулу R1-O-R2 , в которой R1 и R2 независимо представляют собой C1-С6 алкильные группы, при условии, что суммарное число атомов углерода в группах R1 и R2 составляет от 2 до 12, или R1 и R 2 вместе образуют С2-С6 алкиленовую группу, с сырьем, содержащим монооксид углерода, в присутствии катализатора, содержащего морденит и/или ферриерит в безводных условиях.

Изобретение относится к применению соединений формулы R 2=R1-X, где R1 и R2 имеют всего от 23 до 35 атомов углерода, X представляет собой первичную спиртовую функциональную группу -СН2ОН или карбоксильную функциональную группу -СООН, R1 представляет собой насыщенную линейную углеводородную цепь, имеющую 9 атомов углерода, а R 2 представляет собой линейную углеводородную цепь, которая является насыщенной или ненасыщенной, включающей от 1 до 4 этиленовых ненасыщенных связей, для получения композиций, которые могут быть использованы для лечения и профилактики гиперхолестеринемии.

Изобретение относится к новому карбоксилатному соединению, представленному следующей общей формулой (1), в которой R представляет собой алкильную группу, имеющую от двух до четырех атомов углерода.
Наверх