Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических цепей, а также в векторных вольтметрах и спектроанализаторах. Сущность изобретения состоит в том, что путем неравномерной частотозависимой дискретизации участвующих в измерительном процессе сигналов и эффективной обработки значений их дискретных отсчетов, реализованных с учетом их специфики, одновременно достигают и инвариантности измерительной процедуры по отношению к множеству гармонических помех с постоянной составляющей, а также к времени ее начала, и предельной простоты ее реализации путем суммирования дискретных отсчетов указанных сигналов по мере их получения при исключительно малом времени обработки измерительной информации, равном времени выполнения операции умножения или деления полученной суммы дискретных отсчетов на постоянный коэффициент, а также времени получения измерительной информации, равном половине суммы периодов сигналов помех. Технический результат изобретения заключается в обеспечении инвариантности измерения вектора гармонического сигнала по отношению к множеству гармонических помех с постоянной составляющей и моменту начала измерительной процедуры, а также ее упрощение до выполнения элементарных операций суммирования значений дискретных отсчетов суммы участвующих в измерительном процессе сигналов и одной операции умножения этой суммы на постоянный коэффициент при минимальном времени получения измерительной информации, равном половине суммы периодов сигналов гармонических помех.

 

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока как с уравновешиваемыми, так и с неуравновешенными измерительными цепями, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических цепей, а также в векторных вольтметрах и спектроанализаторах, где в числе снижающих точность измерения факторов выступают помехи переменного и постоянного тока.

Известен способ измерения параметров двухполюсников с помощью разветвленной мостовой измерительной цепи при воздействии на нее нескольких тестовых гармонических сигналов с разными частотами, разделяемых в процессе уравновешивания цепи с помощью аналоговых фильтров [Шеремет Л.П. Принципы построения мостовых измерительных цепей для одновременного уравновешивания на нескольких частотах // Проблемы технической электродинамики, вып. 54, Киев.: Наукова думка, 1975. - С. 14-19].

Данный способ позволяет производить измерения сложных объектов исследования одновременно на нескольких частотах, обеспечивая тем самым возможность получения информации о быстроизменяющихся параметрах объектов с сложными схемами замещения. Однако аналоговые фильтры, применяемые для разделения сигналов с разными частотами, вносят существенные погрешности измерения и, обладая инерционностью, снижают быстродействие, а также осложняют реализацию содержащего их средства измерений, что является недостатком способа.

Известен также принятый автором за прототип способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ0), действующего совместно с другими гармоническими сигналами Sm(t)=Amsin(2πt/Tm0m), где m = 1 ,M 1 ¯ , имеющими, как и сигнал S(t), известные, но не кратные друг другу значения периодов (Tm и T), согласно которому проекции p′ и p″ сигнала S(t) на два ортогональных совпадающих с измеряемым сигналом по частоте вектора опорных сигналов, связанные с A и φ0, например, соотношениями A=[(p′)2+(p″)2]1/2 и φ0=arctg(p′/p″), измеряют путем выборки и суммирования дискретных отсчетов, или дискрет, суммарного сигнала с помощью мгновенных импульсов, действующих в моменты времени, образующие множества { t i ' } и { t i " = t i ' + T/4 } , а значения проекций p′ и p″ определяют по соотношениям и где - нормирующий множитель, причем { t i ' } формируют с помощью пошаговой процедуры, начинающейся с произвольного начального момента t0, выступающего в качестве исходного множества, и получения на первом шаге дополнительного множества путем сдвига исходного на нечетное число полупериодов первого подавляемого сигнала или гармонической помехи, и далее получения на каждом последующем шаге дополнительного множества посредством сдвига полученного на предыдущем шаге множества на нечетное число nm полупериодов m-го подавляемого сигнала до тех пор, пока число шагов не станет равным М-1 [RU 2377577 C1, 27.12.2009].

Недостатком данного способа является пониженная точность измерения в тех случаях, когда вместе с измеряемым гармоническим сигналом S(t) действуют гармонические сигналы с постоянной составляющей, что имеет место, например, в средствах измерений параметров как скалярных, так и комплексных физических величин, и прежде всего в тех, где реализованы режимы, позволяющие измерять нелинейные объекты со смещением их по постоянному току или напряжению.

Техническим результатом изобретения является повышение точности измерения в реальном времени вектора гармонического сигнала S(t)=Asin(2πt/T+φ0) с известным периодом T, действующего совместно с множеством гармонических сигналов с постоянной составляющей. При этом в качестве измеряемого может выступать любой из гармонических сигналов, входящих в число помех, так что все гармонические сигналы из числа помех могут быть поочередно измерены, а при соответствующем увеличении числа каналов - и параллельно, что позволит сократить время измерения до времени измерения одного гармонического сигнала.

Технический результат достигается тем, что в способе измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ0) с известным периодом T, действующего совместно с сигналами детерминированных помех P(t), при котором амплитуду A и начальный фазовый сдвиг φ0 сигнала S(t) определяют, например, по соотношениям А=[(p1)2+(p2)2]1/2 и φ0=arctg(p1/p2), где p1 и p2 - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения p1 и p2 получают путем неравномерной дискретизации суммарного сигнала σ(t)=S(t)+P(t) и суммирования его дискрет, выборку которых производят мгновенными импульсами, действующими в моменты времени, образующие соответственно для p1 и p2 множества { t i ( 1 ) } и { t i ( 2 ) } = { t i ( 1 ) + ΔT } , где ΔT=(2r±1)T/4, r=0, 1, 2, …, которые формируют с помощью пошаговой рекуррентной процедуры согласно условию

где a m - номер шага, в том случае, когда в число аддитивных помех P(t) входит множество некогерентных гармонических сигналов Sm(t)=Amsin(2πt/Tm0m), где m = 1 ,M 1 ¯ , с известными, не кратными друг другу и T значениями периодов Tm, и постоянная составляющая C=const, а значения p1 и p2 определяют по соотношениям:

Сущность изобретения состоит в том, что путем неравномерной частотозависимой дискретизации участвующих в измерительном процессе детерминированных сигналов и эффективной обработки значений их дискретных отсчетов, организованной с учетом их специфики, достигают инвариантности измерительной процедуры по отношению к множеству гармонических помех с постоянной составляющей, а также к времени ее начала, и предельной простоты ее реализации путем суммирования дискретных отсчетов указанных сигналов по мере их получения при исключительно малом времени обработки измерительной информации, равном времени выполнения операции умножения или деления полученной суммы дискретных отсчетов на постоянный коэффициент, а также времени получения измерительной информации, равном половине суммы периодов сигналов помех.

Достигают этого путем анализа и учета особенностей измеряемых сигналов, которыми здесь являются множество гармонических сигналов с постоянной составляющей. Специфика измерительной задачи в данном случае состоит в сочетании разнородных сигналов - непериодического и гармонических. При этом, измеряя гармонический сигнал, нужно добиться инвариантности результата измерения к разнородным сигналам при том, что число гармонических сигналов не ограничено.

Содержание предлагаемой измерительной процедуры отражено в выражениях (2), объединяющих случаи получения значений и p1 и p2. Осуществлено это с помощью введенных функций p1(l)=(2-l) и p2(l)=(l-1), где l = 1 , 2 ¯ . Вид нормирующего множителя определяется возвратным характером указанной процедуры формирования множества моментов выборки дискрет участвующих в измерительном процессе сигналов, а специфику этой процедуры определяют коэффициенты их (алгебраического) суммирования, а именно их знаки, поскольку их модули по определению равны единице. Процедуру формирования множества моментов выборки дискрет функции рассмотрим с точки зрения теории инвариантов. В данном случае инвариантами являются суммы дискретных отсчетов этой функции. Инвариантность функции σ(t) носит двоякий характер: во-первых, ее значение инвариантно по отношению к времени начала выборки дискрет и, во-вторых, ее значение инвариантно по отношению ко всем параметрам всех участвующих в измерительном процессе сигналов. Хотя рецепта формирования таких инвариантов на все возможные случаи быть не может, однако отельные моменты процедур формирования таких инвариантов имеют место, например, они могут быть связаны с наличием в составе суммарных сигналов σ(t) отдельных классов сигналов. При этом наличие в составе σ(t) сигналов разных классов может делать невозможным или неэффективным решение измерительной задачи путем простого объединения адекватных для каждого из классов входящих в состав σ(t) сигналов, что имеет место в данном случае, так как простое суммирование дискрет, эффективное в случае гармонических помех (патент RU 237), не позволяет подавлять постоянную составляющую, а процедура, описанная в патенте RU 2466413, неэффективна в смысле быстродействия. Существенным моментом формирования множества дискрет сигнала σ(t) является то, что согласно (1) в качестве первого инварианта выступает пара импульсов выборки дискрет, инвариантная только к постоянной составляющей, поскольку в нем расстояние между дискретами равно T/2, а знак суммирования согласно (2) отрицательный, в результате чего постоянная составляющая подавляется, а дискреты измеряемого сигнала суммируются поскольку значения синусоидального сигнала, сдвинутые по времени на половину его периода (в силу его периодичности и симметрии относительно оси времени), равны по величине и обратны по знаку. Согласно предложенной процедуре формирования множества импульсов выборки дискрет последующие инварианты представляли собой комбинацию сдвинутых друг относительно друга копий первого инварианта, что отражено выражением, связывающим номера и знаки дискрет:

a i=(-1)i, где i - номер дискреты.

При этом время выборки всех дискрет равно полусумме периодов гармонических сигналов.

Способ измерения вектора гармонического сигнала S ( t ) = A sin ( 2 π t / T + ϕ 0 ) с известным периодом T, действующего совместно с сигналами детерминированных помех P(t), при котором амплитуду A и начальный фазовый сдвиг φ0 сигнала S(t) определяют по соотношениям A = [ ( p 1 ) 2 + ( p 2 ) 2 ] 1 / 2 и ϕ 0 = a r c t g ( p 1 / p 2 ) , где p1 и p2 - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения p1 и p2 получают путем неравномерной дискретизации суммарного сигнала σ ( t ) = S ( t ) + P ( t ) и суммирования его дискрет, выборку которых производят мгновенными импульсами, действующими в моменты времени, образующие соответственно для p 1 и p 2 множества и где Δ T = ( 2 r ± 1 ) T / 4 , r=0, 1, 2, …, которые формируют пошагово согласно условию
где km=(2s+1), s=0, 1, 2, …, а m - номер шага, отличающийся тем, что в том случае, когда в число аддитивных помех P(t) входит множество некогерентных гармонических сигналов где с известными, не кратными друг другу и T значениями периодов Tm, и постоянная составляющая C=const, а значения p 1 и p 2 определяют по соотношениям:
и



 

Похожие патенты:

Изобретение относится к области электротехники и информационно-измерительной, вычислительной техники. Устройство содержит микроконтроллер, радиомодем, питающий трансформатор тока, первичной обмоткой которого является прямолинейный фазный провод высоковольтной линии электропередач, который вторичной обмоткой соединен с диодным выпрямительным мостом, стабилитроном, диодом и ионистором.

Изобретение относится к линиям электроснабжения электрифицированного железнодорожного транспорта, а именно к способу определения сопротивления контактной и рельсовой сетей.

Изобретение относится к электротехнике, в частности к электрооборудованию, установленному на электрических станциях и подстанциях в системах производства, передачи и потребления электроэнергии, и может быть использовано во всех электроустановках, использующих цифровую обработку данных.

Изобретение относится к области измерительной техники и может быть использовано при исследованиях однократных быстропротекающих физических процессов, сопровождаемых многоканальными измерениями интервалов времени между электрическими сигналами, формируемыми при замыкании электроконтактных датчиков (ЭКД) в ходе развития физического процесса.

Реле тока // 2563959
Изобретение относится к электротехнике и, в частности, к электронным реле тока. Реле тока содержит промежуточный трансформатор тока, выпрямитель, исполнительный элемент, четыре пороговых блока, два элемента И, реверсивный счетчик, счетчик импульсов, одновибратор, генератор тактовых импульсов, делитель частоты, блок вычитания, сумматор, двухсторонний ограничитель, нерекурсивный фильтр, формирователь коротких импульсов, RS-триггер, два ключа, блок элементов ИЛИ.

Предлагаемое техническое решение относится к электроизмерительной технике, в частности к измерительным преобразователям тока (ИПТ) и предназначено для прецизионного измерения широкого диапазона токов, особенно удобно для применения в высоковольтных сетях и энергосистемах.

Изобретение представляет схему для обнаружения напряжения. Схема содержит усилитель, который имеет инвертирующий и неинвертирующий входы и выполнен с возможностью усиления разности напряжений первого входного сигнала и второго входного сигнала.

Изобретение относится к метрологии и может быть использовано для контроля качества энергии. Устройство содержит трансформатор напряжения, согласователи уровня сигнала по фазам А, В и С, АЦП фаз А, В и С; регистры временного хранения, регистр хранения эталонных значений, схемы сравнения результата измерения с эталонным значением, задатчик интервалов выборки, формирователь опорного напряжения для аналого-цифровых преобразователей.

Изобретение относится к области контрольно-измерительной техники и может быть использовано при бесконтактном контроле технического состояния электрооборудования переменного тока.

Изобретение относится к метрологии, в частности к датчикам тока. Экранированный датчик тока содержит магнитопровод чувствительного элемента с обмотками, помещенный в магнитный экран, представляющий собой контейнер из сочлененных между собой стенки, основания и крышки с отверстиями, внутренней стенки.

Изобретение относится к электротехнике и электроэнергетике, а именно к приборам для измерения токов и может быть использовано для контроля и определения формы тока, протекающего в цепях высоковольтных линий передачи. Устройство для измерения больших токов содержит токосъемную штангу, включенную непосредственно в измерительную цепь, на которой смонтированы бесконтактный трансформатор тока и измерительный токовый шунт. Бесконтактный трансформатор тока связан с первым аналого-цифровым преобразователем, а измерительный токовый шунт соединен со вторым аналого-цифровым преобразователем. К первому аналого-цифровому преобразователю подключен первый блок быстрого преобразования Фурье. Ко второму аналого-цифровому преобразователю подключены блок сравнения и второй блок быстрого преобразования Фурье, к выходу которого подключен уровневый детектор, соединенный с первым блоком умножения, вход которого связан с выходом первого блока быстрого преобразования Фурье. Выход первого блока умножения подключен к блоку обратного преобразования Фурье, который соединен с первым входом второго блока умножения, второй вход которого подключен к выходу блока сравнения. Второй блок умножения соединен с блоком сравнения и с дисплеем. Технический результат заключается в том, что устраняются источники импульсных помех, минимизируются паразитные спектральные компоненты, в том числе высокочастотные и расширяется спектральный диапазон измеряемых токов. 2 ил.

Изобретение относится к области электрорадиоизмерений и может быть использовано при построении цифровых измерителей среднеквадратического, средневыпрямленного и амплитудного значений синусоидальных сигналов. Технический результат, достигаемый при использовании изобретения, заключается в обеспечении возможности реализации относительно простых цифровых устройств с широким диапазоном измеряемых значений. Особенностью устройства является определение необходимого параметра синусоидального напряжения путем измерения только его мгновенного значения, выбранного строго в определенный момент времени, который зависит как от частоты исследуемого напряжения, так и от измеряемого параметра. Измеритель состоит из формирователя импульсов, двух формирователей временных интервалов, элемента ИЛИ, аналого-цифрового преобразователя и блока усреднения. 5 з.п. ф-лы, 4 ил.

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия. Технический результат - повышение точности контроля токораспределения. Устройство содержит электромагнитный датчик, нормализатор входных сигналов, аналого-цифровой преобразователь (АЦП) и микропроцессор. Причем датчик установлен на одном конце шеста, выполненного из непроводящего ток материала и длина которого достаточна для свободного доступа к проводнику с током, а его выход подключен через последовательно соединенные нормализатор входных сигналов и АЦП к микропроцессору. Выход микропроцессора оснащен USB разъемом для считывания накопленной информации об измеренных значениях тока. Устройство снабжено вторым электромагнитным датчиком, установленным напротив первого датчика относительно центра проводника с током, при этом электромагнитные датчики соединены последовательно и зафиксированы с помощью ограничителя, а их общий выход подключен витой парой к входу нормализатора входных сигналов. 2 ил.

Изобретение относится к метрологии. Датчик размещен в корпусе из изолирующего материала, ширина которого равна ширине защитного устройства, а высота позволяет устанавливать датчик в стандартную реечную монтажную панель. Устройство содержит сквозные отверстия для подведения проводников к клеммам устройства измерения тока. В качестве чувствительного элемента используется магнитный датчик тока, содержащий магнитный сердечник, окружающий клемму, воздушный зазор, вокруг которого, между двумя концевыми участками магнитного сердечника ограничивающими воздушный зазор, намотана измерительная катушка. Устройство также содержит вторую измерительную катушку. Сердечник набран из деталей, изготовленных из нанокристаллического материала или материала с химическим составом FeSi или FeNi. При этом сердечник состоит из I-образных деталей, каждая из которых выполнена с возможностью направления магнитного потока в соответствующий воздушный зазор. Концы ветвей I-образных деталей выполнены с возможностью перекрывать катушки. Технический результат - обеспечение компактности при сохранении заданных требований точности, компенсация внешних магнитных полей. 2 н. и 16 з.п. ф-лы, 14 ил.

Изобретение относится к области электромеханики. Устройство для измерения намагничивающего тока трансформатора с переменным коэффициентом трансформации, работающего под нагрузкой, состоящее из шунтов, включенных в цепи первичной и вторичной обмоток трансформатора. Причем измерительные клеммы шунтов соединены последовательно встречно. 3 ил.

Изобретение относится к области информационно-измерительной и вычислительной техники и предназначено для вычисления и индикации усредненных значений потерь мощности, напряжения сети и тока нагрузки, а также может найти применение в качестве регистратора этих величин за длительный период. Техническим результатом является обеспечение возможности непрерывного контроля и регистрации усредненных значений потерь мощности, напряжения сети и тока нагрузки. Регистратор содержит датчик тока (ДТ) 1, датчик напряжения сети (ДН) 2, первый 3 и второй 4 входные преобразователи (ВП), микроконтроллер (МК) 5, датчик 6 температуры окружающей среды (ДТОС), датчик 7 температуры проводника (ДТП), генератор 8 прямоугольных импульсов (ГПИ), третий 9, первый 10 и второй 11 приемопередатчики, цифровой индикатор 12, постоянное запоминающее устройство (ПЗУ) 13, компьютер 14. 1 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к области измерительной техники, в частности к электрическим приборам, которые могут быть использованы для измерения высоких напряжений, в том числе в однопроводных линиях переменного высокого напряжения и в жидких средах. Задачей настоящего изобретения является разработка прибора, позволяющего измерять высокое переменное напряжение с использованием однопроводной технологии. Поставленная задача решается благодаря тому что, прибор имеет для измерения высокого напряжения только одну измерительную клемму и использует однопроводную технологию. Киловольтметр имеет пластмассовый корпус, на передней панели которого установлена только одна входная клемма и измерительная головка. Внутри корпуса установлена схема, которая содержит первый селеновый столб VD1, конденсатор C1 и второй селеновый столб VD2, включенный встречно. Селеновые столбы VD1, VD2 и конденсатор C1 образуют замкнутый контур, а измерительная головка PA1 подключена параллельно к конденсатору C1. При этом входная клемма X1 подключена и к первому столбу VD1, и ко второму столбу VD2. Измерение высокого напряжения построено на основе микроамперметра магнитоэлектрической системы. Технический результат заключается в повышении безопасности, упрощении конструкции путем отказа от двухполюсности и использовании только одного полюса для измерения высокого напряжения. 1 ил.

Изобретение относится к электротехнике, а именно к датчикам тока и напряжения. Предложен оптико-электронный датчик тока и напряжения, в котором имеется первичный преобразователь, кодирующий блок, канал связи между стороной высокого напряжения и потенциалом земли, приемный блок и блок питания в виде канала передачи энергии со стороны потенциала земли, состоящий из батареи светоизлучателей, силовых оптических каналов, батареи фотоприемников и стабилизатора напряжения. Дополнительно, в качестве первичного преобразователя для тока используется шунт, включенный в рассечку линии электропередачи. Для напряжения используют резистивный делитель напряжения, состоящий из низкоомного резистора, одним концом подключенного к проводу линии электропередачи, а другим - к группе последовательно соединенных высокоомных резисторов. Последний из которых прикреплен к траверсе линии электропередачи, кодирующий блок выполнен в виде двух аналого-цифровых преобразователей (АЦП), вход первого АЦП подключен к шунту, вход второго АЦП подключен к низкоомному резистору, общей точкой подключения АЦП является точка соединения шунта и низкоомного резистора. Выходы АЦП подключены ко входам преобразователей параллельного цифрового кода в последовательный, к которым подключены излучающие светодиоды, подающие световые сигналы в волоконно-оптические каналы связи, другие их концы подключены к соответствующим приемным блокам. Техническим результатом является уменьшение погрешности измеряемых величин тока и напряжения, возможность передачи измеряемого сигнала в диспетчерский пункт, а также получение возможности снимать сигнал со спектром частот, имеющихся в сети в том числе высоких, что с традиционными электромагнитными трансформаторами сделать невозможно. Это достигается путем преобразования и передачи сигнала одновременно тока и напряжения с повышенной точностью с большим количеством выборок на период и получения сигналов о частичных разрядах от каждого изолятора воздушной линий электропередачи для их диагностики. 1 ил.

Изобретение относится к измерительной технике, в частности к измерению поверхностных токов на цилиндрических и других сложных по форме поверхностях из немагнитных проводящих материалов. Технический результат - повышение уровня полезного сигнала, снимаемого с элемента Холла, и увеличение площади фрагмента с поверхностным током, контролируемым измерителем. Измеритель поверхностного тока содержит сенсорный модуль с элементом Холла, усилитель, вход которого подключен к выходу элемента Холла, а выход - к индикатору, два концентратора магнитного поля. Заостренные части концентраторов расположены рядом с чувствительной зоной элемента Холла и направлены на нее и навстречу друг другу. Концентраторы магнитного поля выполнены из листового гибкого материала, обеспечивающего плотное прилегание их к поверхности фрагмента с поверхностным током сложной формы, причем геометрические размеры концентраторов магнитного поля соизмеримы с геометрическими размерами контролируемого фрагмента с поверхностным током и значительно превышают геометрические размеры элемента Холла. 1 ил.

Изобретение относится к способу синхрофазорного измерения для использования в устройстве измерения фазоров (PMU) Р-класса. Упомянутый способ измерения основывают на математической модели динамического фазора. Конструируют цифровой фильтр низких частот для коэффициентов фазора, объединенный с DFT. Этот фильтр устраняет утечку спектра, вызванную входными сигналами динамического фазора, причем после устранения утечки спектра могут провести измерения исходного фазора. Динамический фазор аппроксимируют с использованием ряда Тейлора второго порядка. Исследуют линейную зависимость между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами ряда Тейлора второго порядка. Затем используют упомянутую линейную зависимость для компенсации исходных ошибок измерения в динамических условиях. Техническим результатом при реализации заявленного способа измерения является возможность точного и быстрого измерения фазора как в статических, так и в динамических условиях. Точность упомянутого способа измерения не только удовлетворяет техническим требованиям соответствующих стандартов, но и на порядок превышает требования этих стандартов. 4 з.п. ф-лы, 3 табл., 7 ил.

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях параметров электрических цепей, а также в векторных вольтметрах и спектроанализаторах. Сущность изобретения состоит в том, что путем неравномерной частотозависимой дискретизации участвующих в измерительном процессе сигналов и эффективной обработки значений их дискретных отсчетов, реализованных с учетом их специфики, одновременно достигают и инвариантности измерительной процедуры по отношению к множеству гармонических помех с постоянной составляющей, а также к времени ее начала, и предельной простоты ее реализации путем суммирования дискретных отсчетов указанных сигналов по мере их получения при исключительно малом времени обработки измерительной информации, равном времени выполнения операции умножения или деления полученной суммы дискретных отсчетов на постоянный коэффициент, а также времени получения измерительной информации, равном половине суммы периодов сигналов помех. Технический результат изобретения заключается в обеспечении инвариантности измерения вектора гармонического сигнала по отношению к множеству гармонических помех с постоянной составляющей и моменту начала измерительной процедуры, а также ее упрощение до выполнения элементарных операций суммирования значений дискретных отсчетов суммы участвующих в измерительном процессе сигналов и одной операции умножения этой суммы на постоянный коэффициент при минимальном времени получения измерительной информации, равном половине суммы периодов сигналов гармонических помех.

Наверх