Жидкостный насос с электромагнитным приводом

Изобретение относится к области малорасходных насосных машин. Насос состоит из цилиндра 7, выполненного из немагнитного материала, с индукционной катушкой 8, соединенной с источником пульсирующего тока. Внутри цилиндра 7 с радиальным зазором установлен поршень 9, являющийся сердечником электромагнита, подпружиненный пружиной 10 в осевом направлении и изготовленный из магнитомягкой стали или из высококоэрцетивного магнитного материала. Поршень 9 имеет отверстие 11 с прямоугольным поперечным сечением, в котором смонтированы три пары жестких 12 и гибких 13 пластин. Гибкая пластина 13 имеет длину в сторону оси канала большую, чем жесткая пластина 12. При подаче пульсирующего напряжения на обмотку катушки 10 в ней создается переменное магнитное поле, с заданной частотой, втягивающее поршень 9, который, совершает колебательное движение вдоль оси цилиндра 7. При возвратно-поступательном (колебательном) движении поршня 9 в насосе возникает пульсирующий поток жидкости в направлении подачи насоса. Увеличивается производительность и напор насоса. 6 ил.

 

Изобретение относится к области малорасходных насосных машин, используемых преимущественно для проталкивания жидкости в замкнутых системах охлаждения, к которым предъявляются высокие требования по отсутствию вибрации, компактности, надежности и высокому ресурсу безостановочной работы.

Известен жидкостный насос с электромагнитным приводом, содержащий цилиндр с размещенным в нем с радиальным зазором, по крайней мере, один поршень, подпружиненный в осевом направлении, по крайней мере, часть которого выполнена в виде сердечника электромагнита, а вокруг цилиндра установлена, по крайне мере, одна электрическая катушка, соединенная с источником тока (см. кн.: Болштянский А.П., Белый В.Д., Дорошевич С.Э. Компрессоры с газостатическим центрированием поршня. - Омск: Изд-во ОмГТУ, 2002, стр. 89, рис. 5.3).

Наиболее близким к заявляемому техническому устройству является жидкостный насос, содержащий цилиндр с размещенным в нем с радиальным зазором, по крайней мере, один поршень, подпружиненный в осевом направлении, по крайней мере, часть которого выполнена в виде сердечника электромагнита, а вокруг цилиндра установлена, по крайне мере, одна электрическая катушка, соединенная с источником тока, отличающийся тем, что в теле поршня вдоль его оси выполнено сквозное отверстие, поверхность которого имеет, по крайней мере, один конусообразный выступ, направленный вовнутрь этого отверстия вершиной в направлении расхода жидкости (см., например, Патент РФ №127830, МПК F04B 17/04 по заявке №2012147413/06, опубл. 10.05.2013, Бюл. №13).

К недостатку известных конструкций относится их низкая эффективность, связанная с невозможностью создавать достаточно большой перепад давления (напор), который необходим для проталкивания жидкости через длинные трубопроводы или через теплообменники, имеющие узкие каналы.

Техническим результатом изобретения является повышение эффективности работы насоса за счет увеличения создаваемого им напора.

Данный технический результат достигается тем, что в известном жидкостном насосе, который содержит цилиндр с размещенным в нем с радиальным зазором, по крайней мере, один поршень, подпружиненный в осевом направлении, по крайней мере, часть которого выполнена в виде сердечника электромагнита, а вокруг цилиндра установлена, по крайне мере, одна электрическая катушка, соединенная с источником тока, причем в теле поршня вдоль его оси выполнено сквозное отверстие, поверхность которого имеет, по крайней мере, один конусообразный выступ, направленный вовнутрь этого отверстия вершиной в направлении расхода жидкости, согласно заявляемому изобретению сквозное отверстие в поршне выполнено с прямоугольным поперечным сечением, а конусообразный выступ образован, по крайне мере, одной парой жестких и гибких пластин, закрепленных на противоположных сторонах отверстия, причем гибкая пластина имеет длину в сторону оси канала большую, чем жесткая пластина, и расположена вплотную к жесткой пластине, соприкасаясь с ней по плоскости со стороны, обращенной в сторону по направлению расхода жидкости.

Сущность изобретения поясняется чертежами, где

- на фиг. 1 изображена схема установки насоса в замкнутой системе охлаждения некоторого объекта;

- на фиг. 2 показано продольное сечение насоса с электрической катушкой;

- на фиг. 3 показано поперечное сечение насоса в зоне расположения пластин;

- на фиг. 4 и 5 показана работа насоса, а на фиг. 6 - вариант насоса с двумя подвижными сердечниками.

Схема охлаждения состоит (фиг. 1) из источника тепловыделения 1, трубопроводов 2, теплообменников 3 и 4, насоса 5 и источника его электропитания 6.

Насос (фиг. 2) состоит из цилиндра 7, выполненного из немагнитного материала, вокруг которого неподвижно закреплена индукционная катушка 8, соединенная с источником тока (на рисунке условно не показан). Внутри цилиндра 7 с возможностью свободного скольжения вдоль него с радиальным зазором установлен поршень 9, являющийся сердечником электромагнита, подпружиненный пружиной 10 в осевом направлении в сторону потока жидкости и выполненный из магнитомягкой стали или из высококоэрцетивного магнитного материала.

Поршень 9 имеет вдоль своей оси сквозное отверстие 11 с прямоугольным поперечным сечением (см. также фиг. 2), в котором смонтированы три пары жестких 12 и гибких 13 пластин, закрепленных на противоположных сторонах отверстия 11, причем гибкая пластина 13 имеет длину в сторону оси канала большую, чем жесткая пластина 12, и расположена вплотную к жесткой пластине 12, соприкасаясь с ней по плоскости со стороны, обращенной в сторону по направлению расхода жидкости, которое показано стрелками. Каждая пара пластин 12 и 13 образует в отверстии 11 конусообразный выступ, направленный вовнутрь этого отверстия вершиной в направлении расхода жидкости.

Система охлаждения (фиг. 1) работает следующим образом. Трубопровод 2 заполнен охлаждающей жидкостью, является герметичным, а цилиндр 7 насоса 5 является частью этого трубопровода. От источника переменного или пульсирующего напряжения 6 ток подается к насосу 5, и насос перекачивает охлаждающую жидкость по контуру, образованному трубопроводом 2. При этом теплота отбирается от источника 1 и отводится в окружающую среду через поверхности теплообменников 3 и 4. Направление движения жидкости показано заштрихованными стрелками.

При подаче пульсирующего напряжения на обмотку катушки 10 в ней создается переменное магнитное поле, с заданной частотой втягивающее поршень 9, который, таким образом, с учетом действия пружины 10 совершает колебательное движение вдоль оси цилиндра 7.

В процессе движения вовнутрь катушки 8 (фиг. 4) жидкость практически свободно перетекает относительно поршня 9 через отверстие 11, так как образующиеся в затопленных полостях конусообразных выступов 12 вихри вращаются в направлении движения жидкости и практически не препятствуют ее движению относительно поршня 9 в направлении подачи насоса (вправо по рисунку). То есть, поршень 7 по существу просто перемещается справа - налево (показано стрелкой) в жидкостной среде. При этом гибкие пластины 13 отгибаются жидкостью и не препятствуют движению поршня 9.

При возврате поршня 7 (фиг. 5) под действием пружины 10, когда величина тока уменьшается или когда снимается импульс тока (ток равен нулю) и втягивающая сила катушки 8 становится мала или совсем исчезает, поршень 9 движется вправо (показано стрелкой), перемещаясь в жидкостной среде. При этом возникающие вихри в затопленных полостях препятствуют обратному течению жидкости, так как они закручены в противоположную возможному движению жидкости сторону, и жидкость увлекается поршнем 7 в сторону подачи насоса. Этому же способствуют и прижатые к жестким пластинам 12 гибкие пластины 13, которые непосредственно «толкают» жидкость, отгибаясь в сторону оси поршня 9 и уменьшая просвет канала 11.

Таким образом, при возвратно-поступательном (колебательном) движении поршня 9 в насосе возникает пульсирующий поток жидкости в направлении подачи насоса.

Аналогичный эффект создается при использовании двух поршней одинаковой массы (фиг. 6), опирающихся на одну пружину. Здесь уравновешены силы инерции противоположно направленного движения двух поршней и система практически не создает вибраций.

Работа гибких пластин 13 существенно повышает производительность и напор насоса, что позволяет его использовать для прокачки жидкости по длинным трубопроводам и через узкие каналы теплообменных аппаратов.

Жидкостный насос, содержащий цилиндр с размещенным в нем с радиальным зазором, по крайней мере, один поршень, подпружиненный в осевом направлении, по крайней мере, часть которого выполнена в виде сердечника электромагнита, а вокруг цилиндра установлена, по крайне мере, одна электрическая катушка, соединенная с источником тока, причем в теле поршня вдоль его оси выполнено сквозное отверстие, поверхность которого имеет, по крайней мере, один конусообразный выступ, направленный вовнутрь этого отверстия вершиной в направлении расхода жидкости, отличающийся тем, что сквозное отверстие в поршне выполнено с прямоугольным поперечным сечением, а конусообразный выступ образован, по крайней мере, одной парой жестких и гибких пластин, закрепленных на противоположных сторонах отверстия, причем гибкая пластина имеет длину в сторону оси канала большую, чем жесткая пластина, и расположена вплотную к жесткой пластине, соприкасаясь с ней по плоскости со стороны, обращенной в сторону по направлению расхода жидкости.



 

Похожие патенты:

Изобретение относится к оборудованию для подъема пластовой жидкости из скважин. Установка содержит цилиндрический линейный асинхронный электродвигатель (ЛАД), статор 1 которого охватывает плунжер-ротор 2.

Изобретение относится к устройствам для добычи нефти. Насосный агрегат содержит корпус, всасывающий клапан, нагнетательный клапан, ротор, статор и индукционные катушки.

Изобретение относится к дозирующему устройству (100) для выдачи заданного объема жидкости, содержащему электромагнит (111) и выполненному с возможностью поддержания насоса (112) с намагничиваемым насосным элементом (110), перемещаемым под воздействием электромагнита, когда насос поддерживается в дозирующем устройстве.

Изобретение относится к электротехнике. Технический результат состоит в повышении коэффициента мощности.

Изобретение относится к области насосостроения и может быть использовано в поршневых насосах, имеющих магнитный привод. Насос имеет первое пространство (25; 125) рабочего объема и второе пространство (26; 126) рабочего объема, которые отделены друг от друга поршнем (7).

Изобретение относится к области машиностроения, в частности к погружным установкам для добычи нефти из малодебитных скважин. Установка содержит линейный электродвигатель и насос с возвратно-поступательным действием рабочего органа (плунжера, поршня), связанного с подвижной частью электродвигателя (бегуном).

Насос // 2527928
Изобретение касается насоса для нагнетания текучей среды. Насос включает в себя впуск, выпуск и камеру нагнетания.

Изобретение относится к области машиностроения, в частности к установкам с насосами объемного действия, приводимыми в действие погружными линейными электродвигателями.

Изобретение относится к средствам для откачки текучей среды преимущественно из нефтяных малодебитных скважин. Поршень электронасоса совмещен с бегуном 3, имеющим герметичную поперечную перегородку 6, расположенную во внутренней цилиндрической полости бегуна 3.

Изобретение относится к области машиностроения и может быть использовано в насосных установках для поднятия жидкостей с больших глубин объемными насосами, приводимыми в действие электродвигателями.
Изобретение относится к способу управления линейным электродвигателем, используемым в качестве привода погружного плунжерного насоса для добычи нефти. Технический результат заключается в обеспечении максимальной производительности насосной установки при заданной мощности электродвигателя и в повышении надежности его работы. Способ заключается в поочередном подключении обмоток статора, обеспечивающем плавное перемещение штока и изменение направления движения штока путем изменения очередности подключения обмоток. Подключение обмоток для рабочего хода штока начинается в исходном положении, отстоящем от нижней мертвой точки на величину, превышающую инерционный выбег штока при его обратном ходе. Нижняя мертвая точка определяется по возрастанию тока электродвигателя при контакте штока с упругим нижним упором. Рабочий ход штока задается числом последовательных подключений обмоток статора исходя из рабочего хода плунжерного насоса, и ограничен числом последовательных подключений обмоток, не доходя до верхней мертвой точки, для исключения механического упора подвижных элементов электродвигателя или плунжерного насоса. 2 з.п. ф-лы.

Изобретение относится к перистальтическим насосам с электромагнитным приводом и предназначено для использования в нефтедобывающей промышленности, в частности, при отборе жидкости из скважины и в других отраслях промышленности и сельского хозяйства. Насос содержит центральные тела внутри эластичных тел. Электромагниты расположены вдоль оси насоса. Якоря электромагнитов связаны с поршнями, находящимися в гидравлических камерах, заполненных жидкостью. Электромагниты разделены на группы, где каждая группа содержит один и более электромагнитов и отдельную гидравлическую камеру для центрального тела с эластичным телом. В каждой группе электромагнитов гидравлические камеры электромагнитов связаны между собой и связаны с гидравлической камерой центрального тела с эластичным телом. Появляется возможность размещения электромагнита и центрального тела с эластичным телом максимально используя диаметр насоса. 6 ил.

Изобретение относится к перистальтическим насосам с электромагнитным приводом для использования в нефтедобывающей промышленности, в частности при отборе жидкости из скважины. и в других отраслях промышленности и сельского хозяйства. Насос содержит центральные тела, соединенные между собой и находящиеся внутри эластичных тел, которые, в свою очередь, находятся внутри гидравлических камер. Электромагниты расположены вдоль оси насоса. Якоря электромагнитов связаны с поршнями, установленными на гидравлических камерах, заполненных жидкостью. Электромагниты установлены своими осями вдоль оси центрального тела. Увеличивается мощность установленных в насосе электромагнитов в небольших по диаметру скважинах. 8 ил.
Наверх