Способ переработки цинковых кеков


 


Владельцы патента RU 2578881:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)
Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) (RU)

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В. Раствор направляют на извлечение цинка, нерастворенный остаток подвергают флотации ксантогенатом при pH=8-9. Пенный продукт подвергают перечистной флотации при pH=3,5-5, при этом в качестве собирателя используют диалкилдитиофосфат натрия с расходом 50-500 г/т. Флотоконцентрат направляют на извлечение благородных металлов, хвосты основной флотации на извлечение свинца, а хвосты перечистной флотации на извлечение цинка в основном производстве. Техническим результатом является повышение извлечения серебра в концентрат при последующей флотации на 15-20% по сравнению с известными методами. Для получения богатого по драгметаллам продукта требуется меньшее количество технологических стадий. 1 з.п. ф-лы, 3 табл., 3 пр.

 

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих кеков, образующихся при извлечении цинка из сульфидных концентратов.

При переработке цинковых сульфидных концентратов по традиционной технологии, включающей окислительный обжиг и сернокислотное выщелачивание, получают кеки, основными компонентами которых являются цинк, свинец, медь, железо в виде соединений и благородные металлы. Основной причиной неполного выщелачивания цинка при выщелачивании является образование труднорастворимого феррита цинка ZnFe2O4.

Наибольшее распространение на практике получил способ переработки цинковых кеков вельцеванием с переводом благородных металлов и меди в клинкер. Клинкер перерабатывают на медеплавильных заводах совместно с медными концентратами /1. А.П. Снурников "Гидрометаллургия цинка", М.: Металлургия, 1981 г., с. 331. 2. Н.В. Гудима, Я.П. Шеин "Краткий справочник по металлургии цветных металлов" М.: Металлургия. 1975 г., с. 117-136/. Процесс вельцевания, несмотря на значительные его усовершенствования в последние годы, имеет ряд недостатков. Основные из них заключаются в большом расходе углеродистого восстановителя, низком содержании меди и благородных металлов в клинкере, что затрудняет их переработку.

Для извлечения благородных металлов из цинковых кеков используют флотацию. Известен способ извлечения серебра из цинковых кеков флотацией, включающий предварительное кондиционирование пульпы тетрахлорэтиленом, способствующим удалению элементной серы с поверхности минералов и повышению в итоге содержания серебра в концентрате /3. Патент РФ 2496892/.

Известны гидрометаллургические методы переработки цинковых кеков, основанные на реакциях разложения труднорастворимых ферритов серной кислотой при атмосферном или повышенном давлении. Из растворов, полученных при таком выщелачивании, различными методами осаждают железо и другие примеси, после чего извлекают цинк в общей технологической схеме /1/.

Известны комбинированные методы переработки цинковых кеков, включающие флотацию кеков, обжиг флотоконцентрата, выщелачивание продуктов обжига и извлечение благородных металлов из промпродуктов с использованием различных приемов и реагентов /4-7. Патенты РФ №№2192488, 2172352, 2170773, 2153013/. Общим недостатком указанных способов является многостадийность и высокие удельные затраты на извлечение благородных металлов из относительно бедных промпродуктов.

Известен способ переработки цинковых кеков /8. Патент РФ №2175354/, выбранный прототипом и включающий стадии флотации кеков, обжига флотоконцентрата, высокотемпературного сернокислотного выщелачивания продуктов обжига и разварку твердого остатка в концентрированной серной кислоте при соотношении остатка и кислоты 1:0,7-1:1,5 и температуре 150-170°C с последующим выщелачиванием продукта разварки в водном растворе с концентрацией хлора 0,3-1 г/л. При использовании указанного способа уменьшается выход серебросодержащего продукта и соответственно увеличивается содержание серебра в нем, обеспечивается снижение затрат. Основными недостатками прототипа являются низкое извлечение серебра в конечный продукт и многостадийность технологии в целом.

Настоящее изобретение направлено на устранение указанных недостатков, в частности, на увеличение извлечения серебра в конечный продукт и сокращение числа стадий переработки цинковых кеков. Технический результат заключается в использовании оригинальных реагентов и условий сернокислотного выщелачивания кеков и флотационного извлечения серебра.

Указанная цель достигается при использовании способа, включающего стадии флотации и высокотемпературного сернокислотного выщелачивания, отличающегося тем, что на первой стадии при температуре 80-90°C проводят сернокислотное выщелачивание в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В, раствор направляют на извлечение цинка, а нерастворенный остаток подвергают флотации при pH=3,5-5, при этом в качестве собирателя используют диалкилдитиофосфат натрия с расходом 50-500 г/т, флотоконцентрат направляют на извлечение благородных металлов, а хвосты флотации на извлечение свинца. В частности, в качестве восстановителя при сернокислотном выщелачивании используют железный скрап, отходы оцинкованного железа, сульфидный цинковый концентрат, формиат натрия, сахар по отдельности и (или) в различных сочетаниях.

В основе предлагаемого способа сочетание флотации и сернокислотного выщелачивания, но в отличие от прототипа сначала выщелачивают ферриты из исходного сырья, а затем флотацией выделяют благородные металлы из хвостов выщелачивания. Первая стадия - выщелачивание труднорастворимых соединений цинковых кеков - ферритов цинка и меди - проводится принципиально новым способом. В указанных соединениях железо находится в высшей степени окисления (III). В известных методах переработки кеков дополнительное растворение ферритов достигается применением высоких температур и концентраций кислоты, в т.ч. выщелачиванием в автоклавах. Недостатки этих методов отмечены выше. Исследованиями установлено, что железо может быть восстановлено непосредственно из твердой фазы феррита до степени окисления (II), при этом образуются хорошо растворимые в сернокислых растворах сульфаты цинка, железа и меди. Для реализации указанного превращения реагент-восстановитель по своим термодинамическим свойствам и его концентрация должны обеспечивать окислительно-восстановительный потенциал (ОВП) системы не менее +0,8 В. Из числа удовлетворяющих этому условию восстановителей следует выбирать доступные и дешевые реагенты, по возможности растворимые в водных растворах. Опыты показывают, что с приемлемой скоростью восстановительное выщелачивание ферритов цинка и меди протекает при использовании некоторых спиртов, гидразинов, сахара, формиатов и других органических восстановителей:

24ZnFe2O412Н22O11+72H2SO4=24ZnSO4+48FeSO4+83H2O+12CO2

2ZnFe2O4+2HCOONa+7H2SO4=2ZnSO4+4FeSO4+Na2SO4+2CO2+8H2O

Для практической переработки цинковых кеков представляет интерес использовать в качестве восстановителя металлическое железо и цинк:

ZnFe2O4+Fe+4H2SO4=ZnSO4+3FeSO4+4Н2O,

ZnFe2O4+Zn+4H2SO4=2ZnSO4+2FeSO4+4Н2O,

в т.ч. отходы оцинкованного железа.

Установлено, что в рассматриваемой системе восстановителем может быть сульфидная сера, входящая в нерастворенные сульфиды кека. Положительный эффект достигается при добавке к кеку перед выщелачиванием исходного концентрата:

4ZnFe2O4+ZnS+12H2SO4=5ZnSO4+8FeSO4+12Н2O.

Гетерофазный характер такого взаимодействия, осложняемый образованием поверхностных промежуточных продуктов, ограничивает кинетику и степень целевого превращения. Скорость данного варианта, привлекательного с технологической точки зрения, может быть увеличена интенсивным перемешиванием Восстановительное выщелачивание ферритов может быть реализовано при использовании газообразных восстановителей, например диоксида серы, в автоклаве:

2ZnFe2O4+SO2+4H2SO4=2ZnSO4+4FeSO4+4Н2O.

По причине ограниченной растворимости диоксида серы в сернокислых растворах скорость данного процесса также не велика. Указанные восстановители могут быть использованы как селективно, так и в различных сочетаниях.

При восстановительном выщелачивании цинк, железо и медь, входящие в состав ферритов, переходят в раствор. В нерастворенном остатке (вторичном кеке) остаются неокисленные при обжиге сульфиды, оксид и сульфат свинца, кварц и другие нерастворимые минеральные формы, изначально присутствующие в сырье. Структура твердой фазы кеков при восстановительном выщелачивании претерпевает изменения, важнейшим следствием которых является близкое к полному вскрытие благородных металлов. Опыты показывают, что флотацией в оптимальных режимах степень извлечения серебра в концентрат достигает 90-95%.

Поскольку содержание сульфидов во вторичных кеках восстановительного выщелачивания может достигать 25-50%, а суммарное содержание благородных металлов не превышает 0,1-0,2%, селективное (без сульфидов) флотационное выделение последних в пенный продукт не представляется возможным. В этой связи флотацию проводят в две стадии. Сначала из вторичного кека выделяют коллективный концентрат, в котором преобладает сульфид цинка. Содержание благородных металлов в коллективном концентрате составляет 0,05-0,08%. Первую стадию флотации проводят в известных режимах с использованием в качестве собирателя ксантогената при pH=8-9. На второй стадии коллективный концентрат перечищают с использованием в качестве собирателя диалкилдитиофосфата натрия с расходом 50-500 г/т. Установлено, что для обеспечения селективности флотации и повышения качества концентрата благородных металлов перечистную флотацию следует проводить в слабокислой среде при pH=3,5-5. Сульфиды цинка при этом остаются в хвостах, данный продукт возвращают на обжиг. Растворы восстановительного выщелачивания направляют на извлечение цинка в гидрометаллургическую часть общей технологической схемы. Хвосты коллективной флотации направляют на извлечение свинца. Концентрат благородных металлов с содержанием серебра до 1% служит сырьем аффинажного производства.

В отличие от прототипа для получения богатого по драгметаллам продукта требуется всего три технологических приема: восстановительное выщелачивание, коллективная флотация и перечистная флотация.

Примером реализации предлагаемого способа служат результаты следующих опытов.

Цинковый кек (Челябинский цинковый завод) содержал 18,3% Ζn, 1,4% Сu, 24,8% Fe, 4,9% Pb, 320 г/т Ag. Навески кека массой 100 г перемешивали в растворах серной кислоты с концентрацией 100 г/л при Ж:Т=5:1 в течение 2 часов при температуре 90°C. В качестве восстановителя использовали формиат натрия, сахар, металлическое железо и оцинкованное железо в виде мелких обрезков проволоки, добавляемые в пульпу в избытке. По окончании опытов фильтрованием отделяли нерастворенный остаток. Взвешиванием оценивали выход вторичного кека, анализом продуктов определяли степень извлечения цинка в раствор и содержание серебра в кеке. Целевое опробование показало, что в условиях восстановительного выщелачивания переход серебра в раствор исключен. Результаты опытов с разными восстановителями представлены в таблице 1.

Таблица 1
Восстановитель Масса восстановителя, г Выход нерастворенного остатка, % Степень выщелачивания цинка, % Содержание серебра в остатке, г/т
1 Формиат 20 47 89 615
2 Сахар 10 43 97 675
3 Железо 20 55 84 590
4 Оцинкованное железо 20 49 93 643
5 Цинковый к-т 20 Не опред. 62 580
6 Цинковый к-т 10 Не опред. 88 594
+железо 10

Во второй серии опытов при помощи платинового электрода контролировали окислительно-восстановительный потенциал пульпы и варьировали температурой. В качестве восстановителя использовали сахар. Результаты представлены в таблице 2

Таблица 2
Расход сахара, г ОВП, В Температура, С Степень выщелачивания цинка, % Содержание серебра в остатке, г/т
1 0,5 0,37 75 32 396
2 1 0,77 75 58 430
3 5 0,82 80 82 549
4 10 0,85 85 93 684
5 20 0,89 90 96 698
6 20 0,89 95 97 705

В третьей серии опытов провели выщелачивание кеков сахаром в оптимальных режимах (таблицы 1, 2) и нерастворенные остатки флотировали в две стадии. На стадии перечистки варьировали расходом собирателя диалкилдитиофосфат натрия (БТФ 1522) и pH пульпы. Результаты представлены в таблице 3.

Таблица 3
Расход БТФ 1522, г/т pH пульпы Содержание серебра в концентрате, г/т Извлечение серебра в к-т из исходного кека, %
1 30 8 3615 64
2 50 6 4930 79
3 100 4 6650 87
4 300 4 7680 92
5 500 3,5 8773 94
6 700 3,0 8740 90

Для сравнения проведен опыт, в котором кек указанного состава перерабатывали по способу прототипа: флотация и высокотемпературное выщелачивание в режимах, приведенных в описании изобретения. Анализ полученных продуктов показал, что извлечение серебра во флотоконцентрат не превысило 73%. Причиной недостаточного извлечения является ассоциированность драгметаллов в структуру ферритов, которые не флотируются. Последующие обжиг и высокотемпературное выщелачивание флотоконцентрата и многостадийная его переработка согласно формуле прототипа позволили получить богатый продукт, но сквозное извлечение серебра в него остается неизменно низким. С этой точки зрения предлагаемое в настоящем изобретении предварительное вскрытие драгметаллов восстановительным выщелачиванием обеспечивает более высокую эффективность последующей флотации.

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения за счет восстановительного характера выщелачивания позволяет увеличить извлечение серебра в концентрат при последующей флотации на 15-20% по сравнению со способом прототипа. Для получения богатого по драгметаллам продукта требуется меньшее количество технологических стадий.

1. Способ переработки цинковых кеков, включающий стадии флотации и высокотемпературного сернокислотного выщелачивания, отличающийся тем, что на первой стадии проводят сернокислотное выщелачивание цинковых кеков при температуре 80-90°C в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В, раствор направляют на извлечение цинка, нерастворенный остаток подвергают основной флотации ксантогенатом при pH=8-9, пенный продукт подвергают перечистной флотации при pH=3,5-5 с использованием в качестве собирателя диалкилдитиофосфата натрия с расходом 50-500 г/т, флотоконцентрат направляют на извлечение благородных металлов, хвосты основной флотации - на извлечение свинца, а хвосты перечистной флотации - на извлечение цинка в основном производстве цинка.

2. Способ по п. 1, отличающийся тем, что в качестве восстановителя при сернокислотном выщелачивании используют железный скрап, отходы оцинкованного железа, сульфидный цинковый концентрат, формиат натрия, сахар по отдельности и/или в различных сочетаниях.



 

Похожие патенты:

Изобретение относится к устройству и способу для извлечения из горячего шлака цветных металлов, например алюминия и его сплавов, магния, цинка. Устройство содержит раму со сжимающей шлак оребренной и полой головкой с патрубками с воздушным охлаждением, изложницу для сбора отжатого из шлака металла, установленную на ней шлаковницу, в донной части которой выполнены одно или несколько сквозных дренажных отверстий, уплотнение, размещенное в зазоре между шлаковницей и изложницей, в донной части шлаковницы и/или изложницы выполнено по крайней мере одно сквозное отверстие с соединением для подключения вакуума.
Изобретение относится к переработке цинк-железосодержащих пылей металлургического производства и может быть использовано в черной металлургии. Цинк-железосодержащие пыли формуют в гранулы путем окатывания c углеродным восстановителем, который вводят в шихту в виде суспензии в уксуснокислом растворе с концентрацией 3-10 мас.%.

Изобретение относится к способу переработки отходов шлифования постоянных магнитов. Шлифотходы смешивают с концентрированной (не менее 92%) серной кислотой в количестве, необходимом для получения твердого агломерированного продукта.

Изобретение относится к переработке радиоэлектронного лома, в частности электронных плат. Исходное сырье измельчают, обогащают методами электрической и магнитной сепарации, из полученных концентратов извлекают благородные металлы, хвосты обогащения распульповывают в воде при отношении Ж:Т не менее 7 в присутствии лигносульфоната с расходом последнего 1-3 кг/т твердого.

Изобретение относится к области утилизации отходов гальванического производства, например шламов, путем переработки последних и может быть использовано на предприятиях цветной металлургии и предприятиях, использующих в своем производственном цикле соединения цветных металлов.
Изобретение относится к области металлургии, в частности к вторичной переработке алюминиевых отходов, таких как бывшая в употреблении алюминиевая тара из-под напитков и продуктов, и может быть использовано для получения вторичных алюминиевых сплавов, алюминиевых раскислителей для выплавки сплавов, в том числе сталей.

Изобретение относится к получению стального порошка для производства спеченных изделий из шлифовального шлама ШХ15. Шлифовальный шлам ШХ15 отмывают, сушат, проводят рассев полученного шлифовального шлама на сите 0,05 мм с получением фракции +0,05 мм, а затем проводят размол и магнитовибрационную сепарацию.
Изобретение относится к экстракции металлов из красного шлама. Красный шлам измельчают до размера частиц 5-500 мкм.
Группа изобретений относится к извлечению дисперсного золота из упорных руд и техногенного минерального сырья. Способ включает агломерацию золотосодержащей минеральной массы исходного сырья путем добавки к ней связующего материала, формирование штабеля, выщелачивание золота подачей в штабель раствора реагента, выщелачивающего золото, сбор рабочих растворов с последующим выделением из него золота.

Изобретение относится к металлургии благородных металлов. Отработанные катализаторы на носителях из оксида алюминия шихтуют с флюсами, плавят полученную шихту на металлический коллектор при температуре 1500÷1800°C в несколько стадий со сливом после каждой стадии образовавшегося шлака и плавлением очередной порции шихты на коллекторе от предыдущей плавки с выделением сплава платиновых металлов с коллектором.

Изобретение относится к способу извлечения ионов тяжелых металлов из водных растворов. Способ включает экстракцию с использованием в качестве экстрагента растительных масел, содержащих жирные кислоты, при величине рН водных растворов, равной 9-11.

Изобретение относится к области утилизации отходов гальванического производства, например шламов, путем переработки последних и может быть использовано на предприятиях цветной металлургии и предприятиях, использующих в своем производственном цикле соединения цветных металлов.

Изобретение относится к получению наноструктурированных порошков металлических сплавов. Наноструктурированный порошок твердого раствора кобальт-никель состоит из первичных частиц в виде кобальтоникелевых наноблоков размерами 5-20 нм, агломерированных во вторичные частицы размерами 100-200 нм сферической формы.

Группа изобретений относится к получению металлического цинка из его рудных пород. Способ получения металлического цинка из водной суспензии частиц, содержащих соединения цинка руды, включает генерацию в объеме сырья физических «треугольных» магнитных полей, напряженность которых составляет 8·104÷1,0·105 А/м.

Изобретение относится к способу переработки шламов металлургических и горно-обогатительных комбинатов. Из исходного сырья при дезинтеграции удаляют негабаритные включения, из полученного продукта готовят пульпу и обрабатывают ее высокоамплитудными ультразвуковыми колебаниями, далее проводят гравитационную сепарацию, при которой образуется два потока, содержащих цинк- и свинецсодержащие продукты.

Изобретение относится к способу извлечения ценных компонентов из сульфидного сырья. Способ включает промывку сырья водой с получением твердого осадка, получение сульфатного раствора, из которого извлекают железо, медь и цинк путем перевода железа в осадок в виде гидроксида железа Fe(OH)3, осаждения меди из фильтрата железным скрапом, осаждения цинка из фильтрата сероводородом.
Изобретение относится к способу выщелачивания ценных минералов из проницаемого рудного тела или из твердых частиц, полученных из руды, содержащей компоненты карбоната металла и сульфида металла.

Изобретение относится к гидрометаллургии цветных и благородных металлов, а именно к извлечению металлов из сульфидных руд и продуктов обогащения. Способ включает регулирование расхода воздуха, подаваемого на биоокисление, и скорость перемешивания в чане, где проводится биоокисление, по концентрации ионов двухвалентного железа в пульпе, обеспечивая значение концентрации около нуля.

Изобретение относится к технологии получения оксида цинка и может быть использовано для получения оксида цинка со смещенным изотопным составом. Способ включает получение гидроксида цинка из диэтилцинка, которое ведут в проточном реакторе в струе воды или водной пульпы, содержащей гидроксид цинка, с расходом диэтилцинка до 40 кг в час с получением пульпы, содержащей частицы гидроксида цинка.
Изобретение относится к способу пирометаллургической переработки железосодержащих материалов, включающий загрузку в плавильную зону двухзонной печи железосодержащих материалов, флюсующих добавок и углеродсодержащих материалов, расплавление их в барботируемом кислородсодержащим дутьем железосодержащем расплаве, дожигание отходящих из расплава горючих газов с последующей подачей расплава в восстановительную зону, в которую загружают углеродсодержащие материалы и другие шихтовые материалы, восстановление железа с образованием железоуглеродистого расплава и шлака, дожигание отходящих из ванны зоны восстановления горючих газов, раздельный выпуск продуктов плавки, при этом газы, отходящие из зон восстановления и плавления, охлаждают и очищают отдельно, причем очищенные газы плавильной зоны удаляют в вытяжную трубу, а отходящие газы зоны восстановления после охлаждения и очистки компремируют и подают в фурмы нижнего ряда зоны плавления.

Группа изобретений относится к извлечению благородного металла/ов из материала, содержащего благородный металл, в водную суспензию или раствор для выщелачивания.
Наверх