Способ получения глубоко очищенной питьевой воды

Изобретение относится к области глубокой очистки воды для бытовых целей. Способ получения глубоко очищенной питьевой воды включает смешение исходной воды централизованного водоснабжения с этой же водой, очищенной системой обратного осмоса. Исходная водопроводная вода проходит общую предварительную начальную очистку на префильтрах, после чего поток воды делят на линию глубокой очистки бытовой системой обратного осмоса и линию бытовой ультрафильтрационной мембранной очистки с последующим их смешением в точке перед постфильтром, при этом смешение происходит только при наличии протока воды без использования емкостей для смешивания и соотношение при смешении воды, очищенной на ультрафильтрационной мембране, и воды, очищенной системой обратного осмоса, составляет 1:2. Смешение воды, очищенной на ультрафильтрационной мембране, и воды, очищенной системой обратного осмоса, задается с помощью установки ограничителя потока воды, очищенной способом ультрафильтрации. Технический результат - получение глубоко очищенной питьевой воды с сохранением в ней минеральных элементов, таких как ионы Ca и Mg, выраженных через общую жесткость воды в пределах 1,5-2,0 мг-экв/литр, а также с уровнем водородного показателя pH больше 6,5, что соответствует нормативам качества расфасованных питьевых вод высшей категории. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области глубокой очистки воды для бытовых целей. Предлагается способ получения глубоко очищенной питьевой воды с сохранением в ней полезных для человека минеральных элементов, таких как ионы Са и Mg, выраженных через общую жесткость воды в пределах 1,5-2,0 мг-экв/литр, а также с уровнем водородного показателя pH больше 6,5, что соответствует нормативам качества расфасованных питьевых вод высшей категории, согласно СанПин 2.1.4.1116-02.

Известен способ глубокой очистки воды с помощью технологии обратного осмоса, осуществляемый на широко представленном спектре бытовых установок RO разных производителей, например: Zepter, Rain Soft, Atoll, Aquapro, Гейзер, Аквафор, Новая Вода и др. Однако вода, полученная таким способом, наряду с очисткой от всех вредных примесей, лишается также не только биологически ценных минеральных макроэлементов, таких как ионы Са и Mg, но также и полезных для организма человека микроэлементов. Кроме того, в связи с малой селективностью обратноосмотических мембран в отношении газов, водородный показатель pH воды, очищенной этим способом, снижается до значений ниже 6,0 - что не позволяет соответствовать показателям этой воды не только нормативам качества расфасованных питьевых вод высшей категории, согласно СанПин 2.1.4.1116-02, но и даже гигиеническим требованиям к качеству воды централизованных систем питьевого водоснабжения, согласно СанПин 2.1.4.1074-01.

Известен также способ глубокой очистки воды с помощью технологии бытовой ультрафильтрации, например, модель четырехступенчатой очистки воды Expert М400 от производителя Новая Вода. Здесь вода проходит предварительную очистку от механических и растворенных примесей на осадочном и двух угольных картриджах, а затем окончательную обработку на половолоконной УФ-мембране Capitech, с размерами пор 0,01-0,1 микрон, на которой отфильтровываются не только механические примеси, но и крупные органические молекулы, коллоиды, бактерии и вирусы. К сожалению, этот способ очистки не задерживает совсем растворенные минеральные примеси и не может быть использован для вод с большим содержанием жесткости.

Наиболее близким аналогом является способ получения питьевой воды, полученной путем смешения исходной артезианской воды с дистиллятом, описанном в патенте на авторское изобретение RU 2410334, МПК C02F, опубликован 27.04.2010 г., отличающийся тем, что для получения очищенной физиологически полноценной некондиционированной (без дополнительного обогащения макро- и микроэлементами) воды, производится смешивание в определенном соотношении исходной артезианской питьевой воды с дистиллятом, причем для получения воды с общей минерализацией 80-120 мг/литр, в качестве исходной воды используют природную питьевую воду гидрокарбонатно-кальциево-сульфатной группы с общей минерализацией до 535 мг/литр. Для смешивания используют дистиллят, полученный из исходной воды, очищенной методом обратного осмоса.

Недостатком этого метода является сложная технологическая схема, подразумевающая применение дозаторов, ротаметров, крупногабаритных баков для смешения, ультрафиолетовых обеззараживателей, что влечет за собой невозможность применения этого способа для бытовых целей.

Технический результат - получение глубоко очищенной, физиологически полноценной питьевой воды, достигается очисткой исходной воды централизованного водоснабжения с помощью разделения потока воды на линию глубокой очистки обратным бытовым осмосом и линию ультрафильтрационной мембранной очистки, через которую отфильтровываются механические примеси, крупные органические молекулы, коллоиды, бактерии и вирусы с последующим их смешением в точке перед постфильтром обратного осмоса, причем фильтрами предварительной очистки для ультрафильтрации служат префильтры обратного осмоса, а смешение происходит только при наличии протока воды, без использования емкостей для смешивания.

На Фиг. 1 показана общая схема способа. Исходная вода проходит общую очистку для обеих линий на префильтрах обратного осмоса - поз. 1, 2, 3, затем делится на линию очистки через мембрану обратного осмоса поз. 4, с последующим накоплением в гидроаккумуляторе поз. 6 и на линию очистки через мембрану ультрафильтрации поз. 7. Смешение происходит в точке перед постфильтром обратного осмоса поз. 11 и после окончательной обработки на угольном постфильтре поз. 5 поступает на кран питьевой воды поз. 10. Для того, чтобы в гидроаккумуляторе скапливалась вода только после очистки на обратном осмосе, дополнительно устанавливается обратный клапан поз. 8. Для получения параметра жесткости 1,5-2,0 мг-экв/литр, соотношение ультрафильтрационной и обратноосмотической воды устанавливается в пропорции 1:2 с помощью ограничителя потока 450 мл/мин на линии ультрафильтрации поз. 9.

Практическое осуществление заявленного изобретения возможно, например, на базе системы обратного осмоса А-560Е, производитель Atoll, в качестве ультрафильтрационной мембраны можно использовать картридж ультрафильтрации К878 для фильтров Expert, изготовленный из половолоконной мембраны Capitech с размером пор 0,01-0,1 микрона, производитель Новая Вода, в качестве обратного клапана может быть использован клапан check valve SCV фирмы John Guest, соединительные трубки из полиэтиленовой трубки 1/4″ фирмы John Guest, ограничитель потока, например, DR450, производитель Atoll.

На собранном по описанному способу образце при показаниях воды после осмоса:

Жесткость - 0,0 мг-экв/литр

Водородный показатель - 5,9 отн. ед.

Общая минерализация - 10 мг/литр

После смешения удалось получить:

Жесткость - 1,5 мг-экв/литр

Водородный показатель - 6,7 отн. ед.

Общая минерализация - 100 мг/литр

Таким образом удалось получить проточную питьевую воду, соответствующую нормативам качества расфасованных питьевых вод высшей категории, согласно СанПин 2.1.4.1116-02.

1. Способ получения глубоко очищенной питьевой воды, включающий смешение исходной воды централизованного водоснабжения с этой же водой, очищенной системой обратного осмоса, отличающийся тем, что исходная водопроводная вода проходит общую предварительную начальную очистку на префильтрах, после чего поток воды делят на линию глубокой очистки бытовой системой обратного осмоса и линию бытовой ультрафильтрационной мембранной очистки с последующим их смешением в точке перед постфильтром, при этом смешение происходит только при наличии протока воды без использования емкостей для смешивания и соотношение при смешении воды, очищенной на ультрафильтрационной мембране, и воды, очищенной системой обратного осмоса, составляет 1:2.

2. Способ по п. 1, отличающийся тем, что смешение воды, очищенной на ультрафильтрационной мембране, и воды, очищенной системой обратного осмоса, задается с помощью установки ограничителя потока воды, очищенной способом ультрафильтрации.



 

Похожие патенты:

Изобретение относится к устройствам для очистки сточных вод и может быть использовано для очистки воды от нефтепродуктов, жиров и взвешенных веществ. Установка для очистки сточных вод разделена на два блока: верхний и нижний.

Изобретение относится к области охраны окружающей среды и предназначено для очистки природных и искусственных водоемов, дно которых загрязнено нефтью и нефтепродуктами.

Изобретение может быть использовано для выделения органических веществ из водных сред, водосодержащих биологических жидкостей и водных экстрактов-вытяжек. Для осуществления способа проводят экстракцию органических веществ из водной среды в органический растворитель в сочетании с вымораживанием в условиях действия поля центробежных сил.

Изобретение относится к очистке дренажных и сбросных вод от загрязнений и может быть использовано в орошаемом земледелии при создании гидромелиоративных систем с замкнутым циклом водооборота.

Изобретение относится к очистке хозяйственно-бытовых и промышленных сточных вод. Способ очистки сточных вод включает усреднение потока воды и биологическую очистку с активным илом.
Изобретение относится к обработке воды с применением магнитных полей и может быть использовано в пищевой промышленности, медицине и фармакологии. Способ получения питьевой воды включает забор воды из природного источника, очистку от твердых примесей и обработку путем пропускания воды через аппарат, представляющий собой устройство, имеющее внешний и внутренний цилиндр.

Изобретение относится к промышленной очистке и обеззараживанию воды и может быть использовано в области хозяйственно-бытового водоснабжения для удаления примесей из природных, преимущественно подземных, вод.

Изобретение относится к энергосберегающим системам оборотного водоснабжения. Система оборотного водоснабжения для мойки автомашин содержит технологическое оборудование, связанное системой трубопроводов с аппаратами очистки сточной воды, и включает в себя накопительную емкость 47, в которую самотеком поступают сточные воды, насос 48 для подачи воды из накопительной емкости 47 в реактор 49, компрессор 52 для перемешивания среды в реакторе 49, насос-дозатор 51 рабочего раствора коагулянта, флотатор 54, накопительную емкость 59 для сбора очищенной воды после флотатора 54, фильтры грубой 61 и тонкой 66 очистки, накопительную емкость 63 для сбора очищенной воды после фильтров грубой очистки, диафрагменный насос 55 и сборник шлама 56.

Изобретение относится к очистным сооружениям и может быть использовано на моечных станциях автотранспорта. Флотационно-фильтрационная установка содержит заборный фильтр 1, всасывающий трубопровод 2, обратный клапан 8, насосный агрегат 3, эжектор 4, соединенный с байпасным трубопроводом 5 и установленный на входе насосного агрегата 3, камеру флотации 22 с фильтром 29 и слоем фильтрующей загрузки 30.

Изобретение относится к установкам для очистки воды. Блочно-модульная установка для очистки и подачи воды содержит блок предварительной фильтрации 1, блок основной очистки 2, блок обеззараживания и блок управления.

Изобретение относится к способам очистки сточных вод и может быть использовано для очистки воды от нефтепродуктов, жиров и взвешенных веществ. В способе очистки сточных вод происходит последовательная обработка воды путем прохождения ее через песколовку 2, нефтеловушку-отстойник 3, флотатор-отстойник, зернистый 5 и сорбционный 6 фильтры, объединенные в единый корпус 1 установки. Песколовка сочетает элементы тангенциальной и вертикальной песколовок. Нефтеловушка-отстойник выполняется с уклоном как по направлению движения воды, так и от центра к периферии. Сфлотированная во флотационной камере вода перетекает в отстойную зону 11, огражденную от зоны с осветленной водой цилиндрической перегородкой 12, что увеличивает эффект очистки за счет полноты прохождения процесса флотации и выпадения в осадок не выделившихся на предыдущих ступенях очистки загрязнений. Доочистка воды происходит в фильтровальном блоке - на зернистом и сорбционном фильтрах, с движением воды сверху вниз и снизу вверх соответственно. Технический результат - повышение эффективности способа очистки сточных вод от нефтепродуктов, жиров и взвешенных веществ, удешевление способа их очистки и максимальное использование возможностей очистных сооружений. 2 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к системам очистки жидкости, преимущественно воды, применяемым в бытовом и/или питьевом водоснабжении. Система очистки жидкости содержит узел питания 1, в котором осуществляется вытеснение концентрата из емкости, представляющей собой устройство концентрирования жидкости 4, содержащее внутреннюю перегородку 17, разделяющую внутреннее пространство устройства 4 на накопительную полость 5 с переменным объемом для исходной жидкости и вытеснительную полость 6 для исходной жидкости, предназначенную для вытеснения концентрата из накопительной полости устройства концентрирования жидкости. Система очистки жидкости содержит также узел фильтрации 8, выполненный с возможностью обеспечения плавного увеличения концентрации жидкости, подаваемой на средство очистки жидкости 11 за счет осуществления перемешивания исходной жидкости с концентратом в накопительной полости емкости. Вход средства очистки жидкости соединен линией 9 подачи смеси концентрата и исходной жидкости, на которой установлено средство повышения скорости жидкости 10, напрямую с накопительной полостью 5 устройства концентрирования жидкости, а линия возврата концентрата 12 из средства очистки в устройство концентрирования подсоединена через соединительный элемент к линии смешения концентрата и исходной жидкости и к основной линии подачи исходной жидкости. Технический результат - сокращение количества энергии и исходной жидкости, подаваемых в систему очистки жидкости. 4 з.п. ф-лы, 1 ил.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Установка для очистки нефтесодержащих и сточных вод содержит по меньшей мере две ступени очистки, соединенные последовательно вдоль потока очищаемой воды и разделенные между собой посредством перегородок 7. Каждая ступень очистки состоит из флотореактора 1, 2, 3 и флоторазделителя 4, 5, 6, разделенных посредством перегородки 8. Аэрирующий узел 10 первой ступени очистки сообщен через насос 9 с придонной частью флоторазделителя 6 последней ступени очистки. Выход трубопровода подвода очищаемой воды 11 сообщен с придонной частью 16 флотореактора 1 первой ступени очистки. Первый выход аэрирующего узла 10 сообщен через дросселирующий клапан 26 с входом в флотореактор 1 первой ступени очистки. Вторая и последующая ступени очистки снабжены деаэрирующими узлами 31, 32. Выход каждого из деаэрирующих узлов 31, 32 расположен в днище 33, 34 и сообщен через дросселирующий клапан 26 с входом в соответствующий флотореактор 2, 3 и через регулятор давления 35 с входом в верхнюю часть деаэрирующего узла 36, 37 следующей ступени очистки. Второй выход аэрирующего узла 10 сообщен через регулятор давления 35 с входом в верхнюю часть 36 деаэрирующего узла второй ступени очистки. Выход каждого дросселирующего клапана 26 размещен у входа в соответствующий флотореактор 1, 2, 3. Площадь поперечного сечения днища каждого флотореактора 1, 2, 3 равномерно уменьшается по направлению сверху вниз. Площадь поперечного сечения флоторазделителя 4, 5, 6 не меньше площади поперечного сечения соответствующего флотореактора. Перегородки 8, отделяющие флотореакторы 1, 2, 3 от флоторазделителей 4, 5, 6, выполнены с возможностью свободного перемещения потока очищаемой воды в верхних частях флотореакторов 1, 2, 3 и флоторазделителей 4, 5, 6 одной ступени очистки. Перегородки 7, разделяющие ступени очистки, выполнены с возможностью свободного перемещения потока очищаемой воды в придонных частях флоторазделителей 4, 5, 6 и флотореакторов 1, 2, 3 различных ступеней очистки. Аэрирующий узел 10 выполнен с возможностью поддержания давления насыщения 0,3-0,6 МПа. Деаэрирующие узлы 31, 32 выполнены с возможностью поддержания давления насыщения 0,1-0,3 МПа. Изобретение позволяет повысить эффективность очистки нефтесодержащих и сточных вод. 6 з.п. ф-лы, 1 ил.

Изобретение относится к оборудованию для подготовки попутно добываемой пластовой воды в системе сбора нефти, газа и воды. Установка включает трубопровод 3 подачи добываемой газо-жидкостной смеси (ГЖС) в блок сепарации ГЖС 1, трубопровод отвода ГЖС 10 из блока сепарации ГЖС 1, блок подготовки воды 2, оснащенный фильтром 6 для очистки от механических примесей, трубопровод отвода воды 5. Блок сепарации ГЖС 1 представляет собой трубный водоотделитель (ТВО) - для газового фактора ГЖС от 100 до 400 м3/м3 или узел фазового разделения эмульсии (УФРЭ) - для газового фактора ГЖС от 20 до 100 м3/м3, или трубный отстойник-сепаратор (ТОС - для газового фактора менее 20 м3/м3, причем до ТВО или УФРЭ установлен успокоитель-депульсатор потока ГЖС 11, оснащенный трубопроводом отвода газа 12 в блок сепарации 1, а блок подготовки воды 2 представляет собой закрытую с концов горизонтальную трубу, а трубопровод ввода в нее нефтесодержащей воды 4, поступающей из блока сепарации 1, соединен с тем концом горизонтальной трубы, в котором установлен в качестве фильтра пакет параллельных пластин 6, соединенный с колпаком для сбора механических примесей 7 через отверстие снизу горизонтальной трубы, причем колпак для сбора выделившихся газа и нефти 8 установлен после пакета параллельных пластин 6, в верхней части горизонтальной трубы, а трубопровод отвода выделившихся газа и нефти 9 из колпака 8 для их сбора в блок сепарации 1 выполнен горизонтальным и находится выше уровня трубопровода подачи добываемой ГЖС 3 в блок сепарации 1 соответственно из успокоителя-депульсатора потока ГЖС в ТВО или в УФРЭ или непосредственно в ТОС. При применении в качестве блока сепарации ГЖС узла фазового разделения эмульсии (УФРЭ) трубопроводы ввода в горизонтальную трубу нефтесодержащей воды установлены с обоих концов горизонтальной трубы, в каждом из которых установлен в качестве фильтра пакет параллельных пластин, соединенный с колпаком для сбора механических примесей через отверстие снизу горизонтальной трубы. Технический результат - повышение эффективности установки за счет обеспечения проточного режима ее эксплуатации и улучшения качества сепарации и подготовки при упрощении установки по конструкции, в том числе по количеству средств автоматики и КИП, при снижении ее металлоемкости. 1 з.п. ф-лы, 4 ил.

Изобретение относится к получению опресненной и обессоленной воды для ядерных энергетических установок. В качестве источника водоснабжения используют отработанные засоленные воды охлаждения ядерных энергетических установок, которые были подвергнуты нагреву и воздушному охлаждению - деаэрации. Осуществляют их предочистку от органических веществ и активного хлора на насыпном угольном фильтре 3, от взвесей на микрофильтре 4 и от щелочноземельных элементов на умягчающем катионитовом фильтре 5, заполненном катионитом в Na+-форме. Дальнейшее обессоливание вод проводят на двух последовательных обратноосмотических фильтрах 7 и 10 и доочистку на обессоливающих катионитовом 11 и анионитовом 12 фильтрах с катионитом и анионитом в Н+- и ОН- формах, соответственно. Причем фильтрат первого обратноосмотического фильтра 7 через промежуточную емкость 8 направляют на вход второго обратноосмотического фильтра 10, а часть концентрата первого обратноосмотического фильтра возвращают в емкость исходных вод 1, остальной объем направляют на сброс. Фильтрат второго обратноосмотического фильтра направляют на доочистку на катионитовый фильтр 11, а концентрат в полном объеме возвращают в емкость исходных вод. Регенерацию умягчающего катионитового фильтра при отсутствии в нем радиоактивных или химически токсичных загрязнений проводят раствором поваренной соли, а при их наличии отработанный катеонит направляют без регенерации на кондиционирование и захоронение. Кроме того, в качестве загрузки умягчающего катионитового фильтра может использоваться отработанный катеонит обессоливающего катионитового фильтра, насыщенный катионами Na. Технический результат - значительное увеличение срока работы обессоливающих обратноосмотических фильтров и ионообменного фильтра. 1 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к способу и системе для обработки воды, предназначенной для использования в промышленных процессах, при низких затратах. Система для обработки воды включает: линию подачи воды, контейнер, включающий средство приема осевших частиц, которое прикреплено к дну указанного контейнера, средство согласования, которое периодически активирует операции, необходимые для регулирования параметров воды в пределах, определяемых оператором или средством согласования, средство введения химических веществ, которое активируют с помощью указанного средства согласования, подвижное средство всасывания, которое перемещается по дну указанного контейнера, всасывая поток воды, содержащий осевшие частицы, движущее средство, которое сообщает движение подвижному средству всасывания, чтобы оно могло перемещаться по дну контейнера, фильтрующее средство, которое обеспечивает фильтрацию потока воды, содержащего осевшие частицы, коллекторную линию, соединяющую подвижное средство всасывания и фильтрующее средство, возвратную линию от указанного фильтрующего средства к контейнеру, и линию отвода воды из указанного контейнера в процесс ниже по потоку. Технический результат - повышение качества очистки воды. 6 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к водоподготовке и может быть использовано в сельском хозяйстве, в жилищно-коммунальном хозяйстве и в промышленности. Способ водоподготовки включает фильтрацию воды через загрузку с ионообменными свойствами, регенерацию и промывку загрузки восходящим потоком регенерата и подготовленной воды в направлении снизу вверх и седиментацию загрузки. Фильтрацию проводят с использованием фильтровального комплекса, содержащего не менее двух последовательно установленных фильтров первой 2 и второй 9 ступеней. Фильтрацию в фильтре первой 2 ступени проводят в направлении снизу вверх, а в фильтре второй 9 ступени - сверху вниз. Фильтрацию и регенерацию загрузки осуществляют с образованием псевдоожиженного слоя 7, 11 в фильтрах первой 2 и второй 9 ступеней. В качестве загрузки в фильтре первой 2 ступени используют модифицированный глауконит, а в фильтре второй 9 ступени - композицию из двух и более компонентов, расположенных послойно. Нижний слой представлен модифицированным глауконитом. Отношение плотностей гранул каждого последующего слоя к предыдущему слою составляет не менее 1,3. Объем модифицированного глауконита составляет не менее 40% от общего объема композиции. Отношение высоты загрузки в фильтрах первой и второй ступеней к высоте фильтров составляет 0,40-0,55:1,00. Изобретение позволяет насытить воду макро- и микроэлементами, осуществить умягчение и обезжелезивание воды, повысить степень ее очистки от примесей, а также надежность и экологическую безопасность процесса водоподготовки. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение может быть использовано для очистки сточных вод от ионов хрома, хлоридов, жиров, СПАВ и взвешенных веществ. Для осуществления способа сточные воды подают в устройство цилиндрической формы (1), сначала в отстойник (2), далее во флотатор (3) с зоной флотации и зоной отстаивания во вторичном отстойнике (4). Затем проводят доочистку в зернистом фильтре (5) с движением воды сверху вниз и в сорбционном фильтре (6) с движением воды снизу вверх. По эжектору, встроенному в трубопровод подачи сточной воды, подают хлористый барий и гидроксид кальция. Очищенную воду собирают в емкость очищенной воды (7). Флотатор (3) делят на четыре секции, три - в зоне флотации, а четвертая - в зоне отстаивания. Фильтры (5,6) снабжают съемными крышками для замены загрузки, а загрузки упаковывают в сетчатый патрон из не коррозионного материала. Вторичный отстойник (4) расположен между внешней поверхностью стенки отстойника (2), находящегося по центру, и стенкой корпуса устройства для очистки (1). Отстойник (2) имеет цилиндрическую форму и коническое дно, а дно вторичного отстойника (4) имеет уклон от центра к периферии и через переливное отверстие соединен с зернистым фильтром (5). Корпус устройства (1) выполняют из легкого и прочного стеклопластика. Изобретение позволяет рационально и эффективно осуществлять очистку сточных вод от ионов хрома, хлоридов, сульфатов, взвешенных веществ, СПАВ, снизить показатели БПК и ХПК очищенной воды за счет раздельной последовательной работы блоков очистки, простоты конструкции и мобильности. 4 ил., 1 табл.

Изобретение относится к устройствам для очистки сточных вод и может найти применение на автозаправочных станциях. Установка включает фильтры-отстойники, резервуары для сбора сточной, чистой воды, нефтепродуктов и шлама, трубопровод, эжектор, воздухопровод, смотровое устройство для отделения нефтепродуктов от воды, электронасосные установки для откачки взвешенных веществ, нефтепродуктов и загрязненной сточной воды. При этом технологический трубопровод оборудован электронасосной установкой с эжектором и воздухопроводом для подачи воздуха. На резервуаре для сбора сточной воды предусмотрен клапан сброса воздуха, а заборная труба выполнена с двумя горизонтальными отводами. Технический результат – повышение эффективности очистки сточных вод от нефтепродуктов. 3 з.п. ф-лы, 3 ил.

Изобретения могут быть использованы в химической технологии для переработки солесодержащих сточных вод производства 2-этилгексанола и 2-этилгексановой кислоты. Способ включает обработку исходной смеси серной кислотой и отделение жирных кислот. На первой стадии осуществляют перемешивание сточных вод (6) с серной кислотой (3), подачу смеси в разделитель (9), из которого нижний водный слой подают в накопительную емкость для раствора сульфата натрия (10), а верхний органический слой подают в емкость для сбора смеси органических кислот (11), возвращаемых в цикл производства. На второй стадии водный раствор сульфата натрия из накопительной емкости (10) подают со скоростью, обеспечивающей испарение азеотропной смеси в количестве 12-15% от массы подаваемой воды, при температуре 98-100°C в испаритель (12). Паровую фазу из испарителя (12) через теплообменник (13) подают в емкость (14) для разделения слоев. Нижний слой подают в емкость (15) для раствора сульфата натрия с минимальным содержанием органических примесей, а верхний слой с содержанием не более 20-30% смеси легких спиртов возвращают в цикл производства 2-этилгексанола. Не испарившийся в испарителе (12) водный раствор подают в емкость (15) для направления в очистные сооружения. Технологический участок для осуществления способа объединяет две группы узлов оборудования, обеспечивающих двухступенчатую переработку солесодержащих сточных вод. Изобретения обеспечивают получение не менее 15% товарного продукта от объема переработанных солесодержащих сточных вод, исключение операции сжигания при утилизации солесодержащих сточных вод, получение очищенных вод с pH 6 и незначительным содержанием ХПК. 2 н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области глубокой очистки воды для бытовых целей. Способ получения глубоко очищенной питьевой воды включает смешение исходной воды централизованного водоснабжения с этой же водой, очищенной системой обратного осмоса. Исходная водопроводная вода проходит общую предварительную начальную очистку на префильтрах, после чего поток воды делят на линию глубокой очистки бытовой системой обратного осмоса и линию бытовой ультрафильтрационной мембранной очистки с последующим их смешением в точке перед постфильтром, при этом смешение происходит только при наличии протока воды без использования емкостей для смешивания и соотношение при смешении воды, очищенной на ультрафильтрационной мембране, и воды, очищенной системой обратного осмоса, составляет 1:2. Смешение воды, очищенной на ультрафильтрационной мембране, и воды, очищенной системой обратного осмоса, задается с помощью установки ограничителя потока воды, очищенной способом ультрафильтрации. Технический результат - получение глубоко очищенной питьевой воды с сохранением в ней минеральных элементов, таких как ионы Ca и Mg, выраженных через общую жесткость воды в пределах 1,5-2,0 мг-эквлитр, а также с уровнем водородного показателя pH больше 6,5, что соответствует нормативам качества расфасованных питьевых вод высшей категории. 1 з.п. ф-лы, 1 ил.

Наверх