Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений

Изобретение относится к измерительной технике, а именно к устройствам для регистрации направленного рентгеновского или гамма-излучения. Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений содержит слой сцинтиллятора, непрозрачный вдоль направления распространения излучения и прозрачный в перпендикулярном направлении, при этом слой сцинтиллятора состоит из параллельных друг другу и оптически разделенных сборок пластин сцинтилляторов, непрозрачных вдоль направления распространения излучения и прозрачных в направлении, перпендикулярном поверхности сцинтиллятора, расположенных вплотную друг к другу в порядке возрастания среднего атомного номера сцинтилляторов в направлении распространения излучения, длина пластин сцинтилляторов l выбирается из условия:

где µ(Еф-к) - коэффициент линейного ослабления излучения с энергией Еф-к, при которой сравниваются сечение фотопоглощения и сечение комптоновского рассеяния в материале пластины сцинтиллятора, поверхность сцинтиллятора находится в оптическом контакте с двухкоординатным позиционно чувствительным фотоприемным устройством. Технический результат - восстановление спектра рентгеновского и гамма-излучений при наличии в спектре падающего на него излучения рентгеновских или гамма-квантов с энергией вблизи К-края фотоэлектрического поглощения материала сцинтиллятора. 2 ил., 2 табл.

 

Изобретение относится к измерительной технике, а именно к устройствам для регистрации направленного рентгеновского или гамма-излучения и может применяться в рентгеновских досмотровых системах, медицинских томографах, а также в устройствах для анализа спектрального состава рентгеновского и гамма-излучения.

Детекторы, используемые для регистрации спектрального распределения рентгеновского или гамма-излучения (далее «излучения»), могут быть условно разделены на две группы. Действие детекторов, относящихся к первой группе, основано на фильтрации излучения с помощью набора металлических фольг или отдельных элементов детектора, расположенных ближе к источнику (R.G. Waggener, М.М. Blough, J.A. Terry, et al., «Х-ray spectra estimation using attenuation measurements from 25 kVp to 18 MV», Med. Phys. 26 (1999) 1269; C. Avila, J. Lopez, J.C. Sanabria, G. Baldazzi, et al., «Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors», Med. Phys. 32 (2005) 3755).

Детекторы второй группы регистрируют амплитудное распределение сигнала (Т. Yasuhiro, S. Yuji, М. Shinjiro, et cet., «Energy discrimination type photon counting radiation line sensor (X-ray color scanner)», Ionizing Radiation, Vol. 32, No. 1 (2006) 39-47; K. Ogawa, T. Kobayashi, F. Kaibuki, et al., «Development of an energy-binned photon-counting detector for X-ray and gamma-ray imaging», NIM A 664 (2012) 29-37).

В обоих случаях восстановление спектра пришедшего на детектор излучения осуществляется в энергетических окнах (зонах) путем соответствующей математической процедуры с учетом калибровочных данных, полученных расчетным и/или экспериментальным путем.

В медицинских томографах и рентгеновских досмотровых системах для получения радиографических изображений в основном применяются однокоординатные устройства регистрации, состоящие из набора одинаковых сцинтилляционных детекторов, расположенных вдоль одной прямой или окружности и снабженных однокоординатными фотоприемными устройствами, как правило, в виде фотодиодных линеек. В этих устройствах восстановление спектра излучения обычно осуществляется в двух энергетических окнах. Для этого устройство регистрации обычно содержит два набора сцинтилляционных детекторов различной толщины из одного и того же сцинтиллятора, например CsI, располагаемых вдоль направления потока излучения друг за другом и разделенных фильтром из медной фольги.

Изобретение относится к области рентгеновской и гамма-радиографии, а именно регистрации рентгеновского и гамма-излучения с помощью однокоординатных детекторов с возможностью восстановления спектра излучения в нескольких энергетических окнах.

Известен «Рентгеновский анализатор», выполненный из плоских элементов, содержащих слои сцинтиллятора, расположенные вдоль направления распространения излучения, непрозрачные в этом направлении и прозрачные в перпендикулярном направлении, и подложки в виде сотовой структуры, отличающийся тем, что слои сцинтиллятора выполнены в виде расположенных друг за другом пластин сцинтилляторов из полистирола протяженностью не менее 3 мм, CaF2 протяженностью не менее 2 мм, ZnO протяженностью не менее 2 мм, CsI протяженностью не менее 8 мм, BGO протяженностью не менее 15 мм. Патент РФ №2504756, МПК: G01N 23/223, 2014 г. Аналог.

Недостатком аналога является отсутствие линейного координатного разрешения устройства, необходимого для рентгеновских досмотровых систем.

Известен «Рентгеновский анализатор», выполненный из плоских элементов, содержащих слой сцинтиллятора, нанесенный на подложку или введенный в ее состав, и волоконно-оптические элементы, на концах которых установлены фотоприемники, отличающийся тем, что слой сцинтиллятора расположен вдоль направления распространения излучения, непрозрачен в этом направлении и прозрачен в перпендикулярном направлении, а подложка выполнена в виде сотовой структуры. Патент Российской Федерации №2388015, МПК: G01T 1/00, 2009. Прототип.

Недостатком прототипа является невозможность восстановления спектра рентгеновского и гамма-излучений при наличии в спектре падающего на него излучения рентгеновских или гамма-квантов с энергией вблизи К-края фотоэлектрического поглощения материала сцинтиллятора.

Техническим результатом изобретения является возможность восстановления спектра рентгеновского и гамма-излучений при наличии в спектре падающего на него излучения рентгеновских или гамма-квантов с энергией вблизи К-края фотоэлектрического поглощения материала сцинтиллятора.

Технический результат достигается тем, что в спектрозональном однокоординатном детекторе рентгеновского и гамма-излучений, содержащем слой сцинтиллятора, непрозрачный вдоль направления распространения излучения и прозрачный в перпендикулярном направлении, слой сцинтиллятора состоит из параллельных друг другу и оптически разделенных сборок пластин сцинтилляторов, непрозрачных вдоль направления распространения излучения и прозрачных в направлении, перпендикулярном поверхности сцинтиллятора, расположенных вплотную друг к другу в порядке возрастания среднего атомного номера сцинтилляторов в направлении распространения излучения, длина пластин сцинтилляторов l выбирается из условия:

где µ(Еф-к) - коэффициент линейного ослабления излучения с энергией Еф-к, при которой сравниваются сечение фотопоглощения и сечение комптоновского рассеяния в материале пластины сцинтиллятора, поверхность сцинтиллятора находится в оптическом контакте с двухкоординатным позиционно чувствительным фотоприемным устройством.

Сущность изобретения поясняется на Фиг. 1, 2 и Таблицах 1, 2.

На Фиг. 1 схематически представлено устройство спектрозонального однокоординатного детектора рентгеновского и гамма-излучений, состоящего, где:

1 - сборки пластин сцинтилляторов, расположенные вплотную друг к другу;

2 - пластины сцинтилляторов, изготовленные из различных сцинтиллирующих веществ, например, перечисленных в Таблице 1, и входящие в состав сборок;

3 - светонепроницаемые перегородки, оптически разделяющие сборки;

4 - двухкоординатное позиционно-чувствительное фотоприемное устройство;

5 - направление потока рентгеновского или гамма-излучения;

6 - светонепроницаемые перегородки, которые могут устанавливаться внутри пластин сцинтилляторов 2 при использовании оптически прозрачных сцинтилляторов.

На Фиг. 2 в качестве примера показано пространственное распределение энерговыделения в пластинах 2 вдоль направления 5, рассчитанное для моноэнергетических квантов излучения с энергией Ех:

7 - 22,5 кэВ;

8 - 36 кэВ;

9 - 55 кэВ;

10 - 90 кэВ;

11 - 135 кэВ;

12 - 225 кэВ;

13 - 360 кэВ.

В таблице 1 для сцинтилляторов из полистирола, CaF2, ZnO, CsI и BGO приведены значения энергий, характеризующих материал сцинтиллятора:

ЕК-край - энергия K-края фотопоглощения;

Еф-к - энергия, при которой сравниваются сечение фотоэффекта и комптоновского рассеяния;

Ее-е - энергия, при которой заметный вклад в сцинтилляционный сигнал начинает вносить рождение электрон-позитронных пар.

В таблице 2 для сцинтилляторов из полистирола, CaF2, ZnO, CsI и BGO приведены значения длины ослабления 1/µ(Е) излучения при энергиях: ЕiK-край, Ei+1K-край, Ei-1ф-к и Еiф-к (i - номер по порядку сцинтиллятора в таблицах 1 и 2).

Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений содержит слой сцинтиллятора, состоящий из набора параллельных друг другу и оптически разделенных с помощью светонепроницаемых перегородок 3 сборок 1, содержащих пластины 2, изготовленные из сцинтиллирующих материалов, отличающихся атомным номером, и расположенных вдоль направления 5 в порядке возрастания среднего атомного номера материала пластин 2.

На поверхности слоя сцинтиллятора с оптическим контактом расположено двухкоординатное позиционно чувствительное фотоприемное устройство 4. Для предотвращения распространения света в слое сцинтиллятора вдоль направления 5 при использовании в пластинах 2 оптически прозрачных сцинтиллирующих веществ в таких пластинах устанавливают светонепроницаемые перегородки (светоотражающие или светопоглощающие) 6, которые не требуются при использовании в пластине 2 порошкового сцинтиллятора.

Однокоординатная чувствительность устройства обеспечивается применением двухкоординатного позиционно чувствительного фотоприемного устройства 4 и применением светонепроницаемых перегородок 3, обеспечивающих пространственное разрешение в плоскости слоя сцинтиллятора в направлении, перпендикулярном направлению 5.

Пространственное разрешение вдоль направления 5 обеспечивает измерение пространственного распределения сигнала в пластинах 2, используемое для восстановления спектра излучения.

Для корректного измерения пространственного распределения энерговыделения в пластинах 2 на устройство 4 должны, в основном, попадать только те сцинтилляционные фотоны, которые распространяются перпендикулярно поверхности слоя сцинтиллятора. Это может обеспечиваться различными способами с использованием:

- порошкового сцинтиллятора (Во Kyung Cha, Jong Yul Kim, Gyuseong Cho b, Chang-Woo Seo, Sungchae Jeon, Young Huh, Quasi-pixel structured nanocrystalline Gd2O3(Eu) scintillation screens and imaging performance for indirect X-ray imaging sensors, Nuclear Instruments and Methods in Physics Research A 648 (2011) S12-S15);

- сцинтиллятора, состоящего из набора пластин сцинтилляторов, разделенных светонепроницаемыми перегородками 6;

- матричного сцинтиллятора, например волоконного;

- оптического коллиматора, устанавливаемого между слоем сцинтиллятора и фотоприемником.

В качестве двухкоординатного позиционно чувствительного фотоприемного устройства 4 могут использоваться:

- ПЗС-матрицы (Sol М. Gruner, Mark W. Tate, Eric F. Eikenberry, Charge-coupled device area x-ray detectors, Review of Scientific Instruments, Vol. 73, #8 (2002) 2815-2842);

- двухкоординатные ФЭУ;

- позиционно чувствительные детекторы на основе панелей изображения из аморфного кремния (Дэвид Л. Джилблом. Устройство и способ получения рентгеновского изображения с применением плоской панели изображения из аморфного кремния. Патент РФ №2181491. МПК: G01N, G01T, H05G. 2000).

Фиг. 2 показывает пространственную зависимость энерговыделения в пластинах 2, изготовленных из следующих сцинтилляторов: полистирола длиной 3 мм, CaF2 (2 мм), ZnO (2 мм), CsI (8 мм), BGO (15 мм), расположенных вдоль направления потока излучения 5 в указанном порядке (по возрастанию среднего атомного номера).

Для однозначного восстановления спектра излучения необходимо, чтобы на каждую последующую пластину 2 проходило излучение, для которого зависимость коэффициента линейного ослабления µ(E) от энергии была бы однозначно определена, т.е. не содержала экстремумов. Важно также, чтобы зависимость коэффициента линейного ослабления µ(E) в пластинах 2 в области энергий, падающего на них излучения, характеризовалась максимально возможной производной. Для выполнения этих условий необходимо, чтобы на каждую из последующих пластин 2 падал спектр излучения преимущественно в области энергий фотоэффекта, не содержащий энергий, во-первых, слева от K-края фотопоглощения и, во-вторых, в области рождения электрон-позитронных пар.

Скачки в зависимости µ(E) в области фотопоглощения имеют место при значениях энергии, определяемых энергией связи электронов атомов, входящих в состав сцинтиллятора. Необходимо, чтобы левая граница спектра падающего на сцинтиллятор излучения Emin лежала выше энергии K-края полосы поглощения ЕК-edge (Emin>EK-edge) атома с самым большим атомным номером из атомов, входящих в состав сцинтиллятора, за исключением атомов активатора, концентрация которых обычно достаточно мала.

Правая граница спектра падающего на сцинтиллятор излучения Emax должна быть ограничена сверху энергией Ее-е, при которой заметный вклад в сцинтилляционный сигнал начинает вносить рождение электрон-позитронных пар. Величина Ее-е (таблица 1) составляет несколько МэВ в случае сцинтилляторов, содержащих атомы с большим зарядом электронной оболочки (большим атомным номером) и >10МэВ в случае малого заряда.

В определенном таким образом интервале энергий (Emin, Emax) основными видами взаимодействия рентгеновского излучения с веществом является фотопоглощение и комптоновское рассеяние, причем сечение фотопоглощения характеризуется более выраженной зависимостью от энергии, чем сечение комптоновского рассеяния. Поэтому в области энергий, при которых ослабление излучения происходит преимущественного за счет фотопоглощения, спектр может восстанавливаться более точно, чем при комптоновском рассеянии. В качестве правой границы этой области можно условно принять энергию Еф-к, при которой сечение фотопоглощения сравнивается с сечением комптоновского рассеяния. Для эффективного поглощения квантов с энергией Еф-к, характерной для материала сцинтиллятора, используемого в пластине 2, необходимо выполнение условия:

где µ(Еф-к) - коэффициент линейного ослабления излучения с энергией Еф-к, при которой сравниваются сечение фотопоглощения и сечение комптоновского рассеяния в материале сцинтиллятора.

В переходной области (Еф-к, Ее-е) µ(E) меняется сравнительно слабо и поэтому при разбиении спектра на энергетические группы может оказаться целесообразным представлять эту область энергий одной группой.

В таблице 1 приведены определенные выше значения ЕК-край, Еф-к, а также Ее-е для полистирола, CaF2, ZnO, CsI и BGO. Из таблицы 1 видно, что значения ЕК-край для полистирола, CaF2 и ZnO находятся в области практически мало используемых энергий (Е<10 кэВ). Для CsI и BGO ЕК-край составляет соответственно 37 кэВ и 91 кэВ и попадает в область энергий, используемых в досмотровых и медицинских устройствах.

Из приведенных в таблице 1 значений ЕК-край и Ее-е следует, что диапазон рабочих энергий устройства при применении перечисленных в ней сцинтилляторов лежит в области энергий от 0,3 кэВ до 3 МэВ. Видно также, что значение Еiф-к для i-го сцинтиллятора существенно больше значения Ei+1K-край для (i+1)-го сцинтиллятора (i - номер по порядку сцинтиллятора в таблице 1).

Коэффициент линейного ослабления излучения в сцинтилляторе возрастает при уменьшении энергии излучения, поэтому для излучения падающего на i-й сцинтиллятор выполнение соотношения (1) при энергии Ехiф-к для i-го сцинтиллятора означает безусловное его выполнение и при энергии равной Ех=Ei+1K-край, характерной для материала (i+1)-го сцинтиллятора.

В таблице 2 приведены длины ослабления (1/µ(E)) излучения в сцинтилляторах, перечисленных в таблице 1, при энергиях ЕК-край и Еф-к.

Из таблицы 2 видно, что длина ослабления в i-ом сцинтилляторе для квантов с энергией Ei+1K-край составляет соответственно 440 мкм в случае полистирола, 100 мкм для CaF2, 260 мкм для ZnO, и 1 мм для CsI. Это, например, означает, что для уменьшения числа квантов с энергией Ех=91 кэВ (ЕК-край для BGO), падающих на пластину сцинтиллятора из BGO, на 3 порядка достаточно пластины CsI протяженностью менее 1 см.

Восстановление спектра излучения производится путем решения переопределенной системы линейных уравнений.

где:

С - восстанавливаемый спектр, вектор столбец с элементами сi, равными числу фотонов в i-той энергетической группе восстанавливаемого спектра,

А - калибровочная матрица с элементами aij, равными среднему сигналу вызываемому фотоном i-ой группы в j-ом элементе (пикселе) позиционно чувствительного фотоприемного устройства, которое определяется калибровочными измерениями и (или) расчетом,

В - сигнал в j-том элементе (вектор-строка).

Для оценки точности восстановления спектра излучения, падающего на устройство, была выбрана конструкция с поперечным сечением сборок 1, равным 0,8×0,8 мм, составленных из расположенных друг за другом пластин сцинтилляторов 2 из полистирола, CaF2, ZnO, CsI и BGO протяженностью соответственно 3 мм, 2 мм, 2 мм, 8 мм и 15 мм.

В расчетах предполагалось, что поток излучения распространяется вдоль направления 5, а пространственное разрешение двухкоординатного позиционно чувствительного фотоприемного устройства 4 и пластин 2 вдоль этого направления составляет 100 мкм. Оценки проводились в случае, когда на устройство падает излучение в диапазоне (10÷250) кэВ равномерного спектра. Восстановление проводилось в 5-ти энергетических группах. Максимальное стандартное отклонение для числа квантов в энергетических окнах реконструируемого спектра составило <4% при 1% статистической точности сигнала, просуммированого по всем элементам устройства 4.

Помимо перечисленных в таблице 1 сцинтилляторов могут использоваться и другие (Н.В. Классен, В.Н. Курлов, С.Н. Россоленко, О.А. Кривко, А.Д. Орлов, С.З. Шмурак. Сцинтилляционные волокна и наносцинтилляторы для улучшения пространственного, спектрометрического и временного разрешения радиационных детекторов. Известия РАН. Серия Физическая, 2009, том 73, №10, с. 1451-1456; Патент РФ №2411543, МПК:G01T 1/20, 2008).

Устройство работает следующим образом.

Включается питание устройства 4. Рентгеновское или гамма-излучение поступает на торцевую поверхность слоя сцинтиллятора вдоль направления 5. При взаимодействии рентгеновских или гамма-квантов с веществом одной из пластин 2 в ней образуются электроны, которые возбуждают в пластине 2 сцинтилляционную вспышку. Фотоны от сцинтилляционной вспышки частично попадают на один или несколько фоточувствительных элементов устройства 4, частично выходят в противоположную от него сторону и поглощаются (или отражаются) при распространении в других направлениях в перегородках 3 и 6 (при их наличии). Количество фотонов в сцинтилляционной вспышке и величина электрического сигнала, вызванная фотонами в фоточувствительных элементах устройства 4, пропорциональны энергии, выделенной электроном в пластине 2.

Сигнал, возникший в фоточувствительных элементах устройства 4, расположенных перпендикулярно направлению распространения излучения 5 (вдоль направления Y на Фиг. 1), формирует однокоординатное изображение потока падающего на устройство излучения. Этот сигнал при необходимости интегрируется по ширине сборок 1 (вдоль направления Y на Фиг. 1) и вдоль направления распространения излучения 5.

Сигнал, возникший в фоточувствительных элементах устройства 4, расположенных вдоль направления распространения излучения 5 (вдоль направления X на Фиг. 1), при необходимости интегрируется по ширине сборок 1 (вдоль направления Y на Фиг. 1). Пространственное распределение этого сигнала вдоль направления X (Фиг. 1) используется в выражении (1)) для восстановления спектра излучения, который приписывается значениям Y, соответствующим положению осевых линий сборок 1.

Корректное восстановление спектра падающего на сборку 1 излучения с помощью выражения (1) при наличии в спектре рентгеновских или гамма-квантов с энергией вблизи К-края фотоэлектрического поглощения для сцинтилляторов в одной или нескольких пластинах 2, входящих в сборку, обеспечивается тем, что такие кванты эффективно поглощаются в предыдущих пластинах 2, изготовленных из сцинтилляторов с меньшим средним атомным номером и поэтому характеризующихся меньшей энергией К-края фотоэлектрического поглощения, выходящей за пределы регистрируемого спектра излучения. При этом применение двухкоординатного позиционно чувствительного фотоприемного устройства обеспечивает определение спектра излучения в каждой точке однокоординатного рентгеновского или гамма-изображения.

Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений, содержащий слой сцинтиллятора, непрозрачный вдоль направления распространения излучения и прозрачный в перпендикулярном направлении, отличающийся тем, что слой сцинтиллятора состоит из параллельных друг другу и оптически разделенных сборок пластин сцинтилляторов, непрозрачных вдоль направления распространения излучения и прозрачных в направлении, перпендикулярном поверхности сцинтиллятора, расположенных вплотную друг к другу в порядке возрастания среднего атомного номера сцинтилляторов в направлении распространения излучения, длина пластин сцинтилляторов l выбирается из условия:
μ(Eф-к)l>1,
где μ(Eф-к) - коэффициент линейного ослабления излучения с энергией Eф-к, при которой сравниваются сечение фотопоглощения и сечение комптоновского рассеяния в материале пластины сцинтиллятора, поверхность сцинтиллятора находится в оптическом контакте с двухкоординатным позиционно чувствительным фотоприемным устройством.



 

Похожие патенты:

Использование: для определения источников сырья для керамических артефактов. Сущность изобретения заключается в том, что способ определения источников сырья для археологических керамических артефактов включает рентгеновское облучение исследуемого материала, получение графиков термостимулированной люминесценции облученного материала.

Использование: для определения минерального состава глиноподобных образований. Сущность изобретения заключается в том, что отбирают пробы минералов, возбуждают в них рентгенолюминесценцию в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-400 нм и определяют минерал галлуазит по рентгенолюминесценции в спектральном диапазоне 290-400 нм с максимальным излучением при λ=290-315 нм; определяют минерал нонтронит по максимальному высвечиванию в полосе 330-340 нм; определяют минерал ломонтит по широкой полосе рентгенолюминесценции в спектральном диапазоне 280-400 нм с максимальным излучением при λ=342 нм; определяют минерал палыгорскит по максимальному высвечиванию в полосе с максимумом при λ=345 нм; определяют минерал осоризаваит по наличию двух широких низкоинтенсивных полос рентгенолюминесценции в спектральных диапазонах 270-310 и 310-360 нм с максимальным излучением при λ=289 нм и λ=340 нм; определяют минерал алунит по очень слабой рентгенолюминесценции в спектральном диапазоне 200-400 нм с максимальным излучением в полосе при λ=350 нм.

Изобретение относится к способам определения тяжелых сернистых соединений и молекулярной серы в углеводородной жидкости, в частности в сжиженных углеводородных газах (СУГ), в том числе в широкой фракции летучих углеводородов (ШФЛУ), и может быть использовано в нефтяной и газовой промышленности и обеспечивает расширение диапазона использования способа определения серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии.

Использование: для рентгенофлуоресцентного анализа исследуемого материала. Сущность изобретения заключается в том, что устройство для рентгенофлуоресцентного анализа исследуемого материала содержит источник первичного рентгеновского излучения, формирователь потока возбуждения, прободержатель с образцом исследуемого материала, размещенным внутри формирователя потока возбуждения параллельно направлению распространения этого потока, и детектор рентгенофлуоресцентного излучения, расположенный напротив прободержателя с образцом, формирователь потока возбуждения представляет собой плоский рентгеновский волновод-резонатор с зазором между рефлекторами наноразмерной величины, при этом формирователь имеет отверстие для введения в поток образца исследуемого материала так, чтобы его исследуемая поверхность лежала в плоскости рефлектора, расположенного напротив детектора рентгенофлуоресцентного излучения, и расположенный на выходе волновода-резонатора детектор регистрации излучения, выполненный с возможностью юстировки устройства относительно источника первичного излучения, при этом прободержатель выполнен с возможностью перемещения независимо от волновода-резонатора в направлении, перпендикулярном направлению распространения потока возбуждающего излучения, при этом детектор регистрации излучения выполнен с возможностью регистрации излучения, прошедшего через волновод-резонатор, и контроля ввода образца в поток возбуждающего излучения.

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на различных этапах поисковых и геолого-разведочных работ для выявления рубиновой минерализации.

Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и определяют каолинит по наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, определяют диккит по максимальному излучению при λ=350-370 нм, определяют монтмориллонит по наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, определяют пекораит по наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, определяют накрит по наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=340-350 нм.

Использование: для автоматизированных подводных исследований состава водной среды и донных осадков. Сущность изобретения заключается в том, что рентгенофлуоресцентный анализатор содержит размещенные в изолированном корпусе источник первичного рентгеновского излучения, коллиматор, выполненный с обеспечением формирования коллимированного пучка первичного рентгеновского излучения в виде ленточного плоского пучка, и детектор флуоресцентного излучения пробы жидкости, которые установлены с обеспечением положения их оптических осей в одной плоскости, в качестве устройства забора пробы выбран плунжер, который одним концом выведен в канал ввода/вывода жидкости с обеспечением герметичности наружного прочного корпуса, при этом на поверхности плунжера выполнен плоский участок с насечками в виде канавок с плоскими стенками, которые параллельны между собой, а плунжер установлен с обеспечением ориентации насечек параллельно плоскости расположения оптических осей источника рентгеновского излучения, коллиматора и детектора флуоресцентного излучения, причем взаимное расположение коллиматора и плунжера выполнено с обеспечением угла полного внешнего отражения коллимированного пучка первичного рентгеновского излучения от плоского участка плунжера с насечками, а размеры плоского участка плунжера с насечками соизмеримы с размерами сечения коллимированного пучка первичного рентгеновского излучения.

Настоящее изобретение относится к области химии почв, а именно к методам определения редкоземельных элементов Pr, Nd и Sm в почвах, и описывает рентгенорадиометрический энергодисперсионный способ определения содержаний Pr, Nd и Sm в почвах, включающий определение элементов Ba, La, Ce с радиоизотопным источником 241Am с помощью следующих стадий: накапливание исходного спектра анализируемого образца в интервале энергий 31-41 кэВ; построение модельного спектра мешающих своим наложением Kβ-линий Ba, La и Ce с последующим определением истинных интенсивностей спектральных Kα-линий Pr, Nd, Sm, вычисление концентрации искомых элементов по обобщенному градуировочному графику зависимости концентраций лантанидов La, Ce, Pr, Nd, Sm от интенсивностей линий.

Использование: для рентгеноспектрального анализа негомогенных материалов. Сущность изобретения заключается в том, что определяют интенсивность IA аналитической линии определяемого элемента А в анализируемом материале, рассчитывают интенсивности IA2I в образцах-смесях из анализируемого материала и образца сравнения с заданным содержанием CBji определяемого элемента А и сравнивают количественно интенсивности IA и IA2I, обеспечивая оценку содержания СA определяемого элемента в анализируемом материале, при этом оценку содержания определяемого элемента в анализируемом материале производят в порядке определения изначально интенсивности IA0 и содержания СA0 определяемого элемента в образце сравнения, а также значимых коэффициентов влияния «мешающих» элементов, содержащихся в анализируемом материале, на интенсивность определяемого элемента в материале, определения экспериментально интенсивностей аналитических линий «мешающих» элементов, содержащихся в анализируемом материале и образце сравнения, преобразования интенсивностей IA и IA0 определяемого элемента А в анализируемом материале и образце сравнения соответственно путем учета интенсивностей и значимых коэффициентов влияния «мешающих» элементов и количественного сравнения преобразованных интенсивностей IAj и IA2I в анализируемом материале и расчетных образцах-смесях соответственно.
Использование: для изготовления эталонов для рентгенофлуоресцентного анализа состава тонких пленок малокомпонентных твердых растворов и сплавов. Сущность изобретения заключается в том, что на подложку наносят однокомпонентные слои компонентов сплава или твердого раствора толщиной, обеспечивающей соотношение количества атомов компонентов, соответствующее их соотношению в эталонируемом сплаве или твердом растворе.

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему длине волны Iэ (имп/с), строят на основании полученных данных градуировочную характеристику, представляющую собой зависимость относительной интенсивности аналитической линии элемента Iотн от массовой доли определяемого элемента в эталонных образцах С (%), измеряют интенсивность аналитической линии элемента на соответствующей ему длине волны Iэ (имп/с), измеряют интенсивности фона в точках спектра, соответствующих началу и концу диапазона измерения элемента, вычисляют среднеарифметическое значение интенсивности фона в точках спектра соответствующих началу и концу диапазона измерения элемента Iфэ (имп/с), рассчитывают относительную интенсивность аналитической линии каждого элемента Iотн, находят по градуировочной характеристике массовую долю элемента в золе. Технический результат: обеспечение возможности определения содержания тяжелых металлов в техническом углероде с высокой точностью. 1 ил., 1 табл.

Использование: для рентгенофлуоресцентного определения примесей. Сущность изобретения заключается в том, что рентгенофлуоресцентное определение содержаний примесей конструкционных материалов включает измерение интенсивностей аналитических линий контролируемых примесей в группе образцов этого материала, дополнительно измеряют интенсивности аналитических линий примесей в стандартных образцах референтного материала, содержащего те же примеси, по результатам этих измерений строят градуировочные графики зависимости интенсивности аналитических линий элементов от содержания, при этом дополнительно проводят измерение обзорного спектра исследуемого конструкционного материала и определяют основной элемент исследуемого конструкционного материала наполнителя, дополнительно измеряют интенсивности аналитических линий элементов контролируемых примесей в образцах, состоящих из этого элемента, абсорбционные факторы и наклоны градуировочных графиков рассчитывают для образцов, состоящих из среднего значения содержания элемента в референтных градуировочных образцах и наполнителя исследуемого конструкционного материала, после чего получают истинные содержания примесей в исследуемом конструкционном материале умножением условных содержаний на отношение наклонов градуировочных графиков в референтном и исследуемом материалах по соответствующим математическим формулам. Технический результат: обеспечение возможности высокоточного рентгенофлуоресцентного определения примесей в разнообразных материалах. 1 ил., 1 табл.

Использование: для энергодисперсионного рентгенофлуоресцентного анализа. Сущность изобретения заключается в том, что устройство для энергодисперсионного рентгенофлуоресцентного анализа на основе вторичных излучателей включает рентгеновскую трубку, вторичные излучатели, устройство подачи контролируемого материала, кювету или транспортер с образцом, устройство для регистрации рентгеновского излучения и индикатор, самописец и/или исполнительный механизм, при этом в состав устройства дополнительно введены коллиматор излучения рентгеновской трубки, четное число n чередующихся вторичных излучателей, электромотор, коллиматор излучения вторичных излучателей, коллиматор флуоресцентного излучения образца, в качестве устройства для регистрации рентгеновского излучения использован сцинтилляционный детектор, балластное сопротивление, разделительный конденсатор и узкополосный усилитель, настроенный на частоту смены излучателей. Технический результат: обеспечение высокого энергетического разрешения при замене полупроводниковых детекторов (ППД) с допустимой скоростью счета, не превышающей 5×104-1×105 имп/с. 2 ил.

Использование: для рентгенофлуоресцентного определения содержания компонентов в материалах сложного химического состава. Сущность: заключается в том, что формируют единую группу градуировочных образцов, охватывающих весь диапазон содержаний определяемых и мешающих элементов для анализируемых проб, измеряют интенсивности аналитических линий только определяемых i (Ii) элементов от анализируемых проб и градуировочных образцов, устанавливают градуировочную функцию в форме уравнения регрессии, затем, с целью компенсации неучтенного влияния неопределяемых компонентов наполнителя на Ii, зарегистрированные от пробы интенсивности сопоставляют с характеристиками одного градуировочного образца-соседа и находят содержание элемента i (Ci) по определенному выражению, выбирая состав образца-соседа наиболее близким к составу пробы. Технический результат: повышение экспрессности анализа и снятие ограничения по порядковому номеру определяемого элемента. 1 табл., 4 ил.

Использование: для анализа пульп и растворов в потоке. Сущность изобретения заключается в том, что автоматический рентгеновский анализатор пульп и растворов в потоке включает стойку с измерительными кюветами, спектрометрический блок с источником первичного рентгеновского излучения, детектором и анализатором вторичного рентгеновского излучения, механизм перемещения спектрометрического блока и систему автоматического управления, при этом спектрометрический блок выполнен герметичным, оснащен узлом термоэлектрической стабилизации температуры всех электронных компонентов спектрометрического блока, при этом в качестве детектора вторичного рентгеновского излучения используют полупроводниковый детектор с термоэлектрическим охлаждением, в качестве анализатора вторичного рентгеновского излучения используют многоканальный амплитудный анализатор импульсов, а в качестве источника первичного рентгеновского излучения используют малогабаритную рентгеновскую трубку рабочей мощностью до 10 Вт. Технический результат: расширение диапазона и количества одновременно определяемых элементов, повышение точности и достоверности анализа, повышение радиационной безопасности эксплуатации, уменьшение массогабаритных характеристик, уменьшение энергопотребления. 5 з.п. ф-лы, 7 ил.

Изобретение относится к экспрессному контролю объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией. Способ включает отбор проб исследуемого материала и определение рентгенофлуоресцентным методом количественного содержания химического элемента в отобранных пробах, причем перед струйной цементацией выбирают химический элемент для закачки его в грунт совместно с цементным раствором при струйной цементации, приготавливают цементный раствор замешиванием цемента в воде и при приготовлении цементного раствора вводят выбранный химический элемент в цементный раствор, отбирают пробу цементного раствора, закачивают цементный раствор под давлением в грунт для образования в грунте строительной конструкции и выделения из грунта грунтоцементной пульпы, при проведении струйной цементации отбирают пробу грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, вычисляют объемную концентрацию цементного раствора в грунтоцементной пульпе. Достигается возможность экспресс-определения объемной концентрации цементного раствора в грунтоцементной пульпе с достаточной точностью для контроля, своевременной корректировки процесса цементации и повышения качества подземных конструкций. 8 з.п. ф-лы, 3 пр.

Использование: для рентгеноспектрального анализа тяжелых элементов. Сущность изобретения заключается в том, что рентгеновский анализатор содержит источник рентгеновского или гамма-излучения, держатель образца, устройство детектирования с множеством детекторов, регистрирующую аппаратуру, входы которой подключены к выходам детекторов, коллиматор первичного пучка, коллиматор и фильтр вторичного пучка, при этом держатель образца выполнен с возможностью установки образца с плоской или вогнутой по сфере рабочей поверхностью на сфере, источник или его фокус расположен на упомянутой сфере, коллиматор вторичного пучка содержит поперечные пучку перегородки с отверстиями, его выходное отверстие расположено в противоположной источнику точке, а детекторы компактно расположены во вторичном пучке. Технический результат: упрощение коллиматора вторичного пучка, обеспечение однородности образца и снижение порога обнаружения редкоземельных и более тяжелых элементов. 1 з.п. ф-лы, 2 ил.

Использование: для рентгеноспектрального анализа веществ. Сущность изобретения заключается в том, что рентгеновский спектрометр содержит рентгеновскую трубку, фильтры первичного и вторичного пучков, держатель образца, пластинчатые коллиматоры, кристаллы-анализаторы, устройство детектирования с детекторами, регистрирующую аппаратуру, подключенную к выходам детекторов, причем кристаллы и устройство детектирования выполнены с возможностью сканирования (вращения) вокруг оси, проходящей через центр отражающей поверхности кристалла, и установки кристалла под углом θ, а детекторов под углом 2θ к оси вторичного пучка, при этом использовано устройство детектирования с полупроводниковыми детекторами и соответствующей регистрирующей аппаратурой, введен дополнительный коллиматор с отверстиями в поперечных вторичному пучку перегородках и обеспечена возможность работы спектрометра в режимах с волновой и энергетической дисперсией. Технический результат: снижение порогов обнаружения элементов и повышение производительности. 2 з.п. ф-лы, 4 ил.

Использование: для рентгеноспектрального анализа золота и тяжелых элементов. Сущность изобретения заключается в том, что рентгеновский анализатор золота и тяжелых элементов содержит рентгеновскую трубку с боковым окном в качестве источника излучения, держатель образца, устройство детектирования с расположенными в ряд детекторами, регистрирующую аппаратуру, входы которой подключены к выходам детекторов, коллиматоры и фильтры первичного и вторичного пучков, причем коллиматор вторичного пучка выполнен с множеством отверстий или каналов, при этом держатель образца выполнен с возможностью установки образца с плоской или вогнутой по цилиндру рабочей поверхностью на цилиндре, ось рентгеновской трубки расположена в перпендикулярной цилиндру плоскости, а ее фокус расположен на образующей цилиндра, детекторы или выходные отверстия коллиматора вторичного пучка расположены на образующей, проходящей через диаметрально противоположную источнику точку цилиндра, причем коллиматор вторичного пучка выполнен с разделительными пластинами в аксиальных к пучку электронов плоскостях. Технический результат: обеспечение однородности и прочности образца, увеличение эффективности и контрастности спектров. 4 ил., 1 табл.

Использование: для рентгеноспектрального анализа. Сущность изобретения заключается в том, что многоканальный рентгеновский анализатор содержит источник рентгеновского или гамма-излучения, коллиматор и фильтр первичного пучка, держатель образца и аналитические каналы, включающие коллиматоры и фильтры вторичных пучков, устройство детектирования с расположенными в ряд детекторами и регистрирующую аппаратуру, подключенную к выходам детекторов, при этом использован источник излучения или рентгеновская трубка с выходом пучка с ее торца, источник или его фокус расположен на окружности в плоскости оси источника или пучка электронов (в аксиальной плоскости), держатель образца выполнен с возможностью установки образца с плоской или вогнутой рабочей поверхностью на упомянутой окружности канала, детекторы или выходные отверстия коллиматора вторичного пучка расположены на линии, проходящей через диаметрально противоположную источнику точку окружности перпендикулярно каналу, кроме того, аналитические каналы расположены аксиально вокруг источника излучения и содержат отдельные держатели образца, а в коллиматоре первичного пучка выполнены отверстия, направленные на держатели образцов. Технический результат: обеспечение возможности повышения производительности анализа и эффективности использования источника, а также обеспечение оптимальных условий анализа широкого круга элементов, в том числе наиболее тяжелых элементов от тория и выше. 2 з.п. ф-лы, 4 ил.
Наверх