Шихта порошковой проволоки



Шихта порошковой проволоки
Шихта порошковой проволоки

 


Владельцы патента RU 2579328:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" (RU)

Изобретение может быть использовано при наплавке порошковой проволокой рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Шихта порошковой проволоки содержит компоненты в следующем соотношении, мас.%: углерод 0,01-0,5, марганец 0,6-4,4, кремний 0,4-1,6, хром 0,9-15,0, молибден 0,1-11,9, вольфрамсодержащий концентрат 0,15-4,6, ванадий 0,3-2,5, алюминий 0,15-1,5, никель 0,03-15, пыль электрофильтров алюминиевого производства 1-12, железо остальное. За счет оптимизации химического состава шихта обеспечивает повышение механических свойств наплавленного металла, в частности износостойкости и твердости, снижение содержания водорода и уменьшение загрязненности наплавляемого слоя неметаллическими включениями. 2 табл.

 

Изобретение относится к сварочному производству, в частности к производству порошковой проволоки, и может быть использовано при наплавке рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости.

Известна шихта порошковой проволоки [1], содержащая углерод, хром, вольфрам, ванадий, кремнефтористый натрий, серу, кобальт, молибден и алюминий при соотношении компонентов, мас. %:

Углерод 1-3,6
Хром 6,5-12,0
Вольфрам 6-21
Молибден 8-17
Ванадий 2-6
Алюминий 1-4,5
Кремнефтористый натрий 0,6-3,6
Сера 0,9-3
Кобальт 12-13
Железо Остальное

Существенными недостатками данной шихты порошковой проволоки являются:

- высокая стоимость сварочного процесса за счет использования дорогостоящих материалов в значительных количествах (вольфрама, молибдена, алюминия и кремнефтористого натрия);

- пониженные механические свойства наплавленного металла, в частности износостойкости и твердости, за счет повышенной загрязненности стали неметаллическими оксидами и высокой концентрацией серы в шихте;

- низкое качество наплавленного металла в связи с порообразованием, связанным с повышенным содержанием водорода.

Известна выбранная в качестве прототипа [2] шихта порошковой проволоки, содержащая углерод, хром, молибден, вольфрам, ванадий, алюминий и железо, а также никель и пыль электрофильтров алюминиевого производства при соотношении компонентов, мас.%:

Углерод 1-3,6
Хром 6,5-14,0
Молибден 5-21
Вольфрам 1-8
Ванадий 2-6
Алюминий 1-4,5
Никель 3,2-20
Пыль электрофильтров алюминиевого производства 1-15
Железо Остальное

при этом пыль электрофильтров алюминиевого производства имеет следующий состав, масс. %: Al2O3=20-48; F+=18-27; Na2O=4-16; K2O=0,4-6%, CaO=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Собщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, P=0,l-0,18.

Существенными недостатками данной шихты порошковой проволоки являются:

- высокая стоимость сварочного процесса за счет использования дорогостоящих материалов в значительных количествах (вольфрама, молибдена, алюминия и др.);

- пониженные механические свойства наплавленного металла, в частности износостойкости и твердости в связи с химическим составом шихты.

Техническими результатами изобретения являются:

- повышение механических свойств наплавленного металла, в частности износостойкости и твердости, за счет оптимизации химического состава шихты, снижения содержания водорода и уменьшения загрязненности наплавляемого слоя неметаллическими включениями;

- снижение стоимости сварочного процесса за счет оптимизации состава шихты и использования вольфрамового концентрата взамен вольфрама.

Для этого предлагается шихта порошковой проволоки, содержащая углерод, хром, молибден, вольфрам, ванадий, алюминий, никель, железо и пыль электрофильтров алюминиевого производства, содержащую, мас. %:Al2O3=20-48; F+=18-27; Na2O=4-16; K2O=0,4-6%, CaO=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Собщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, P=0,1-0,18, которая дополнительно содержит марганец, кремний, а вольфрам взят в виде вольфрамсодержащего концентрата марки КШ-4 при соотношении компонентов, мас. %:

Углерод 0,01-0,5
Марганец 0,6-4,4
Кремний 0,4-1,6
Хром 0,9-15,0
Молибден 0,1-11,9
Вольфрамсодержащий концентрат 0,15-4,6
Ванадий 0,3-2,5
Алюминий 0,15-1,5
Никель 0,03-15
Пыль электрофильтров алюминиевого производства 1-12
Железо Остальное

Заявляемые пределы подобраны эмпирическим путем, исходя из качества получаемого при наплавке металла, стабильности процесса наплавки, предотвращения образования трещин и получения требуемых механических свойств.

Выбранное содержание углерода обеспечивает повышение предела текучести, временного сопротивления разрыву, твердости и износостойкости стали. При содержании углерода более 0,5% значительно возрастает хрупкость и трещинообразование при наплавке.

При концентрации марганца в шихте до 4,4% обеспечивается повышение прокаливаемости стали, уменьшается критическая скорость охлаждения. Выбранная концентрация марганца также способствует значительному измельчению зерна аустенита, уменьшает критическую скорость охлаждения.

Содержания кремния в шихте до 1,6% связано с необходимостью увеличения раскисленности стали при уменьшении содержания алюминия в ней, обеспечивающем повышение чистоты стали по включениям пластичных силикатов, которые снижают ударную вязкость и эксплуатационную стойкость при истирании. При содержании кремния в шихте более 1,6% значительно снижается пластичность наплавленного слоя и увеличивается склонность стали к трещинообразованию.

Введение в состав кремния и марганца по сравнению с прототипом связано также с необходимостью повышения износостойкости заявляемой стали при рабочем контакте поверхность - абразивный материал.

Хром в пределах 0,9-15% положительно влияет на повышение прочности и твердости стали. При меньшем содержании хрома эффективность его влияния на повышение прочности заметно снижается, при содержании его более 15% при заданных содержаниях марганца, кремния, молибдена и никеля возможно получение глубоких трещин при наплавке.

Молибден в указанных пределах обеспечивает получение дисперсной закаленной структуры, увеличивает прочностные свойства, твердость, ударную вязкость и сопротивление износу.

Вольфрам вводится в сталь в виде вольфрамсодержащего концентрата с целью снижения стоимости шихты, а также возможности восстановления вольфрама из оксидов с образованием карбидов вольфрама, которые позволяют значительно уменьшить истираемость поверхности наплавляемого металла.

Введение ванадия в состав шихты обусловлено необходимостью получения дисперсных частиц карбонитрида ванадия, наличие которых позволяет повысить прочностные свойства и увеличить сопротивление хрупкому разрушению.

Содержание алюминия выбрано исходя из обеспечения, с одной стороны, низкого содержания кислорода в наплавляемом слое, с другой стороны - с целью исключения возможности образования недопустимых строчечных включений глинозема, увеличивающих склонность к образованию усталостных трещин и выщерблин при эксплуатации наплавленного слоя.

Введение никеля в заявляемых пределах обеспечивает повышение пластичности и ударной вязкости стали. Его содержание до 0,03% не оказывает положительного влияния на свойства стали, а при концентрации более 15% эта характеристика не превышает определяемых величин и увеличение концентрации нецелесообразно из экономических соображений.

Для изготовления шихты порошковой проволоки использовали углерод аморфный, порошки углеродистого ферромарганца ФМн 78(A) по ГОСТ 4755-91, ферросилиция марки ФС 75 по ГОСТ 1415-93, высокоуглеродистого феррохрома марки ФХ900А по ГОСТ 4757-91, ферромолибдена марки ФМо60 по ГОСТ 4759-91, феррованадия марки ФВ50У0,6 по ГОСТ 27130-94, железа марки ПЖВ1 по ГОСТ 9849-86.

В качестве вольфрамсодержащего концентрата использовали вольфрамовый концентрат марки КШ-4, соответствующий ГОСТ 213-83 производства ОАО «Горнорудная компания "АИР"» следующего химического состава 50-57% WO3, 0,03% Mo, 0,02% Cu, 0,02% Bi, 1,0% Fe, 2,0% Р, 0,6% S.

Пыль электрофильтров алюминиевого производства со следующим химическим составом, масс. %: Al2O3=20-48; F=18-27; Na2O=4-16; K2O=0,4-6%, CaO=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Собщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, P=0,1-0,18.

Порошки перемешивались в смесители для получения однородной массы и прокаливались для удаления влаги при температуре 250-350°C. Далее производилось изготовление порошковой проволоки на станке. Диаметр готовой проволоки после операций волочения составлял 3,7 мм, при коэффициенте заполнения 0,32-0,33. Порошковой проволокой с предложенной шихтой производилась наплавка заготовок шнеков для горношахтного оборудования. Наплавка производилась под флюсом АН-20 с использованием сварочного трактора ASAW-1250 на следующих режимах:

сварочный ток 410-430 А, напряжение дуги 27-28 В, скорость наплавки 24-25 м/ час, скорость подачи порошковой проволоки 73 м/час.

Наличие трещин в процессе наплавки оценивали визуально, после наплавки наличие трещин, пор и неметаллических включений оценивали ультразвуковым методом, а также на металлографических шлифах.

Определение химического состава металла сварных швов на содержание углерода, серы и фосфора проводили химическими методами по ГОСТ 12344-2003, ГОСТ 12345-2001, ГОСТ 12347-77 соответственно, на содержание марганца, кремния, хрома, никеля, меди в металле и оксидов кальция, кремния, магния, алюминия, марганца, железа, калия, натрия, фтора во флюсах с добавками и полученных шлаках проводили на рентгенофлюорисцентном спектрометре XRF-1800 фирмы SHIMADZU.

Исследование на определение кислорода, водорода и азота методом восстановительного плавления проводили на газоанализаторе фирмы «LECO» ТС-600. Массовая доля кислорода снизилась в пределах от 890-520 ppm (прототип) до 340-480 ppm. Содержание водорода изменялось в пределах 0,2-0,4 см3/100 г наплавленного металла при допустимом содержании водорода в высоколегированном наплавленном металле до 2 см3 /100 г металла. Значительных изменений содержания азота не наблюдалось и осталось на уровне базового варианта в количестве 70-90 ppm. Твердость наплавленного металла после наплавки и термообработки составляла HRC 46-54. Дефекты (трещины, поры и неметаллические включения) при наплавке порошковой проволокой с шихтой заявляемого состава не выявлены. После наплавки проводилось испытание на испытательной машине на истираемость образцов. Металлографические исследования (в том числе определение длины строчки неметаллических включений) проводили на полированных микрошлифах с помощью оптического микроскопа OLYMPUS GX-51.

Исследовались 5 вариантов составов шихты (таблица 1) порошковой проволоки, масс. %: 1 - прототип; 2 - нижний заграничный состав, 3 - нижний граничный состав, 4 - среднее содержание состава заявляемой шихты; 5 - верхний предел заявляемой шихты; 6 - верхний заграничный состав. Взаимосвязь некоторых исследуемых параметров в зависимости от состава шихты приведена в таблице 2.

Использование заявляемого состава шихты порошковой проволоки по сравнению с базовым составом (прототип) позволяет:

1. Повысить механические свойства наплавленного металла, в частности износостойкость и твердость, за счет оптимизации химического состава шихты, снижения содержания водорода и кислорода за счет введения фторсодержащих компонентов и создания дополнительной газовой защиты. Содержание водорода в среднем составило 0,2-0,4 см3/100 г металла (против 0,3-0,6 см3/100 г металла в прототипе). Содержание кислорода 340-480 ppm, в результате чего снизилась загрязненность наплавляемого металла неметаллическими включениями (длина оксидных строчек снизилась до 0,2 мм (в базовом варианте 0,4-0,6 мм)). Достигнута твердость HRC 46-54. Скорость износа снизилась с 0,1 г/мин до 0,0045 г/мин.

2. Снизить стоимость сварочного процесса за счет оптимизации состава шихты и использования вольфрамового концентрата взамен вольфрама на 280-430 руб на 1 кг наплавленного слоя.

Источники информации

1. Пат. РФ №2088392, МПК8, В23К 35/36.

2. Пат. РФ 2492981, МПК8, В23К 35/36.

Шихта порошковой проволоки, содержащая углерод, хром, молибден, вольфрам, ванадий, алюминий, никель, железо и пыль электрофильтров алюминиевого производства, содержащую, мас.%: Al2O3 20-48, F+ 18-27, Na2O 4-16, K2O 0,4-6, CaO 0,7-1,8, SiO2 0,5-2,48, Fe2O3 1,7-3,27, Собщ 12-31, MnO 0,07-1,3, MgO 0,06-0,9, S 0,09-0,59, P 0,1-0,18, отличающаяся тем, что она дополнительно содержит марганец и кремний, а вольфрам взят в виде вольфрамсодержащего концентрата марки КШ-4 при соотношении компонентов, мас.%:

Углерод 0,01-0,5
Марганец 0,6-4,4
Кремний 0,4-1,6
Хром 0,9-15,0
Молибден 0,1-11,9
Вольфрамсодержащий концентрат 0,15-4,6
Ванадий 0,3-2,5
Алюминий 0,15-1,5
Никель 0,03-15
Пыль электрофильтров алюминиевого производства 1-12
Железо Остальное



 

Похожие патенты:

Порошковая проволока может быть использована при механизированной и автоматической подводной сварке и наплавке металлических деталей. Порошковая проволока состоит из стальной оболочки и размещенной внутри нее шихты.

Изобретение может быть использовано при дуговой сварке и наплавке металлических деталей. На внешней и/или внутренней поверхности металлической оболочки порошковой проволоки выполнено нанокомпозиционное покрытие в виде металлической матрицы с распределенной в ней смесью наноразмерных частиц фторида металла и редкоземельных металлов.

Изобретение может быть использовано при механизированной и автоматической сварке и наплавке металлических деталей под водой мокрым способом. В стальной оболочке проволоки размещена шихта, содержащая компоненты в следующем соотношении, мас.%: рутиловый концентрат 25-37; плавиковый шпат 8-17; железный порошок 32-45; ферромарганец 5-9; никель 1-3; карбонат щелочного металла 3-7; комплексный фторид щелочного металла 3-13.

Порошковая проволока может быть использована при механизированной и автоматической сварке и наплавке металлических деталей под водой мокрым способом. В стальной оболочке размещена шихта, содержащая компоненты в следующем соотношении, мас.%: рутиловый концентрат 23-42; гематит 18-27; железный порошок 28-42; ферромарганец 3-8; никель 3-5; комплексный фторид щелочного металла 5-18.
Изобретение относится к области металлургии, в частности к порошковой проволоке для получения жаростойкого покрытия дуговой металлизацией, и может быть использовано для защиты поверхности деталей, работающих в условиях высокотемпературной газовой коррозии.
Изобретение может быть использовано при наплавке под флюсом для восстановления изношенных деталей и получения износостойкого защитного покрытия на деталях металлургического оборудования, работающих в условиях сжатия и абразивного износа при температурах 600°C.
Изобретение может быть использовано при наплавке под флюсом для восстановления изношенных деталей и получения износостойкого защитного покрытия на деталях металлургического оборудования, работающих в условиях сжатия и абразивного износа при температурах 600°C, например прокатных валков черновых и чистовых калибров, а также роликов подающих рольгангов.

Изобретение может быть использовано для электродуговой наплавки оборудования и инструмента, работающих в условиях термомеханического циклического нагружения, например деталей медеразливочных машин, прессового инструмента горячего деформирования, валков горячей прокатки.

Изобретение относится к сварочной проволоке из нержавеющей стали с флюсовым сердечником для сварки стального оцинкованного листа. .

Изобретение может быть использовано при изготовлении электродов для дуговой сварки ответственных конструкций из низкоуглеродистых сталей. Шихта электродного покрытия содержит следующие компоненты, мас.%: мрамор 19,0-21,0, ильменит 19,0-21,0, ферромарганец 13,0-15,0, рутил 28,5-29,5, каолин 4,0-6,0, тальк 9,0-11,0, целлюлоза 1,0-2,0, поташ 0,5-1,5 и механоактивированный порошок шихты электродов МР3 0,25-0,45 с размером частиц до 20 мкм.

Изобретение может быть использовано для жесткого долговременного соединения алюмотермитной сваркой стальных элементов, предпочтительно рельсов. Алюмотермитная смесь для сварки стальных элементов содержит прокаленную железную окалину, порошок алюминия и легирующие присадки.

Флюс может быть использован для сварки низко- и среднелегированных сталей. Флюс содержит компоненты в следующем соотношении, мас.

Изобретение может быть использовано при изготовлении электродуговой сваркой под флюсом металлоконструкций из низкоуглеродистых сталей, стойких к электрохимической коррозии, например корпусов морских судов, нефте- и газопроводов.

Изобретение может быть использовано при электродуговой сварке и наплавке легированных сталей под флюсом. Флюс содержит компоненты в следующем соотношении, мас.

Изобретение может быть использовано при электродуговой сварке и наплавке легированных сталей под флюсом. Флюс содержит компоненты в следующем соотношении, мас.%: пылевидный ковшевой шлак производства рельсовой стали 30,0-50,0, пылевидные отходы производства алюминия 5,0-30,0, жидкое стекло 40,0-65,0.
Изобретение относится к электродуговой сварке сталей под флюсом, в частности к флюсам. Флюс-добавка, предназначенный для примешивания к сварочным флюсам, на основе жидкого стекла содержит пыль электрофильтров алюминиевого производства и натриевого жидкого стекла при соотношении компонентов, мас.%: пыль электрофильтров алюминиевого производства 40-60, натриевое жидкое стекло 60-40.

Изобретение может быть использовано для наплавки деталей металлургического оборудования, работающих в условиях абразивного износа. Электродное покрытие содержит следующие компоненты, мас.%: феррохром - 58,0-60,0, ферробор - 14,0-16,0, мрамор - 5,0-7,0, ферросилиций - 3,5-4,5, плавиковый шпат - 3,5-4,5, ферромарганец - 1,5-3,5, графит - 5,5-6,5, поташ - 0,5-1,5 и нанопорошок карбонитрида титана - 1,5-3,0.
Изобретение может быть использовано для изготовления электродов, применяемых при сварке, резке и, во многих случаях, износостойкой наплавке. Состав покрытия электрода содержит двуокись титана, ферромарганец, мрамор, целлюлозу, каолин, тальк, железный порошок, модифицирующую смесь и руду, в качестве которой используют промпродукт Туганского месторождения.

Изобретение может быть использовано для сварки и наплавки металлических деталей. Сварочный материал содержит металлический сердечник, покрытый полимерной оболочкой с распределенными в ней наноразмерными частицами активирующего флюса.
Изобретение может быть использовано при электродуговой механизированной сварке и наплавке низколегированных сталей. Флюс состоит из шлака производства силикомарганца, который содержит компоненты в следующем соотношении, мас. %: диоксид кремния 25-49, оксид алюминия 4-28, оксид кальция 15-32, фторид кальция 0,1-1,5, оксид магния 1,7- 9,0 оксид марганца 3-17, оксид железа 0,1-3,5. В качестве примесей флюс может содержать серу не более 0,12 мас.% и фосфора не более 0,02 мас.%. Флюс обеспечивает уменьшение стоимости сварочного процесса за счет утилизации отходов производства и снижение загрязненности стали неметаллическими включениями, а также позволяет снизить угар легирующих элементов при сварке и наплавке, что способствует повышению механических свойств сварного соединения.
Наверх