Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки



Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки
Способ взятия пробы для агрохимического анализа по высоте ее расположения над урезом воды малой реки

 

G01N1/00 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2579508:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" (RU)

Изобретение относится к области сельского хозяйства, в частности к экологическому и технологическому мониторингу сельхозугодий. Способ включает определение места, частоты, длительности отбора проб почвы на исследуемой территории. Причем отбор проб проводят с учетом вертикальной структуры, неоднородности покрова почвы, рельефа и климата местности. Пробы отбирают с глубины от 0 до 5 см, вертикальную структуру почвенного покрова принимают с каждой стороны малой реки в отдельности с учетом неоднородности покрова почвы и прибрежного рельефа у малой реки или ее притока. До агрохимического анализа из проб почвы удаляют корни травяных растений, а по результатам агрохимического анализа проб почвы проводят статистическое моделирование для выявления устойчивых биотехнических закономерностей. При этом на выбранном месте по точкам взятия проб почвы, расположенных на характерных местах рельефа, измеряют высоты этих точек над урезом воды малой реки или его притока. Затем берут пробы почвы и проводят агрохимический анализ и статистическое моделирование данных измерений идентификацией биотехнических волновых закономерностей влияния высоты расположения точки взятия пробы над линией уреза водной поверхности малой реки или ее притока на агрохимические показатели. После этого на других местах на водосборе малой реки или ее притока измеряют высоты расположения характерных точек рельефа без взятия пробы почвы. Затем по выявленным на экспериментальном участке биотехническим закономерностям выполняют расчеты ориентировочного содержания биохимических веществ в почвенном слое 0-5 см на любом участке водосбора малой реки или ее притока, на котором были измерены высоты расположения характерных точек рельефа. Способ позволяет снизить трудоемкость измерений и повысить точность сопоставления высоты над урезом воды с измеренными концентрациями биохимических веществ в почве, а также повысить функциональные возможности дистанционного зондирования высоты расположения характерных точек рельефа прибрежной зоны малой реки. 6 з.п. ф-лы, 6 ил., 5 табл., 1 пр.

 

Изобретение относится к контролю качества и экологической безопасности почвы и почвенного покрова, преимущественно находящегося под травяным покровом на изучаемой территории водоохраной зоны прибрежного ландшафта малой реки. Изобретение также может быть использовано при изучении почвы сельскохозяйственных угодий, расположенных рядом с водоохраной зоной малой реки. Техническое решение применимо также при экологическом и технологическом мониторинге сельхозугодий.

Известен способ отбора проб почвы для агрохимического или иного анализа по международным стандартам (Фомин Г.С., Фомин А.Г. Почва. Контроль качества и экологической безопасности по международным стандартам. Справочник. М., Издательство «Протектор», 2001. 304 с., С. 57-58), включающий определение места, частоты, длительности отбора проб почвы на исследуемой территории, а для этого намечают площадки отбора по координатной сетке, указывая их номера и координаты. Отбор проводят с учетом вертикальной структуры, неоднородности покрова почвы, рельефа и климата местности. При исследовании сельскохозяйственных угодий пробы для агрохимического анализа отбирают с глубины от 0 до 5 см при массе пробы не менее 100 грамм.

Отобранные пробы сопровождают регистрационной карточкой, в которой указывают следующие данные: номер пробы, место и глубину взятия пробы, рельеф и климатические характеристики местности, тип почвы, вид предполагаемого загрязнения, дату отбора.

Пробы, отобранные для проведения химического анализа, упаковывают в емкости из химически нейтрального материала. Пробы почвы доставляют в лабораторию и сразу анализируют. Пробы, отобранные для определения физико-химических свойств, должны сохранять структуру почвы после доставки в лабораторию.

Недостатками являются несогласованность взятия проб почвы с высотой их расположения над урезом воды в летний период. В нашей стране поймы малых рек в патентной классификации по изобретениям относят к лесному хозяйству, хотя пойменные луга являются объектами сельского хозяйства. А в аналоге отбор проб почвы проводят в основном из земельных участков пашни. При этом связь между высотой пробы над водной поверхности малой реки полностью игнорируется. Тем самым не учитывается расстояние по высоте доставки воды растениям из водотоков в почве, появляющихся из воды малой реки. Из-за функциональной неопределенности способа отбора пробы почвы для водоохраной зоны преимущественно с травяным покровом, не имеющем хозяйственного значения, любая координатная сетка по аналогу не подходит из-за сложности прибрежного рельефа. При этом закладка координатной сетки является трудоемким процессом.

Известен также способ биохимического анализа проб почвы на пойменном лугу малой реки по решению о выдаче патента на изобретение по заявке №2013104463/13(006640), включающий определение места, частоты, длительности отбора проб почвы на исследуемой территории, причем отбор проб проводят с учетом вертикальной структуры, неоднородности покрова почвы, рельефа и климата местности, а при исследовании сельскохозяйственных угодий пробы отбирают с глубины от 0 до 5 см. При этом вертикальную структуру почвенного покрова принимают с каждой стороны малой реки в отдельности, с учетом неоднородности покрова почвы и прибрежного рельефа у малой реки или ее притока, эта вертикальная структура в виде высоты определяется точками взятия пробы на глубине почвы 0-5 см, до агрохимического анализа из проб почвы удаляют корни травяных растений, а по результатам агрохимического анализа проб почвы проводят статистическое моделирование для выявления устойчивых биотехнических закономерностей.

Недостатками являются несогласованность точек взятия проб почвы и измерений высоты этих точек над урезом водной поверхности малой реки, а высокая трудоемкости измерений координатной сетки по расстояниям вдоль и поперек реки. Привязка к береговой линии не дает высокой точности сопоставления содержания биохимических веществ, так как вообще не учитывается высота расположения точек взятия проб почвы над линией уреза водной поверхности малой реки. При этом береговая линия, из-за эрозии, может по-разному отстоять по высоте от уреза воды. Поэтому геодезическая привязка к береговой линии дает высокие погрешности.

Технический результат - снижение трудоемкости измерений при измерениях только высоты расположения точек взятия проб почвы и повышение точности сопоставления высоты над урезом воды с измеренными концентрациями биохимических веществ в почве, а также повышение функциональных возможностей дистанционного зондирования высоты расположения характерных точек рельефа прибрежной зоны малой реки для проведения расчетов по результатов биохимического анализа по заранее исследованному по прототипу месту на прибрежной территории и ориентировочно даже на всей территории водосборного бассейна малой реки.

Этот технический результат достигается тем, что способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки, включающий определение места, частоты, длительности отбора проб почвы на исследуемой территории, причем отбор проб проводят с учетом вертикальной структуры, неоднородности покрова почвы, рельефа и климата местности, пробы отбирают с глубины от 0 до 5 см, вертикальную структуру почвенного покрова принимают с каждой стороны малой реки в отдельности, с учетом неоднородности покрова почвы и прибрежного рельефа у малой реки или ее притока, до агрохимического анализа из проб почвы удаляют корни травяных растений, а по результатам агрохимического анализа проб почвы проводят статистическое моделирование для выявления устойчивых биотехнических закономерностей, согласно изобретению на выбранном месте по точкам взятия проб почвы, расположенных на характерных местах рельефа, измеряют высоты этих точек над урезом воды малой реки или его притока, затем берут пробы почвы и проводят агрохимический анализ и статистическое моделирование данных измерений идентификацией биотехнических волновых закономерностей влияния высоты расположения точки взятия пробы над линией уреза водной поверхности малой реки или ее притока на агрохимические показатели, после этого на других местах на водосборе малой реки или ее притока измеряют высоты расположения характерных точек рельефа без взятия пробы почвы, а затем по выявленным на экспериментальном участке биотехническим закономерностям выполняют расчеты ориентировочного содержания биохимических веществ в почвенной слое 0-5 см на любом участке водосбора малой реки или ее притока, на которых были измерены высоты расположения характерных точек рельефа.

Место взятия не менее 30 проб намечают в водоохраной зоне малой реки на стороне с сельхозугодиями примерно в летнюю межень, а высоту расположения каждой пробы над урезом поверхности воды малой реки или ее притока измеряют геодезическими приборами.

За характерные точки рельефа водосбора или части его территории принимают верхние точки выступов и нижние точки впадин на поверхности почвы, затем дистанционно, например, с помощью аэрофотосъемки, измеряют высоту расположения точек рельефа, произвольно взятых на характерных местах рельефа прибрежной территории или же участка территории водосборного бассейна малой реки или ее притока, при этом диапазон измеренных высот точек без взятия проб почвы должен находиться в интервале изменений этой же высоты по экспериментальному участку на территории водоохраной зоны малой реки ли ее притока.

При геодезической съемке на выбранном месте экспериментального участка в каждую характерную точку рельефа, после измерения высоты расположения над урезом воды, вбивают колышек с номером пробы, затем в этой точке около колышка вскрывают почвенный слой и берут пробу массой не менее 100 г из поверхностного слоя 0-5 см для последующего агрохимического анализа, при этом условный створ измерения каждой точки взятия пробы почвы визируют перпендикулярно линии уреза воды, что позволяет учитывать падение малой реки или ее притока.

Выбор места как экспериментального участка и точек взятия проб почвы на любом рельефе выполняют дистанционно, например, способами аэрофотосъемки, затем по карте из большого множества точек с измеренными высотами над урезом воды малой реки или ее притока намечают точки взятия проб почвы и по этой карте вручную берут пробы почвы для агрохимического анализа.

После проведения агрохимического анализа и выявления биотехнических закономерностей по расчетным значениям агрохимических показателей строят карты распределения по каждому биохимическому веществу и кислотности для одного типа почвы, при условии фактической однотипности почвы на водосборе малой реки или ее притока на всей территории водосбора закладывают только одно экспериментальный участок в виде места для взятия проб почвы.

Статистическое моделирование содержания по массовой доле химических веществ в зависимости от высоты пробы почвы над урезом малой реки или ее притока проводят для всех биохимических веществ почвы по общему уравнению волновой функции:

yi=Aicos(πh/pi-a 8i),

, ,

где yi - изучаемый биохимический показатель по массовой доле нитрата азотного, фосфора, калия (мг/кг), а также и кислотности почвы;

h - высота расположения пробы почвы над урезом воды малой реки или ее притока, м;

Ai - амплитуда (половина) колебания показателя, мг/кг;

pi - полупериод волны по высоте расположения точки взятия пробы почвы над урезом воды малой реки или ее притока, м,

i - номер составляющей общей статистической модели,

a 1a 8 - параметры модели, вычисляемые по экспериментальным данным измерений высоты и массовой доли химических веществ.

Сущность технического решения заключается в том, что при применении способа выполняется в четыре этапа:

на первом этапе проводятся измерения высоты по тем точкам (не менее 30 примерно в летнюю межень) взятия проб почвы, которые расположены на характерных местах рельефа прибрежной зоны или местах на водосборе малой реки или ее притока;

на втором этапе проводится агрохимический анализ и статистическое моделирование идентификацией биотехнических волновых закономерностей влияния высоты расположения точек взятия пробы над линией уреза водной поверхности малой реки или ее притока на агрохимические показатели;

на третьем этапе дистанционно, например, с помощью аэрофотосъемки, измеряют высоту расположения произвольно взятых на характерных местах рельефа прибрежной территории или же участка территории водосборного бассейна малой реки или ее притока, при этом диапазон измеренных высот точек без взятия проб почвы должен находиться в интервале изменении этой же высоты по экспериментальному участку;

на четвертом этапе по выявленным на экспериментальном участке биотехническим закономерностям выполняются расчеты в Excel ориентировочного содержания биохимических веществ в почвенной слое 0-5 см на любом участке водосбора малой реки или ее притока.

Сущность технического решения заключается также в том, что биотехническая закономерность влияния высоты расположения точек взятия проб почвы в поверхностном слое 0-5 см на концентрацию биохимических веществ в нем не зависит от координатной сетки, то есть не зависит от расстояний вдоль и поперек русла малой реки или ее притока; по-видимому, содержание биохимических веществ, при одной и той же высоте взятия пробы почвы над урезом воды, зависит только от типа почвы.

Положительный эффект достигается тем, что измеряют только одну влияющую переменную - высоту точки взятия пробы почвы над урезом малой реки. Это значительно снижает трудоемкость измерений, так как теодолитом можно измерять с погрешностью не более ±0.5 см высоту расположения точек на характерных местах рельефа для взятия проб почвы. При этом за характерные места рельефа естественного происхождения принимают нижние точки впадин и высшие точки выступов. При геодезической съемке в каждую характерную точку рельефа, после измерения высоты расположения над урезом воды, вбивают колышек с номером пробы. Затем в этой точке около колышка вскрывают почвенный слой и берут пробу не менее 100 г из поверхностного слоя 0-5 см для последующего агрохимического анализа. При этом створ измерения каждой точки взятии пробы почвы визируют перпендикулярно линии уреза воды, что автоматически позволяет учитывать падение малой реки или ее притока.

Положительный эффект заключается также и в том, что выбор характерных мест и точек взятия проб почвы на любом рельефе можно выполнить дистанционно, например, способами аэрофотосъемки. Затем по карте намечаются точки взятия проб почвы и по этой карте вручную берут пробы почвы для агрохимического анализа.

Положительный эффект заключается также и в том, что снижение трудоемкости происходит за счет определения расчетных агрохимических показателей и построения карты распределения биохимических веществ в одном типе почвы. И это позволяет на одном типе почвы на всей территории водосбора заложить только один экспериментальный участок.

Новизна технического решения заключается в том, что впервые за базу привязки рельефа и растительности на ней принимается только высота расположения точек взятия проб почвы над линией уреза водной поверхности малой реки по отдельному берегу малой реки, например, в летнюю межень.

Новизна заключается еще и в том, что закономерности, полученные на одном участке рельефа прибрежной зоны ли же всего водосбора малой реки или ее притока, на котором были взяты и проведены агрохимических анализ проб почвы, распространяется по принципу суперпозиции природных законов и на другие участки рельефа, но с тем же типом почвенного слоя.

Предлагаемое техническое решение обладает существенными признаками, новизной и значительным положительным эффектом. Материалов, порочащих новизну технического решения, нами не обнаружено.

На фиг. 1 приведена карта-схема расположения точек на экспериментальном участке, расположенной в водоохраной зоне малой реки со стороны сельскохозяйственных угодий с отображением точек взятия проб почвы; на фиг. 2 показан пространственный график изменения высоты расположения точек взятия проб почвы над урезом поверхности воды малой реки; на фиг. 3 показаны графики составляющих и общей модели с остатками влияния высоты над урезом воды на массовую долю нитрата азота (по вычислительным возможностям программной среды CurveExpert); на фиг. 4 - то же на фиг. 3 по фосфору; на фиг. 5 - то же на фиг. 3 по калию; на фиг. 6 - то же на фиг. 3 по кислотности.

Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки в общем случае включает следующие действия.

На выбранном месте по точкам взятия проб почвы, расположенных на характерных местах рельефа, измеряют высоты этих точек над урезом воды малой реки или его притока. Затем берут пробы почвы и проводят агрохимический анализ и статистическое моделирование данных измерений идентификацией биотехнических волновых закономерностей влияния высоты расположения точки взятия пробы над линией уреза водной поверхности малой реки или ее притока на агрохимические показатели. После этого на других местах на водосборе малой реки или ее притока измеряют высоты расположения характерных точек рельефа без взятия пробы почвы. А затем по выявленным на экспериментальном участке биотехническим закономерностям выполняют расчеты ориентировочного содержания биохимических веществ в почвенной слое 0-5 см на любом участке водосбора малой реки или ее притока, на которых были измерены высоты расположения характерных точек рельефа.

Место взятия не менее 30 проб намечают в водоохраной зоне малой реки на стороне с сельхозугодиями примерно в летнюю межень, а высоту расположения каждой пробы над урезом поверхности воды малой реки или ее притока измеряют геодезическими приборами.

За характерные точки рельефа водосбора или части его территории принимают верхние точки выступов и нижние точки впадин на поверхности почвы, затем дистанционно, например, с помощью аэрофотосъемки, измеряют высоту расположения точек рельефа, произвольно взятых на характерных местах рельефа прибрежной территории или же участка территории водосборного бассейна малой реки или ее притока, при этом диапазон измеренных высот точек без взятия проб почвы должен находиться в интервале изменении этой же высоты по экспериментальному участку на территории водоохраной зоны малой реки ли ее притока.

При геодезической съемке на выбранном месте экспериментального участка в каждую характерную точку рельефа, после измерения высоты расположения над урезом воды, вбивают колышек с номером пробы, затем в этой точке около колышка вскрывают почвенный слой и берут пробу массой не менее 100 г из поверхностного слоя 0-5 см для последующего агрохимического анализа, при этом условный створ измерения каждой точки взятия пробы почвы визируют перпендикулярно линии уреза воды, что позволяет учитывать падение малой реки или ее притока.

Выбор места как экспериментального участка и точек взятия проб почвы на любом рельефе выполняют дистанционно, например, способами аэрофотосъемки, затем по карте из большого множества точек с измеренными высотами над урезом воды малой реки или ее притока намечают точки взятия проб почвы и по этой карте вручную берут пробы почвы для агрохимического анализа.

После проведения агрохимического анализа и выявления биотехнических закономерностей по расчетным значениям агрохимических показателей строят карты распределения по каждому биохимическому веществу и кислотности для одного типа почвы, при условии фактической однотипности почвы на водосборе малой реки или ее притока на всей территории водосбора закладывают только одно экспериментальный участок в виде места для взятия проб почвы.

Статистическое моделирование содержания по массовой доле химических веществ в зависимости от высоты пробы почвы над урезом малой реки или ее притока проводят для всех биохимических веществ почвы по общему уравнению волновой функции:

yi=Aicos(πh/pi-a 8i),

, ,

где yi - изучаемый биохимический показатель по массовой доле нитрата азотного, фосфора, калия (мг/кг), а также и кислотности почвы;

h - высота расположения пробы почвы над урезом воды малой реки или ее притока, м;

Ai - амплитуда (половина) колебания показателя, мг/кг;

pi - полупериод волны по высоте расположения точки взятия пробы почвы над урезом воды малой реки или ее притока, м,

i - номер составляющей общей статистической модели,

a 1a 8 - параметры модели, вычисляемые по экспериментальным данным измерений высоты и массовой доли химических веществ.

Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки, например на участке водоохраной зоны малой реки со стороны сельскохозяйственных угодий с закладкой створов измерений для сокращения времени геодезических измерений в каждой точке, включает следующие действия.

По карте местности или по аэрокосмическим снимкам, с учетом точечных, линейных или площадных источников загрязнения, выбирают территорию между руслом малой реки и сельхозугодиями. На местности проводят геодезическую привязку изучаемой территории и определяют координатную сетку площадок для отбора проб почвы.

Затем определяют места вдоль реки по ее сторонам с наличием сельхозугодий, например пашни за границей водоохраной зоны малой реки. При этом это место может быть с травяным покровом любого качества (он может быть не пригодным для сенокоса или пастбища). Главное, чтобы не было вмешательства человека, то есть место для закладки координатной сетки должно быть без тропинок и других воздействий человеком, нарушений почвенного слоя автомобилями и бульдозерами и пр. После этого определяют частоту, длительность отбора проб почвы по координатной сетке, указывая номера и координаты точек взятия проб почвы,

На выбранном месте по точкам взятия проб почвы, расположенных на характерных местах рельефа, измеряют высоты этих точек над урезом воды малой реки или его притока. Затем берут пробы почвы и проводят агрохимический анализ и статистическое моделирование данных измерений идентификацией биотехнических волновых закономерностей влияния высоты расположения точки взятия пробы над линией уреза водной поверхности малой реки или ее притока на агрохимические показатели. После этого на других местах на водосборе малой реки или ее притока измеряют высоты расположения характерных точек рельефа без взятия пробы почвы. А затем по выявленным на экспериментальном участке биотехническим закономерностям выполняют расчеты ориентировочного содержания биохимических веществ в почвенной слое 0-5 см на любом участке водосбора малой реки или ее притока, на которых были измерены высоты расположения характерных точек рельефа.

Место взятия не менее 30 проб намечают в водоохраной зоне малой реки на стороне с сельхозугодиями примерно в летнюю межень, а высоту расположения каждой пробы над урезом поверхности воды малой реки или ее притока измеряют геодезическими приборами.

За характерные точки рельефа водосбора или части его территории принимают верхние точки выступов и нижние точки впадин на поверхности почвы, затем дистанционно, например, с помощью аэрофотосъемки, измеряют высоту расположения точек рельефа, произвольно взятых на характерных местах рельефа прибрежной территории или же участка территории водосборного бассейна малой реки или ее притока, при этом диапазон измеренных высот точек без взятия проб почвы должен находиться в интервале изменении этой же высоты по экспериментальному участку на территории водоохраной зоны малой реки ли ее притока.

При геодезической съемке на выбранном месте экспериментального участка в каждую характерную точку рельефа, после измерения высоты расположения над урезом воды, вбивают колышек с номером пробы, затем в этой точке около колышка вскрывают почвенный слой и берут пробу массой не менее 100 г из поверхностного слоя 0-5 см для последующего агрохимического анализа, при этом условный створ измерения каждой точки взятия пробы почвы визируют перпендикулярно линии уреза воды, что позволяет учитывать падение малой реки или ее притока.

Статистическое моделирование содержания по массовой доле химических веществ в зависимости от высоты пробы почвы над урезом малой реки или ее притока проводят для всех биохимических веществ почвы по общему уравнению волновой функции:

yi=Aicos(πh/pi-a 8i),

, ,

где yi - изучаемый биохимический показатель по массовой доле нитрата азотного, фосфора, калия (мг/кг), а также и кислотности почвы;

h - высота расположения пробы почвы над урезом воды малой реки или ее притока, м;

Ai - амплитуда (половина) колебания показателя, мг/кг;

pi - полупериод волны по высоте расположения точки взятия пробы почвы над урезом воды малой реки или ее притока, м,

i - номер составляющей общей статистической модели,

a 1a 8 - параметры модели, вычисляемые по экспериментальным данным измерений высоты и массовой доли химических веществ.

Пример. Эксперименты были проведены летом 2013 года. Река Пез находится в Волжском районе, в юго-восточной части Республики Марий Эл. Высоты точек взятия проб почвы измерялись нивелиром.

Для изучения прибрежного рельефа были взяты три створа перпендикулярно р. Пез (с левой стороны берега) (фиг. 1), на котором после водоохраной зоны располагается пашня. По рельефу было выбраны створы так, что они расположены в 350-400 метрах друг от друга. Длина каждого створа примерно равна 100 м.

Начиная со стороны реки, через каждые 10 м створа вбивали 10 пронумерованных колышков. Около каждого колышка лопатой убираем растительный покров и в слое 0-5 см берем пробы почвы более 100 г. Затем укладывали пробу почвы в полиэтиленовый пакет. Из одного створа измерений брали 10 проб, а всего на площадке 30 по всей координатной сетке.

Исходные данные для статистического моделирования. После все пакетики отправляли на ФГБУ Станцию агрохимической службы «Марийская» Минсельхоза РФ для изучения химического состава. В соответствии с ГОСТ (табл. 1) агрохимическим анализом определяли подвижный азот, подвижный калий и фосфор, а также водную кислотность почвенной пробы.

Первая точка располагается на высоте 1.10, 3.20 и 2.32 м от уреза воды.

Из графика на фигуре 2 видно, что наибольшую соразмерность имеет с двумя расстояниями высота точки взятия пробы почвы над урезом воды. Поэтому высота точки взятия пробы почвы определяет длину транспортирования воды к растениям в данной точке от потоков воды малой реки.

Вейвлет-сигнал. Моделирование содержание химического вещества проводили общей многочленной формулой

, ,

где yi - изучаемый биохимический показатель по массовой доле нитрата азотного, фосфора, калия (мг/кг), а также и кислотности почвы;

h - высота расположения пробы почвы над урезом воды малой реки или ее притока, м;

Ai - амплитуда (половина) колебания показателя, мг/кг;

pi - полупериод волны по высоте расположения точки взятия пробы почвы над урезом воды малой реки или ее притока, м,

i - номер составляющей общей статистической модели,

a 1a 8 - параметры модели, вычисляемые по экспериментальным данным измерений высоты и массовой доли химических веществ по экспериментальным данным измерений таблицы 1 в программной среде CurveExpert (URL: http://www.curveexpert.net/).

По формуле (1) с двумя фундаментальными физическими постоянными е (число Непера или число времени) и π (число Архимеда или число пространства) образуется изнутри изучаемого явления и/или процесса квантованный вейвлет-сигнал. Понятие асимметричного вейвлет-сигнала позволяет абстрагироваться от физического смысла рядов чисел. При этом рассматривается только аддитивное разложение изучаемого процесса.

Нитратный азот. По возможностям программной среды было получено шестичленное уравнение (фиг. 3) вида

y1=398,47020ехр(-0,82331h), y2=-503,29439h0,21869exp(-1,04303h),

y3=A1cos(πh/p1-0,24868), A1=1,29257·107h2,30785exp(-14,92585h0,14012),

p1=0.14361+0,056317h1,18517, y4=A2cos(πh/p2-1,06291),

А2=2,06386·107h22,05577ехр(-15,36661h0,89327), р2=0,21967-0,043229h0,25883,

y5=A3cos(πh/p3-2,50356), А3=8,19805·107h22,11615exp(-27,83603h0,39799),

p3=0.014713+0,015738h1,06355.

Как видно из данных таблицы 2 компактной записи параметров модели, всего образовалось 8 членов.

Остатки после 8-го члена сравнимы с погрешностью измерений.

Подвижный фосфор. По этому химическому веществу также была получена (фиг. 4) модель вида

y1=118,84294ехр(0,0023585h),

y2=-8,11063·106h12,87415ехр(-17,57830h0,37127),

A1=1,35577·10-149h220,75867ехр(-16,72462h), p1=0.19655+0,0057109h1,40373,

y4=A2cos(πh/p2+0,0084877), A2=27,65550ехр(0,10027h0,78589),

p2=-0,076555+0,77016h0,41275, y5=A3cos(πh/p3-0,85366),

A3=1,14593·105h24,19276exp(-11,85539h), p3=0.19210.

Все члены общей модели приведены в таблице 3.

Таким образом, видно, что распределение фосфора сложнее (15 членов больше 8) по сравнению с нитратом азота.

Подвижный калий. Для этого химического вещества в пробах почвы также было получено семь членов (фиг. 5) по общей формуле

y1=0,10636ехр(7,04531h0,026412),

y2=-56678471,0h7,21246ехр(-21,66838h0,15488),

y3=A1cos(πh/p1-1,42317), A1=20093796,0h21,63587ехр(-12,34001h),

p1=0.011130+0,030802h0,97514, y4=A2cos(πh/p2-4,97978),

A2=1,16870·10-147h166,20567ехр(-0,016924h3,36467), p2=1,12640,

y5=A3cos(πh/p3), A3=1,22669·108h43,83916ехр(-21,18065h),

p3=0.12528-0,010858h.

Все полученные члены по параметрам приведены в таблице 4.

Для всех трех биохимических веществ, а также для кислотности, было получено уравнение с пятью членами, из которых первые два относятся к тренду, а три последние - к волновым уравнениям.

При этом вне зависимости от количества условных створов измерений и расположения точек на этих условных створах (фиг. 1) влияние высоты над урезом воды будет одинаковым. Именно такая инвариантность к любой координатной сетке позволяет распространить результаты измерений и моделирования, выполненных на одном экспериментальном участке, на всю территорию водосбора малой реки или ее притока.

До погрешности моделирования, примерно равной погрешности измерений, получились 12 составляющих общей статистической модели.

Водная кислотность. Это показатель (фиг. 6) определяется формулой

y1=6,78429ехр(-0,014948h), y2=-0,0026911h8,34154ехр(-1,46875h),

y3=A1cos(πh/p1+0,95696), A1=-0,00047458h124,65238ехр(-43,01808h0,98659),

p1=0.013634+0,023628h1,01995, y4=A2cos(πh/p2-0,43029),

A2=6,82774·10-16h20,46212exp(-1,33417h1,00356), p2=0,25240-5,65741·10-5h,

y5=A3cos(πh/p3+5,26050356), A3=0,024383h1,15964,

p3=5.17275-2,39077h0,15518.

Все члены модели, по параметрам в компактной записи в матричной форме, приведены в таблице 5.

Частота колебаний изменения массовой доли химических питательных веществ показывает адаптивную способность почвы как живого организма (по Докучаеву) к внешним проявлениям со стороны растительного покрова. Даже без наличия травяного покрова в данной точке взятия пробы почвы наблюдается колебание каждого химического вещества и кислотности в зависимости только от одной влияющей переменной - высоты над урезом малой реки. Причем все эти колебания проявляются с переменными амплитудой и частотой (обратная величина от периода колебания).

Предлагаемый способ позволяет исключить координатную сетку, привязанную по расстояниям вдоль реки и вдоль створов измерений к водной поверхности малой реки. Оказалось, что измерение высоты взятия каждой пробы почвы вполне достаточно для выявления статистических закономерностей с трендом и волновыми составляющими.

Применение способа открывает возможности дистанционного зондирования высоты очень большого количества точек прибрежного ландшафта и затем, по сравнению с экспериментально измеренными на пробах почвы, причем на малой части точек агрохимических показателей, проводить расчет и построить карты распределения питательных биохимических веществ на всей территории водосбора малой реки или ее притока.

Отсутствие координатной сетки позволяет любой массив данных сжать относительно влияния высоты над урезом воды. И этот способ можно будет проверять на других малых реках и водоемах. По-видимому, все закономерности будут подчиняться волновому уравнению (1).

1. Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки, включающий определение места, частоты, длительности отбора проб почвы на исследуемой территории, причем отбор проб проводят с учетом вертикальной структуры, неоднородности покрова почвы, рельефа и климата местности, пробы отбирают с глубины от 0 до 5 см, вертикальную структуру почвенного покрова принимают с каждой стороны малой реки в отдельности с учетом неоднородности покрова почвы и прибрежного рельефа у малой реки или ее притока, до агрохимического анализа из проб почвы удаляют корни травяных растений, а по результатам агрохимического анализа проб почвы проводят статистическое моделирование для выявления устойчивых биотехнических закономерностей, отличающийся тем, что на выбранном месте по точкам взятия проб почвы, расположенных на характерных местах рельефа, измеряют высоты этих точек над урезом воды малой реки или его притока, затем берут пробы почвы и проводят агрохимический анализ и статистическое моделирование данных измерений идентификацией биотехнических волновых закономерностей влияния высоты расположения точки взятия пробы над линией уреза водной поверхности малой реки или ее притока на агрохимические показатели, после этого на других местах на водосборе малой реки или ее притока измеряют высоты расположения характерных точек рельефа без взятия пробы почвы, а затем по выявленным на экспериментальном участке биотехническим закономерностям выполняют расчеты ориентировочного содержания биохимических веществ в почвенном слое 0-5 см на любом участке водосбора малой реки или ее притока, на котором были измерены высоты расположения характерных точек рельефа.

2. Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки по п. 1, отличающийся тем, что место взятия не менее 30 проб намечают в водоохраной зоне малой реки на стороне с сельхозугодиями примерно в летнюю межень, а высоту расположения каждой пробы над урезом поверхности воды малой реки или ее притока измеряют геодезическими приборами.

3. Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки по п. 1, отличающийся тем, что за характерные точки рельефа водосбора или части его территории принимают верхние точки выступов и нижние точки впадин на поверхности почвы, затем дистанционно, например с помощью аэрофотосъемки, измеряют высоту расположения точек рельефа, произвольно взятых на характерных местах рельефа прибрежной территории или же участка территории водосборного бассейна малой реки или ее притока, при этом диапазон измеренных высот точек без взятия проб почвы должен находиться в интервале изменений этой же высоты по экспериментальному участку на территории водоохраной зоны малой реки или ее притока.

4. Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки по п. 1, отличающийся тем, что при геодезической съемке на выбранном месте экспериментального участка в каждую характерную точку рельефа после измерения высоты расположения над урезом воды вбивают колышек с номером пробы, затем в этой точке около колышка вскрывают почвенный слой и берут пробу массой не менее 100 г из поверхностного слоя 0-5 см для последующего агрохимического анализа, при этом условный створ измерения каждой точки взятия пробы почвы визируют перпендикулярно линии уреза воды, что позволяет учитывать падение малой реки или ее притока.

5. Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки по п. 4, отличающийся тем, что выбор места как экспериментального участка и точек взятия проб почвы на любом рельефе выполняют дистанционно, например способами аэрофотосъемки, затем по карте из большого множества точек с измеренными высотами над урезом воды малой реки или ее притока намечают точки взятия проб почвы и по этой карте вручную берут пробы почвы для агрохимического анализа.

6. Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки по п. 4, отличающийся тем, что после проведения агрохимического анализа и выявления биотехнических закономерностей по расчетным значениям агрохимических показателей строят карты распределения по каждому биохимическому веществу и кислотности для одного типа почвы, при условии фактической однотипности почвы на водосборе малой реки или ее притока на всей территории водосбора закладывают только один экспериментальный участок в виде места для взятия проб почвы.

7. Способ взятия пробы почвы для агрохимического анализа по высоте ее расположения над урезом воды малой реки по п. 1, отличающийся тем, что статистическое моделирование содержания по массовой доле химических веществ в зависимости от высоты пробы почвы над урезом малой реки или ее притока проводят для всех биохимических веществ почвы по общему уравнению волновой функции:

,
где yi - изучаемый биохимический показатель по массовой доле нитрата азотного, фосфора, калия (мг/кг), а также и кислотности почвы;
h - высота расположения пробы почвы над урезом воды малой реки или ее притока, м;
Ai - амплитуда (половина) колебания показателя, мг/кг;
pi - полупериод волны по высоте расположения точки взятия пробы почвы над урезом воды малой реки или ее притока, м,
i - номер составляющей общей статистической модели,
a 1 - a 8 - параметры модели, вычисляемые по экспериментальным данным измерений высоты и массовой доли химических веществ.



 

Похожие патенты:

Группа изобретений относится к области анализа почв и может быть использована при оценке плодородия земель сельскохозяйственного использования. Способ автоматизированного прямого определения доступного растениям фосфора в углеаммонийной почвенной вытяжке, окрашенной гуминовыми соединениями, заключается в том, что производится одновременное двухканальное спектрофотометрирование и измерение оптической плотности гидравлических потоков в спектральном диапазоне 898-900 нм одной пробы полученного образца вытяжки на автоанализаторе проточного типа, причем в одном канале с добавлением реактивов для окрашивания фосфора, а в другом канале с добавлением реактивов без окрашивания фосфора.
Изобретение относится к способам измерения эрозионной опасности дождя. По слоям почвенного образца размещают группы меченых почвенных частиц.

Изобретение относится к техническим средствам измерений физико-механических свойств почвы, преимущественно для непрерывной регистрации твердости слоя почвы при основной обработке неоднородных почв, культивации и внесении удобрений и/или мелиорантов почвообрабатывающими агрегатами, моторно-транспортное средство которых содержит двигатель внутреннего сгорания.
Изобретение относится к сельскому хозяйству, а именно агрохимическому картографированию почв. Для этого проводят выделение контуров по результатам дистанционного зондирования полей с последующим перенесением на карты землепользования.

Изобретение относится к области горного дела и может быть использовано для исследования сыпучих свойств геоматериалов. Устройство представляет собой сварную конструкцию башенного типа, устанавливаемую на верхней предварительно спланированной площадке отработанного карьера с обеспечением вертикальной устойчивости.
Изобретение относится к области профилактической медицины и может быть использовано для экспресс-обнаружения яиц геогельминтов в пробах почвы. Для этого 25 г пробы исследуемой почвы смешивают с 25 мл 1,4-1,6% раствора перекиси водорода.
Изобретение относится к области сельского хозяйства и может быть использовано при оценке опасности водной эрозии почвы. Для осуществления предлагаемого способа оценки ударного действия капель дождя на горизонтальной поверхности в центре подложки мишени с размеченными концентрическими окружностями устанавливают почвенный образец, поливают каплями дождя почвенный образец, измеряют величину радиуса разлета почвенных частиц.
Изобретение относится к способам контроля эрозионной опасности дождя. Осуществляют заполнение пор почвенного образца окрашенной водой.

Изобретение относится к области инженерной геологии, а именно к способам для определения влияния различных веществ на газообразующую способность грунтов в лабораторных и полевых условиях, и позволяет подобрать ингибиторы газообразования в грунтах.

Изобретение относится к области «Физики материального контактного взаимодействия» весомой среды в ее массиве и на краях откосов в естественном и нарушенном состоянии.

Группа изобретений относится к области медицины и может быть использована при проведении анализа тонких слоев, в частности монослоев клеток. Устройство для получения слоев, содержащих монослой из клеток, для анализа имеет двумерную матрицу из аналитических камер (45) и разветвленную конфигурацию входных каналов (25), соединенных с каждой из аналитических камер в матрице, для возможности заполнения аналитических камер в параллельном режиме.

Изобретение относится к устройству для измерения содержания окислов азота в выхлопных газов. Предложено устройство для забора выхлопных газов, используемое при измерении содержимого выхлопных газов в выпускном потоке (4) от двигателя внутреннего сгорания.
Изобретение относится к биологии, микробиологии, в частности к паразитологии, и может быть применено для фундаментальных исследований возможности взаимодействия тестируемых веществ, биологических объектов, прочих испытуемых субстанций с организмом дождевых червей (Lumbricina).

Группа изобретений относится к устройствам и способам для отбора проб из сыпучего, и/или жидкого, и/или газообразного материала. Устройство (1) содержит в себе корпус (2), который имеет корпусную камеру (8) с двумя находящимися на расстоянии друг от друга присоединительными отверстиями (10) для подключения к каждому из них по выполненному с возможностью протекания через них потока (11) материала участку (5) трубопровода.

Изобретение относится к устройству термоциклера для использования при проведении реакций термоциклирования в молекулярной биологии. Термоциклер содержит: термоблок (34) для приема образца; термоэлектрический элемент (36) типа Пельтье; нагревательное устройство (38), отличное от элемента Пельтье; радиатор (28); тепловую трубу (40), соединяющую радиатор с элементом типа Пельтье.

Изобретение относится к устройствам контроля проб жидких и пульповидных материалов на обогатительных фабриках черной или цветной металлургии и других производствах, где необходим периодический контроль жидкого технологического продукта для анализа элементного состава.

Изобретение относится к области медицины, а именно к посмертной патоморфологической диагностике бифуркационной недостаточности сосудов артериального круга большого мозга.

Изобретение относится к системе обнаружения дыма всасывающего типа. Система содержит трубопровод, обращенный к одной или множеству контролируемых областей, и всасывающий воздух в каждой из контролируемых областей; фотоэлектрический датчик дыма, прикрепленный к трубопроводу в состоянии, обращенном к каждой из контролируемых областей и обнаруживающий дым, подмешанный к воздуху, при всасывании воздуха из каждой контролируемой области; управляющее устройство, соединенное с базовым концевым участком трубки и всасывающее воздух из контролируемой области, и электрически соединенное с фотоэлектрическим датчиком дыма так, чтобы получать и обрабатывать сигнал обнаружения.
Изобретение относится к методу пробоподготовки биоорганических, в том числе, медицинских образцов для определения в них изотопного соотношения 14C/12C и 14C/13C с помощью ускорительного масс-спектрометра.

Изобретение относится к области экспериментального определения температуры хрупко-вязкого перехода при распространении быстрой трещины в образцах материалов, на основе полиолефинов при их испытании на растяжение в исследуемом интервале температур и предназначено для использования при создании однородного хрупкого слоя на поверхности образца, действующего в качестве инициатора трещины.

Изобретение относится к области экологического мониторинга. Способ включает выделение на малой реке или ее притоке визуально по карте или натурно участка пойменного луга с травяным покровом.
Наверх