Стабилометр

Изобретение относится к устройствам для исследования деформационно-прочностных характеристик грунтов в условиях трехосного сжатия. Стабилометр включает рабочую камеру с прозрачными боковыми стенками, верхний и нижний штампы и нагрузочное устройство. Боковые стенки камеры образованы плоско-вогнутыми линзами двойной кривизны, а с внешней стороны рабочей камеры по центру каждой из линз размещены синхронно работающие фотокамеры. Фотокамеры фиксируют искажение разметки на поверхности оболочки. Технический результат - повышение точности определения деформационных свойств грунта. 2 ил.

 

Изобретение относится к строительству, в частности к устройствам для определения деформационно-прочностных свойств грунтов в условиях трехосного сжатия.

Известен стабилометр, включающий корпус, цилиндрическую камеру в виде сильфона, эластичную оболочку для размещения образца грунта, подвижный и неподвижный штампы для его осевого нагружения (авторское свидетельство 1716376, МПК G01N 3/10, 1992 - аналог). Для измерения поперечных деформаций образца служат датчики, установленные на внутренней поверхности камеры.

Недостатком устройства является замер поперечных деформаций образца лишь в нескольких точках его поперечного сечения, что приводит к погрешностям при расчете объема образца и его поперечных деформаций в ходе нагружения, так как деформации из-за неоднородности грунта носят неравномерный характер. Кроме того, при сжатии гофр камеры, выполненной в виде сильфона, возникают поперечные деформации, что приводит к перемещению датчиков, закрепленных на ее внутренней поверхности, а значит, и к ошибкам при измерении деформаций образца.

Известен способ определения деформаций грунта в плоскости прозрачной стенки, основанный на методе параметрической фотометрии, то есть обработки фотографий для получения цифрового поля перемещений (White D.J., Take W.A., Bolton M.D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry \\ Geotechnique, 53, No. 7, 619-631 - аналог). Данный способ нашел применение в наблюдении за деформациями оснований моделей фундаментов в плоском прозрачном лотке (Валеев Д.Н., Болдырева Е.Г. Автоматизированный стенд для испытания моделей фундаментов \\ Пензенский государственный университет архитектуры и строительства, 2007, URL: http://www.npp-geotek.ru/documents/article/automated_test_stand/ (дата обращения: 11.09.2014)). Способ реализован только для плоской задачи, а именно для фиксации перемещений частиц грунта лишь на контакте с прозрачной стенкой.

Наиболее близким к предлагаемому изобретению является устройство трехосного сжатия, включающее рабочую камеру с боковыми стенками в виде прозрачного цилиндра, верхний и нижний штампы с перфорированными вкладышами, нагрузочное устройство (патент РФ на полезную модель №85167, МПК E02D 1/00, 2009 - прототип). Для измерения поперечных деформаций образца используется датчик линейных перемещений, размещенный внутри рабочей камеры.

Недостатком устройства является замер деформаций только в двух точках образца.

Задача изобретения заключается в повышении надежности и достоверности получаемых результатов за счет обеспечения измерения поперечных деформаций по всему периметру и всей высоте образца.

Это достигается тем, что в стабилометре, содержащем рабочую камеру, верхние и нижние штампы с перфорированными вкладышами и нагрузочное устройство, с внешней стороны рабочей камеры размещены синхронно работающие фотокамеры, фиксирующие искажение сетки или перемещения меток, нанесенных на оболочку, покрывающую образец, а боковые стенки рабочей камеры выполнены из плоско-вогнутых линз двойной кривизны.

Предлагаемое устройство иллюстрируется чертежами, где на фиг. 1 представлен вертикальный разрез стабилометра, а на фиг. 2 - его горизонтальный разрез.

Стабилометр содержит рабочую камеру, включающую основание 1, прозрачные боковые стенки 2 и крышку 3. На основании внутри камеры размещен нижний штамп 4 с перфорированным вкладышем 5. Через крышку камеры пропущен шток 6 с закрепленным на нем верхним штампом 7 с перфорированным вкладышем 8. Образец грунта размещается между верхним и нижним штампами 4 и 7 и покрывается эластичной оболочкой 9, края которой закрепляются кольцами 10 и 11 на верхнем и нижнем штампах. На эластичную оболочку нанесена разметка в виде сетки или отдельных меток. Для отвода воды из образца грунта служат дренажная трубка 12 и дренажные отверстия 13 и 14. Штуцер 15 на крышке предназначен для подачи жидкости во внутреннюю полость рабочей камеры. С внешней стороны рабочей камеры на расстоянии L от нее размещены фотокамеры 16, 17, 18 и 19.

Боковые стенки рабочей камеры для исключения искажения изображения, связанного с преломлением света, выполнены из плоско-вогнутых линз двойной кривизны. Радиус кривизны линз определяется по зависимости:

где n1 и n2 - показатели преломления материала линзы и рабочей жидкости соответственно;

L - расстояние от объектива камеры до линзы по оси симметрии;

δ1 - толщина линзы по оси симметрии;

δ2 - расстояние от линзы до образца по оси симметрии.

Стабилометр работает следующим образом.

Собрав прибор и разместив в нем образец грунта, заполняют внутреннюю полость рабочей камеры прозрачной жидкостью, например водой. С помощью насоса внутри рабочей камеры устанавливают заданное давление. После стабилизации деформаций и напряжений образца производят его нагружение с помощью нагрузочного устройства, передающего усилие через шток 6 на верхний штамп 7. При осевой нагрузке образец деформируется, и эластичная оболочка 9 начинает растягиваться. Разметка на поверхности оболочки искажается, что и фиксируется с заданной частотой синхронно работающими фотокамерами 16, 17, 18, 19. Благодаря прозрачным стенкам 2, выполненным из плоско-вогнутых линз двойной кривизны, на фотографиях отсутствует искажение, связанное с преломлением лучей при переходе из воздуха в материал линз и жидкость. По полученным изображениям сетки или меток на оболочке 9 определяют деформацию образца грунта и его объем.

Преимуществом предложенного стабилометра является измерение деформации образца по всему периметру и всей высоте в любой момент времени испытания, а значит, повышение точности определения деформационных свойств грунта - модуля деформации, модуля сдвига и коэффициента Пуассона.

Стабилометр, включающий рабочую камеру с прозрачными боковыми стенками, верхний и нижний штампы и нагрузочное устройство, отличающийся тем, что с внешней стороны рабочей камеры размещены синхронно работающие фотокамеры, а боковые стенки рабочей камеры выполнены из плоско-вогнутых линз двойной кривизны, радиус кривизны которых определяется по зависимости:

где n1 и n2 - показатели преломления материала линзы и рабочей жидкости соответственно,
L - расстояние от объектива камеры до линзы по оси симметрии,
δ1 - толщина линзы по оси симметрии,
δ2 - расстояние от линзы до образца по оси симметрии.



 

Похожие патенты:

Изобретение относится к строительству, в частности к технике испытания преимущественно крупнообломочных грунтов на трехосное сжатие, и может быть использовано при инженерно-строительных исследованиях.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании процесса энергообмена в образцах горных пород с целью прогноза и предотвращения опасных динамических явлений.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений.

Изобретение относится к технике контроля качества материалов и исследования их деформативных свойств. Сущность: один образец устанавливают между нижней и промежуточной траверсой с опорным шаром, имеющим возможность перемещения, другой - между промежуточной и верхней траверсой.

Изобретение относится к технике контроля качества материалов и исследования их деформативных свойств. Установка содержит закрепленные на штангах верхнюю и нижнюю траверсы, а также установленную между ними промежуточную траверсу с опорным шаром, имеющую возможность перемещения, гайки, расположенные на штангах, нагружающую систему, включающую источник давления среды, поршень для нагружения образцов, расположенный в цилиндрической полости нижней траверсы, герметичную камеру, установленную под поршнем и сообщенную с источником давления, ограничительное кольцо для поршня, закрепленное на нижней траверсе.

Изобретение относится к горному делу и может использоваться для исследования электромагнитного излучения (ЭМИ) горных пород при их разрушении. Стенд содержит электромагнитный экран, систему регистрации, нагрузочное устройство, выполненное в виде трубки с внутренней резьбой и вкрученным в нее винтом с головкой под ключ, заполненной пластичным веществом.

Изобретение относится к устройствам для исследования поведения модели пористого вещества в условиях плоского напряженно-деформированного состояния. Устройство содержит пуансон, рабочую камеру в виде полого параллелепипеда с прозрачными стенками, образующими пространство, поперечное сечение которого соответствует размерам поперечного сечения модели.

Изобретение относится к испытательной технике, к устройствам для исследования энергообмена при деформировании и разрушении блочного горного массива. Стенд для исследования энергообмена в блочном массиве горных пород содержит опорную раму, размещенные в ней захват для образца и захват для контробразца, гидравлический механизм взаимного поджатия образцов, связанный с захватом для образца, гидравлический механизм взаимного перемещения образцов, связанный с захватом для контробразца, гидравлические аккумуляторы энергии, связанные с механизмами поджатия и перемещения, и источники давления, связанные с аккумуляторами.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений.

Изобретение относится к испытаниям на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов, в том числе отрезков труб постоянного сечения.

Изобретение относится к испытательной технике, к устройствам для испытания образцов горных пород при моделировании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для контробразца, гидравлический механизм для взаимного поджатия образцов, соединенный с захватом для контробразца, каретку, гидравлический механизм для взаимного перемещения образцов, соединенный с кареткой, и захват для образца, установленный на каретке. Стенд дополнительно снабжен механизмом ударного нагружения, установленным на каретке с возможностью взаимодействия с захватом для образца и с кареткой, при этом механизм ударного нагружения выполнен в виде ударника в форме стержня, электромагнитного якоря в форме кольца, закрепленного на каретке, и двух электромагнитных катушек для независимого взаимодействия с якорем, причем ударник подвижно размещен в отверстии якоря, а катушки закреплены на ударнике с противоположных сторон относительно якоря. Технический результат: расширение функциональных возможностей стенда, увеличение объема получаемой информации при изучении энергообмена на образцах горных пород за счет обеспечения исследований энергообмена при регулируемом возбуждении в образце разнонаправленных ударных волн в процессе формирования подвижек. 1 ил.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват в виде каретки для образца, захват для контробразца, гидравлический механизм для взаимного поджатая образцов, связанный с захватом для контробразца, и гидравлический механизм для взаимного перемещения образцов, связанный с захватом для образца. Стенд снабжен дополнительным гидравлическим механизмом, размещенным на каретке и предназначенным для взаимодействия с образцом. Технический результат: расширение функциональных возможностей стенда, а также увеличение объема получаемой информации при изучении энергообмена в массиве горных пород. 1 ил.

Изобретение относится к испытательной технике, в частности к устройствам для подготовки образцов геосинтетических материалов к испытаниям на износоустойчивость, и может применяться в соответствующих областях техники. Устройство циклического нагружения по первому варианту включает в себя ящик для образца, блок управления, датчик усилия. Плита для нагружения образца связана с датчиком усилия, приводом редуктора. Усилие передается пневмомускулом через редуктор и рычаг, а положение рычага контролируется датчиком положения рычага. Компрессор обеспечивает рабочее давление регулятора давления. По второму варианту исполнения, помимо всего перечисленного в первом варианте, в устройство добавлен накопительный бак между компрессором и регулятором давления. Технический результат: возможность оценить износ материалов дорожных покрытий (одежд) при действии циклической нагрузки - имитация прохождения колеса по дорожному покрытию согласно ОДМ 218.5.006-2010. 2 н.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, к устройствам для исследования энергообмена при деформировании и разрушении блочного горного массива. Стенд содержит опорную раму, размещенные в ней захват для образца и захват для контробразца, гидравлический механизм взаимного поджатия образцов, связанный с захватом для образца, гидравлический механизм взаимного перемещения образцов, связанный с захватом для контробразца, гидравлические аккумуляторы энергии, связанные с механизмами поджатия и перемещения, источники давления, связанные с соответствующими аккумуляторами, пульсаторы давления, соединенные с соответствующими аккумуляторами и выполненные в виде гидроцилиндров со штоками, подпоршневая полость которых соединена с соответствующими аккумуляторами, эксцентриков, кинематически связанных со штоками гидроцилиндров, валов вращения эксцентриков и приводов вращения валов. Валы установлены соосно, а стенд снабжен электромагнитными муфтами для соединения валов с соответствующими приводами и электромагнитной муфтой для соединения валов между собой. Технический результат: расширение объема информации при исследовании энергообмена путем обеспечения испытаний как при независимой пульсации поджимающей и перемещающей нагрузок, так и при синхронной пульсации с плавным и ступенчатым изменением частоты пульсаций с возможностью регулирования смещения циклов пульсаций в ходе испытаний. 1 ил.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности, горных пород при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд для исследования энергообмена в блочном массиве горных пород, содержащий раму, размещенные на ней платформу для образца, механизм перемещения платформы, захват для контробразца и связанный с ним механизм взаимного поджатия образца и контробразца, согласно изобретению он снабжен опорной площадкой Г-образной формы, дополнительным захватом для дополнительного контробразца и дополнительным механизмом для взаимного поджатия дополнительного контробразца и образца, связанным с дополнительным захватом для контробразца, при этом каретка имеет Г-образную форму и установлена на опорной площадке с обеспечением взаимодействия с обеими стенками опорной площадки. Предлагаемый стенд обеспечивает проведение испытаний в новых условиях - при действии поджимающей нагрузки как по одному, так и по двум направлениям, ориентированным под углом друг к другу, что позволяет моделировать энергообмен при действии как гравитационной, так и тектонической силы. Это существенно расширяет объем информации при исследовании энергообмена в блочном массиве горных пород. 2 ил.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в блочных массивах горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд для исследования энергообмена в блочных массивах горных пород, содержащий опорную раму, размещенные в ней захват для образца, домкрат для перемещения захвата для образца, захват для контробразца и домкрат для перемещения захвата для контробразца перпендикулярно направлению перемещения захвата для образца, согласно изобретению, он снабжен вторым захватом для второго образца и домкратом для перемещения второго захвата для образца вдоль направления перемещения захвата для контробразца, при этом захваты для образцов выполнены с обеспечением приложения нагрузки к торцевым поверхностям соответствующих образцов, обращенным к захвату для контробразца, а захват для контробразца выполнен с обеспечением приложения нагрузок к торцевой и боковой поверхностям контробразца, обращенным к соответствующим захватам для образцов. Технический результат заключается в расширении функциональных возможностей стенда путем обеспечения испытаний при взаимодействии как двух, так и трех блоков с изменением количества взаимодействующих блоков в ходе эксперимента. 1 ил.

Изобретение относится к исследованию механических свойств материалов, а именно к определению технологических параметров процессов (усилий, напряжений, деформаций и перемещений), в том числе и неразрушающим способом. Устройство содержит силовую раму, в состав которой входит нижнее основание, на котором закреплена нижняя зажимная часть, имеющая соответствующую внутренней поверхности полусферического сегмента опорную поверхность с отверстием в центре, и верхнее основание, содержащее верхний упор с ответной поверхностью, имеющую такое же отверстие в центре, перекрываемое сегментом, размещенным между опорными сферическими поверхностями нижней зажимной чисти и верхним упором и герметично замыкающей внутреннюю полость, находящуюся в нижней зажимной части, в которой организована возможность создания нарастающего гидравлического давления на сегмент. На основании равномерно установлены исполнительные гидроцилиндры, удерживающие нижнюю зажимную часть, при этом гидравлические полости в нижней зажимной части и исполнительных гидроцилиндров являются независимыми друг от друга, нижняя зажимная часть помимо осевого перемещения имеет возможность отклонения относительно оси симметрии устройства, верхний упор имеет возможность поперечного перемещения и также отклонения относительно оси симметрии устройства опорной поверхности. Технический результат: расширение спектра испытаний оболочек методом гидростатического нагружения вследствие осуществления возможности вариации зависимости усилия закрепления от величины давления рабочей жидкости, действующей на оболочку, реализация возможности проведения неразрушающих испытаний тонкостенных сферических оболочек с целью оценки их конструкционной прочности, повышение надежности закрепления разнотолщинных оболочек вследствие исключения их локального пластического пережатия в месте защемления. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, а именно к способам определения объема жидкости в емкости (части объема жидкости) с учетом деформации стенок емкости в условиях эксплуатации. Предложен способ градуировки сигнализаторов уровня емкости, расположенной горизонтально, заключающийся в определении части объема, соответствующей плоскости зеркала расходуемой жидкости, при которой срабатывает сигнализатор, путем обмера внешних обводов нагруженной давлением газа емкости. Способ отличает от известных тем, что на стенки емкости в направлении продольной оси воздействуют, например, с помощью гидроцилиндров усилием, имитирующим усилие воздействия веса верхней наполненной емкости, при использовании емкости в реальных условиях. Задачей, на решение которой направлено изобретение, является повышение точности способа градуировки. 1 ил.

Изобретение относится к испытательной технике, а именно к устройствам для моделирования физических процессов в нагруженном массиве горных пород на образцах в лабораторных условиях. Стенд содержит корпус для размещения испытуемого образца, размещенные в корпусе штампы для взаимодействия с образцом и механизмы нагружения по числу штампов, соединенные с ними. Стенд снабжен дополнительными механизмами нагружения по числу штампов, соединенными с ними, при этом каждый штамп соединен с двумя механизмами нагружения шарнирно с возможностью линейного перемещения и поворота. Технический результат: расширение объема информации путем обеспечения испытаний как при равномерном, так и при неравномерном и изменяемом в процессе испытаний распределении нагрузки в образце. 2 ил.

Группа изобретений относится к медицине. Способ проверки прочности конического входа керамических модульных шаровидных головок для протезов тазобедренного сустава, имеющих приемное пространство с конической боковой поверхностью с углом зажимного конуса γ и коническим входом, заключающийся в том, что на участки приемного объема оказывается давление. Радиальное усилие, направленное перпендикулярно к продольной оси шаровидной головки, оказывает воздействие исключительно на область конического входа. Устройство для реализации вышеуказанного способа включает в себя контропору, коническую втулку и пуансон. Все они расположены на одной общей продольной оси. Втулка и пуансон выполнены с возможностью сдвига по продольной оси. Втулка размещается между пуансоном и контропорой. Угол раствора конуса α больше, чем угол раствора зажимного конуса γ подлежащей проверке шаровидной головки. Изобретения обеспечивают готовность всех проверенных шаровидных головок к работе без нанесения ущерба также и под нагрузкой по косой в условиях in vivo. 2 н. и 8 з.п. ф-лы, 2 ил.
Наверх