Фотоэлектрохимическая ячейка

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Фотоэлектрохимическая ячейка содержит фотоэлектроды, электролит и электролитный мостик. При этом фотоэлектроды представляют собой растение с листьями, стволом и корнями, насыщенными наночастицами металлов, обладающих свойствами гигантского комбинационного рассеяния, например Au, Сu с размерами 0,2-100 нм. Причем электролит и концентрация наночастиц позволяют растению осуществлять фотосинтез. Растение насыщают искусственным путем, а именно замачиванием семян перед посадкой, посадкой черенков растения в наносодержащую среду или поливом. Использование устройства позволяет упростить конструкцию фотоэлектрохимической ячейки. 1 з.п. ф-лы, 2 пр.

 

Изобретение относится к различным отраслям народного хозяйства, где используют превращение солнечной в электрическую энергию: сельское хозяйство, отопление, получение водорода из воды, питание электрической энергией приборов и т.д.

Фотоэлектрохимическая ячейка превращает энергию солнечного излучения в электрическую. В настоящее время известно три типа фотоэлектрохимических ячеек (Chimia, 2007, V.61, No. 12, 816). К первому типу относится комбинация солнечной полупроводниковой панели с обычным гальваническим элементом, например с платиновыми электродами (photovoltaic cells, PV approach). Ко второму типу относят электрохимическую ячейку, состоящую из одного или двух светочувствительных полупроводников n-, p-типа, выступающих в роли электродов и электролита (semiconductor-liquid junctions, SCLJ approach). Третий тип представляет комбинацию первых двух ячеек (PV/SCLJ). Известна (Bull. Korean Chem. Soc. 2010, Vol.31, No. 8, 2187) фотоэлектрохимическая ячейка: анод из пленки, покрытой FTO (SnO2/F), на ней микрослой полупроводника СdSe, катод из микрослоя Pt на FTO. Между фотоэлектродом из СdSe и обычным металлическим электродом из Pt находится пористый термопластичный полимер, пропитанный электролитом полисульфидом (1 М Na2S, 1 M S, 1 M NaOH). Максимальное ЭДС, создаваемое ячейкой, V=0,4 В.

К недостатку известных фотоэлектрохимических ячеек относится сложность их конструкции. Для ее выполнения требуются значительные материальные и трудовые ресурсы. Материалы со временем подвергаются коррозии и при утилизации загрязняют окружающую среду.

Техническая задача изобретения - упрощение конструкции фотоэлектрохимической ячейки.

Для решения задачи предлагается фотоэлектрохимическая ячейка, состоящая из фотоэлектродов, электролита, электролитного мостика, причем, что фотоэлектроды изготовлены из растений, с высокой интенсивностью роста. Растения должны иметь листья, где в хлоропластах содержится хлорофилл. 90% всего хлорофилла входит в состав светообразующих комплексов, выполняющих роль антенны, передающей энергию солнца к реакционным центрам I и II. Желательна большая способность к поглощению листьями солнечной энергии, механическая прочность листьев, устойчивость к перепадам температур, интенсивности излучения солнца. Для крепления электрических проводов необходим прочный ствол растения, а для питания растений и проникновения наночастиц мощная корневая система.

Все растение выступает в роли фотоэлектрода (анода, катода). Для этого оно насыщается наночастицами. Насыщение может происходить через семена (замачивание), при посадке в дисперсию наночастиц черенка растения и другими методами размножения растений, т.е. самопроизвольно. Кроме того, возможно и впрыскивание водной дисперсии наночастиц шприцом, т.е. ускоренное насыщение наночастицами уже выращенного растения. Наночастицы неорганических соединений через корни и ствол перемещаются в листья. Они дополняют мощность светообразующих комплексов растений, взаимодействуют с ними и создают контакт (двойной электрический слой) с электролитом. Для пропитки растений желательно использовать наночастицы металлов, обладающих свойствами гигантского комбинационного рассеяния Au, Ag, Cu, платиновые металлы и, кроме того, оксидов, солей, неметаллов с полупроводниковыми свойствами или их смесей размером от 0,2 до 100 нм. Малые наночастицы меньше 0,2 нм могут быстро растворяться в растении и поэтому нежелательны. Микрочастицы будут плохо проникать в растение из-за своего большого размера. Концентрация зависит от токсичности наночастиц для растения и ограничивается его существованием, т.е. выполнением им функций фотосинтеза.

В качестве электролита используют разные по строению вещества: водные растворы различных веществ, пасты, эмульсии, пористые материалы не токсичные для растения.

Изобретение иллюстрируется примерами.

Пример 1. Срезают два 8 см отростка фикуса бенджамина кинки. Один отросток опускают в водную дисперсию 40-50 нм наночастиц золота, полученных восстановлением H[AuCl4] в водном растворе рутином. По мере испарения добавляют прозрачную водопроводную воду с микроколичеством удобрения для комнатных растений. Периодически перемешивают для поддержания стабилизации золя. После появления и формирования корневой системы и самопроизвольного проникновения наночастиц золота в листья без их угнетения и развития фикуса фотоэлектрод длиной 12 см готов для приготовления ячейки. Для проверки его фотосвойств фотоэлектрод опускают в водный 0,001 М раствор KCl. Один щуп мультиметра АРРА 62Т соединяют с одноствольной булавкой проколотого ею фотоэлектрода, а второй щуп опускают в электролит. Измеряют напряжение в тени (облако) 0,38 В. При солнечном облучении (появлением солнца) напряжение постепенно увеличивается.

Другой отросток фикуса опускают в водную дисперсию наночастиц меди 2-3 нм, полученных восстановлением гидразином CuCl2 в водном мицеллярном растворе цетилпиридиний хлорида с глюкозой. Периодически перемешивают для поддержания стабилизации золя. После появления и формирования корневой системы и самопроизвольного проникновения наночастиц меди в листья без угнетения фикуса фотоэлектрод длиной 12 см готов для приготовления ячейки. Для проверки фотоэлектрод опускают в водный 0,001 М раствор KCl. Один щуп мультиметра АРРА 62Т соединяют с одноствольной булавкой проколотого ею фотоэлектрода, а второй щуп опускают в электролит. Измеряют напряжение между электродом и раствором в тени (облако) 0,11 В. При солнечном облучении напряжение постепенно увеличивается.

Для создания фотоэлектрохимической ячейки один фотоэлектрод опускают в 0,001 М раствор КСl, налитого в 50 мл стеклянный стакан анодного пространства, а другой фотоэлектрод опускают в такой же раствор катодного пространства. Анодное и катодное пространства соединяют электролитным (насыщенный раствор КСl) мостиком. Электродвижущую силу (ЭДС) фотоэлектрохимической ячейки измеряют компенсационным методом. ЭДС равна 0,24 В в тени (облако) и 0,45 В при солнечном освещении (без облака). Измерения напряжений постоянного электрического тока в катодном и анодном пространствах и ЭДС ячейки выполнялись в г. Курске, 20.08.2014 г. в 14-16 ч по московскому времени в тени и солнечном освещении при температуре 32°С.

Пример 2. Два отростка фикуса бенджамина кинки опускают в воду и выращивают растения с корневой системой, как в примере 1 без наночастиц. Из двух фикусов с корневой системой и новыми листьями составляют гальванический элемент, как в примере 1. Измеряют ЭДС элемента 0,00 В. ЭДС отсутствует в тени и на солнечном свету.

Таким образом, изобретение позволяет упростить конструкцию фотоэлектрохимической ячейки. Для ее создания необходимо меньше материальных и трудовых ресурсов, чем для известных ячеек (см.выше). Она проще в изготовлении, чем известные фотоэлектрохимические ячейки в настоящее время. Ее материал выращивается, возобновляется без загрязнения окружающей среды. После ухудшения качества фотоэлектрохимической ячейки она сжигается, а пепел можно использовать в виде качественного микроудобрения, в том числе и для получения фотоэлектродов новой ячейки. При замачивании семян злаковых культур, овощей, вики в водной дисперсии наночастиц металлов урожай этих культур увеличивается от 20 до 30% (J. Nano- Electr. Phys. 2013. Vol 5. No.4. P.04018; Нанотехника. 2013. №4. С.43). По-видимому, наночастицы металлов на первых стадиях развития и роста помогают сельскохозяйственным культурам использовать больше солнечной энергии за счет фотоэлектрохимических свойств самого растения, т.е. фотоэлектрохимической ячейки. Данное свойство позволяет растениям быть более устойчивыми к неблагоприятным изменениям погоды, грибкам.

1. Фотоэлектрохимическая ячейка, содержащая фотоэлектроды, электролит, электролитный мостик, отличающаяся тем, что фотоэлектроды представляют собой растение с листьями, стволом и корнями, насыщенными наночастицами металлов, обладающих свойствами гигантского комбинационного рассеяния, например Au, Сu с размерами 0,2-100 нм, причем электролит и концентрация наночастиц позволяет растению осуществлять фотосинтез.

2. Фотоэлектрохимическая ячейка по п.1, отличающаяся тем, что растение насыщается искусственным путем, а именно замачиванием семян перед посадкой, посадкой черенков растения в наносодержащую среду или поливом.



 

Похожие патенты:

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из диэлектрического материала с двусторонним металлическим покрытием (12), (13), и металлические платы (9) с регулярно расположенными углублениями (8) для солнечных фотоэлементов (6) и параллельными канавками (10) для планок (11).

Изобретение относится к области возобновляемых источников энергии, использующих солнечное излучение для генерирования экологически чистой электроэнергии в больших объемах.

Изобретение относится к устройствам энергопитания космического аппарата, предназначенным для преобразования солнечной энергии в электрическую с максимальной эффективностью и удельной мощностью.

Изобретение относится к способу получения структурированного электропроводящего покрытия на подложке. Технический результат - предоставление способа получения структурированного металлического покрытия на подложке, при реализации которого формируют структурированный металлический слой с четко определенными кантами и краями, что позволяет напечатать картину с высоким разрешением и структурами малых размеров, применимую в солнечных батареях.

Изобретение относится к оптике и касается слоистой интегрированной конструкции с внутренними полостями и способа ее изготовления для применения в гелиотехнике, в технологиях, связанных с получением пластин, в охлаждающих каналах, для освещения теплиц, подсветки окон, уличного освещения, подсветки транспортных потоков, в отражателях транспортных средств или в защитных пленках.

Согласно изобретению предложен солнечный элемент, в котором эмиттерный слой со стороны светопринимающей поверхности подложки на основе кристаллического кремния, с легирующей примесью противоположного типа проводимости, образован из кремниевой подложки, добавленной к упомянутому эмиттерному слою, пассивирующая пленка образована на поверхности кремниевой подложки, а также образованы вытягивающий электрод и коллекторный электрод.

Интегрированная слоистая конструкция для применения в гелиотехнике содержит первый несущий компонент, такой как деталь из пластика или стекла, предпочтительно содержащий оптически прозрачный материал, способный пропускать излучение, и второй несущий компонент, снабженный по меньшей мере одним паттерном поверхностного рельефа, который содержит множество элементов поверхностного рельефа, и выполненный с возможностью осуществления по меньшей мере одной заданной оптической функции в отношении падающего излучения.

Изобретение относится к области создания детекторов излучения и касается фотоприемника ик-излучения с диафрагмой. Фотоприемник содержит держатель, фоточувствительный элемент, приклеенный на растре, и диафрагму.

Солнечный элемент, в котором пассивирующая пленка образована на кристаллической кремниевой подложке, которая имеет, по меньшей мере, p-n переход, а электрод сформирован путем печатания и термообработки проводящей пасты.

Коллекторный электрод для солнечного элемента изготавливают трафаретной печатью проводящей пасты, при этом трафаретную печать повторяют многократно. Скорость прокатывания во время второй или последующей трафаретных печатей является больше, чем скорость прокатывания во время первой трафаретной печати.

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре.

Изобретение относится к производству термоэлектрических материалов на основе теллуридов висмута и сурьмы. Способ заключается в предварительной очистке исходных компонентов методом вакуумной дистилляции, синтезе исходных компонентов в вакуумированных ампулах при нагреве до плавления и охлаждении, выращивании кристаллов методом вертикальной зонной перекристаллизации с применением высокочастотного нагрева, при этом выращивание кристаллов осуществляют путем не менее двух проходов со скоростью не более 2,5-3 см/ч, высокочастотный нагрев ведут на частоте 1,76 МГц с градиентом температур 200 К/см, а после выращивания кристаллов осуществляют приготовление порошка с наноструктурой размером не более 200 нм, обеспечивающей анизотропию свойств каждой частицы, брикетирование, спекание, а затем горячую экструзию.

Группа изобретений относится к способу дробеструйной обработки поверхности металлической детали для получения наноструктурированного поверхностного слоя и устройству для его осуществления.

Изобретение относится к области композиционных материалов с углерод-карбидокремниевой матрицей, предназначенных для работы в условиях высокого теплового нагружения и одностороннего воздействия окислительной среды с высоким окислительным потенциалом.

Изобретение относится к полученной в плазме каталитической наночастице. Данная наночастица имеет границу раздела фаз для закрепления каталитического наноактивного материала на наноподложке, причем указанная граница раздела фаз содержит соединение, предназначенное для ограничения перемещения каталитического наноактивного материала на поверхности наноподложки.
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона в системах светодиодов белого света (WLED) и оптических дисплеях. Люминофор синего свечения представляет собой силикат редкоземельных элементов в наноаморфном состоянии состава Ca2Gd8(1-x)Eu8xSi6O26, где 0,001≤х≤0,5, характеризующийся широкой полосой синего излучения с максимумом при 455 нм, полушириной 77 нм, интенсивностью 14000-14263 отн.

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3 в импульсном потенциостатическом режиме при перенапряжении не выше 300 мВ с использованием платинового анода, притом что электроосаждение ведут на угольную подложку.

Изобретение может быть использовано при изготовлении катализаторов, анодов для производства алюминия, процессоров, электронных устройств для хранения данных, датчиков биомолекул, деталей автомобилей и самолётов, спортивных товаров.

Изобретение относится к вариантам способа получения покрытого изделия. Покрытое изделие включает стеклянную подложку, на которую нанесена тонкая пленка, содержащая углеродные нанотрубки (УНТ).

Изобретение относится к получению открытопористого наноструктурного никеля. Смешивают порошкообразный кристаллогидрат нитрат никеля и жидкий многоатомный спирт в качестве газообразующего восстановителя при следующем соотношении: жидкий многоатомный спирт/порошкообразный кристаллогидрат нитрата никеля 1:(2,5-4).

Изобретение относится к световым приборам, а именно к светильникам с определенным спектром излучаемого света, используемым для досветки растений, которым не хватает солнечного света, к так называемым фитосветильникам.
Наверх