Способ получения полос из немерных отрезков труб

Изобретение относится к методам утилизации немерных концов труб предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки, плющение отрезков с получением плоского профиля. Получение товарного продукта без применения энергоемких процессов обеспечивается за счет того, что немерные отрезки в виде плоского профиля прокатывают в валках с гладкой бочкой с получением сдвоенной полосы с коэффициентом вытяжки λ, который определяется формулой 1<λ<Lmin/L0, где Lmin - минимально допустимая длина товарного проката; L0 - исходная длина немерного отрезка. Полученную сдвоенную полосу разделяют на одиночные полосы отрезкой кромки. Отрезанную кромку подвергают волочению с получением проволоки. 2 з.п. ф-лы, 6 ил.

 

Предлагаемое изобретение относится к области металлургии, а точнее к методам утилизации немерных концов труб предпочтительно из нержавеющей стали.

Нержавеющая сталь часто применяется для изготовления элементов трубопроводных систем. Известный способ производства труб из нержавеющей стали [1] включает выплавку стали, ее разливку в слитки, деформацию слитков в трубные заготовки, горячее прессование, последующую термообработку. Стоимость нержавеющей стали гораздо выше стоимости обычной стали, поэтому изделия из нее применяются в специальных отраслях промышленности, например в термоядерной и водородной энергетике, что отмечается в описании к патенту [2].

Некоторая часть объема производимых труб из нержавеющей стали применяется для изготовления деталей интерьера, чему способствует высокая коррозионная стойкость стали и блестящая поверхность, достигаемая после шлифовки и полировки.

Во всех случаях применения труб для изготовления элементов трубопроводных систем и элементов дизайна приходится приобретать в качестве заготовки трубу большей длины (с положительным допуском). Нельзя применять заготовки с отрицательным допуском, поскольку есть вероятность, что на всю конструкцию длины труб или трубы не хватит. В результате после монтажа остаются немерные отрезки труб, которые необходимо утилизировать.

Существуют способы утилизации труб, например способ, описанный в патенте [3]. Способ предполагает холодную прокатку трубы, при этом в качестве заготовки используют трубу, бывшую в эксплуатации, подвергают ее термообработке, осветлению и правке, после чего подвергают ее холодной прокатке с общей деформацией металла в очаге деформации не менее 30%.

Недостатком способа является то, что он рассчитан на утилизацию бывшей в употреблении трубы, а не короткого немерного отрезка.

Существующие методы холодной прокатки труб направлены на деформацию длинных, а не коротких заготовок. Передняя и задняя часть трубы при способе холодной прокатки портится захватами прокатного стана и удаляется в обрезь.

Обрезь большей частью используется в качестве металлолома и может быть переплавлена и превращена снова в прокат, что описано, например, в описании к патентам [4-6]. Недостатком такой технологической схемы является большой расход энергии на превращение отходов производства в товарный продукт. Действительно, металл необходимо нагреть до высокой температуры, расплавить, а затем деформировать, с использованием таких энергоемких машин, как прокатные станы или прессы.

Вместе с тем, в промышленности существует потребность в изготовлении из нержавеющей стали не только в виде труб, но и в виде плоского проката, проволоки и т.д. Целесообразно изготавливать такие изделия непосредственно из отходов в виде немерных отрезков труб, остающихся после монтажа трубопроводов или элементов дизайна.

По патенту США № US 2011247794 [7] способ обработки труб включает разделку исходной трубы на мерные и немерные отрезки, плющение отрезков с получением плоского профиля. Плющат мерные отрезки труб с целью создания плоского профиля, имеющего полость между стенками трубы для пропускания теплоносящего агента. Недостатком является применение для дальнейшего использования именно мерных концов труб, немерные остатки при этом остаются не использованными. Их утилизация может быть проведена с применением описанных выше методов: нагрева, переплава, литья, деформации. Все эти процессы являются энергоемкими. Поэтому в указанном способе задача утилизации отходов в виде немерных отрезков труб оказалась не решена.

Предлагаемое изобретение направлено на достижение технического результата, заключающегося в возможности утилизации отходов обработки труб и получения товарного продукта без применения энергоемких процессов.

Предлагается способ получения полос из немерных отрезков труб, включающий плющение немерных отрезков труб с получением плоского профиля и их последующую прокатку в валках с гладкой бочкой с коэффициентом вытяжки λ, который определяется формулой 1<λ<Lmin/L0, где Lmin - минимально допустимая товарная длина проката; L0 - исходная длина немерного отрезка, с получением сдвоенной полосы и разделение сдвоенной полосы на одиночные полосы посредством отрезания кромок. Отрезанные кромки подвергают волочению с получением проволоки товарной длины. Предпочтительно используют немерные отрезки труб из нержавеющей стали.

Сущность предложения состоит в том, что продукт, который невозможно применить по назначению в том виде, в каком он получен - немерные отрезки труб, превратить в товарный продукт без переплава, имеющий свою область применения.

Прокатка в валках с гладкой бочкой с получением сдвоенной полосы позволяет уменьшить толщину полосы. При этом из условия постоянства объемов следует, что полоса пропорционально увеличится в длине. В результате отрезок трубы, который имел немерную длину и не имел товарной ценности, превращается в заготовку, имеющую большую длину, достаточную, чтобы перевести ее в товарный продукт.

Для товарной полосы часто вводят понятие минимально допустимой длины Lmin, при которой возможно осуществлять дальнейшие операции обработки. Например, в стандарте на листовой прокат из нержавеющих сталей назначена минимально допустимая длина полосы Lmin=2000 мм. Параметр толщины при этом согласуется с заказчиком. Если величину минимально допустимой длины полосы разделить на исходную длину немерного отрезка трубы, то получим значение коэффициента вытяжки или λ<Lmin/L0. Тем самым сформирована правая часть неравенства в формуле изобретения. Из практики прокатки известно, что коэффициент вытяжки не может быть меньше единицы. Тем самым сформирована левая часть неравенства λ>1. В принципе, прокат может осуществляться при малом коэффициенте вытяжки, близком к единице, в этом случае прокатный стан выполняет функции правильной машины.

Полученную сдвоенную полосу разделяют на одиночные полосы отрезкой кромки. Кромки сдвоенной полосы играют роль замка, соединяющего сдвоенную полосу. Поэтому после удаления кромок полоса разделяется на две одиночные полосы.

Отрезанную кромку можно передать на операцию волочения с получением проволоки. Волочение может осуществляться как в обычном варианте, так и с вращением волок, чтобы одновременно был решен вопрос с промежуточной термической обработкой, как это предлагалось в описании к патенту [8].

Таким образом, здесь показано, что, используя заявленные приемы, удается решить поставленную задачу, заключающегося в возможности утилизации отходов обработки труб и получения товарного продукта без применения энергоемких процессов.

На фиг. 1 изображена схема сплющивания отрезка трубной заготовки. На фиг. 2 отображен конечный момент операции сплющивания, а на фиг. 3 отображена схема прокатки сдвоенной полосы. На фиг. 4 представлена схема разделения сдвоенной заготовки с указанием мест отрезки кромок. На фиг. 5 общий вид получаемой одиночной полосы, а на фиг. 6 - схема волочения кромки полосы.

Способ осуществляется следующим образом. Короткую немерную заготовку трубы (фиг. 1) подвергают плющению бойками 2 и 3 усилием Р с получением сдвоенной заготовки 4 плоского профиля (фиг. 2). Немерный отрезок 4 (фиг. 3) в виде плоского профиля прокатывают в валках с гладкой бочкой 5 и 6 с получением сдвоенной полосы с коэффициентом вытяжки λ, который определяется формулой 1<λ<Lmin/L0.

В качестве примера при Lmin=2000 мм и исходной длине L0=400 мм получим λ=5. При условии соблюдения плоской деформации и отсутствия уширения относительное обжатие составит 80%, что осуществимо за несколько проходов прокатки. При исходной толщине стенки трубы 4 мм сдвоенная толщина стенки составит 8 мм. Прокатка с накопленным коэффициентом вытяжки 5 приведет к получению сдвоенной полосы толщиной 1,6 мм.

Полученную сдвоенную полосу разделяют на одиночные полосы отрезкой кромки, что показано на фиг. 4 воздействием режущих кромок дисковых ножниц 7, 8, 9 и 10. В условиях примера получаются две одиночные полосы 11 и 12 (фиг. 5), каждая из которых имеет толщину 0,8 мм.

Отрезанная кромка 13 (фиг. 6) имеет вид поперечного сечения, приближенный к прямоугольному, длина кромки недостаточна для применения ее в качестве товарного продукта. Поэтому, как показано на фиг. 6, ее подвергают многократному волочению до получения товарной длины. Например, если получена кромка со сторонами прямоугольника 4×8 мм, то ее площадь поперечного сечения составит 32 мм2. При волочении через волоки круглого сечения и достижении диаметра проволоки 0,1 мм ее площадь поперечного сечения составит 0,00785 мм2, коэффициент вытяжки составит 32/0,00785=4076, а товарная длина соответственно 400·4076=1630400 мм, т.е. около 1630 м.

Приведенные примеры осуществления способа показывают, что с их применением возможно достижение технического результата, заключающегося в возможности утилизации отходов обработки труб без применения энергоемких процессов.

Источники информации

1. Патент РФ №2276695. Нержавеющая сталь для производства труб и способ производства труб из нержавеющей стали / Пумпянский Д.А., Марченко Л.Г., Столяров В.И. и др. МПК С22С 38/40, C21D 7/04, C21D 8/10. Заявка 2004133365/02 от 16.11.2004. Заявитель ЗАО "Трубная Металлургическая Компания. Опубл. 20.05.2006.

2. Патент РФ №2273679. Нержавеющая сталь для трубопроводов и трубных систем термоядерной и водородной энергетики / Капустин А.И., Баранов А.В., Володин С.И. и др. МПК С22С 38/52. Заявка: 2004125315/02 от 18.08.2004. Заявитель ФГУП "ЦНИИ КМ "ПРОМЕТЕЙ". Опубл. 10.04.2006.

3. Патент РФ №2292970. Способ утилизации труб из титановых сплавов и коррозионно-стойких сталей / Сериков С.В., Сериков С.С., Сериков А.С. МПК В21В 21/00. Заявка: 2004121473/02 от 14.07.2004. Заявитель ООО "Специальные Стали и Сплавы». Опубл. 10.02.2007.

4. Свидетельство РФ на полезную модель №17148. Мини-завод для получения металлопродукции. Буркин С.П., Логинов Ю.Н., Миронов Г.В., Коршунов Е.А. Заявка №99101026/20(001017). МПК 7B22D 11/14, С21С 5/56. Опубл. 18.01.1999. Бюл. №8.

5. Патент РФ №2106930. Комплекс для получения металлопродукции / Буркин С.П.; Миронов Г.В.; Коршунов Е.А.; Логинов Ю.Н. МПК B22D 11/14, В21В 1/46. Заявка 96106819/02 от 08.04.1996. Заявитель АО НПВФ "Белый соболь". Опубл. 20.03.1998.

6. Патент РФ №2033886. Способ производства металлопродукции и устройство для его осуществления / Буркин С.П., Логинов Ю.Н., Коршунов Е.А., Андрюкова Е.А. МПК: B22D 11/00, B22D 18/02.

Заявка 5056507/02. Заявитель «Институт обработки давлением». Опубл. 30.04.1995.

7. Патент № US 2011247794. Flattened tubes for use in heat exchangers and other systems, and associated methods of manufacture and use / Arment Bradley; Arndt Barton; Nixon Forrest etc. МПК B23P 15/26; F28F 1/10. Заявка US 201113077621 от 20110331.

8. Патент №2252091. Способ волочения заготовок круглого поперечного сечения / Логинов Ю.Н., Буркин С.П. Заявка №2004107760/02 от 15.03.2004. МПК В21С 1/00. Опубл. 20.05.2005, бюл. №14.

1. Способ получения полос из немерных отрезков труб, включающий плющение немерных отрезков труб с получением плоского профиля и их последующую прокатку в валках с гладкой бочкой с коэффициентом вытяжки λ, который определяется формулой 1<λ<Lmin/L0, где Lmin - минимально допустимая товарная длина проката, а L0 - исходная длина немерного отрезка, с получением сдвоенной полосы и разделение сдвоенной полосы на одиночные полосы посредством отрезания кромок.

2. Способ по п. 1, отличающийся тем, что отрезанные кромки подвергают волочению с получением проволоки товарной длины.

3. Способ по п. 1 или 2, отличающийся тем, что используют немерные отрезки труб из нержавеющей стали.



 

Похожие патенты:

Изобретение относится к листовой прокатке в черной и цветной металлургии. Способ включает деформацию заготовок в четырехвалковой клети с установленными в ней рабочими валками с цилиндрической поверхностью бочки и опорными валками с поверхностью в виде однополостного гиперболоида, контактирующими друг с другом по прямым образующим опорных и рабочих валков.

Изобретение относится к области прокатки. Прокатный стан (1) Стеккеля включает, по меньшей мере, одну реверсивную прокатную клеть (2), соответствующую печную моталку (3, 4), расположенную со стороны входа и выхода относительно реверсивной прокатной клети (2).

Изобретение относится к прокатному производству и может быть использовано при производстве широких полос на непрерывных станах горячей прокатки. Повышение точности геометрических размеров по толщине полос обеспечивается за счет того, что прокатка на непрерывном широкополосном стане полос заданной ширины В мм с регламентированной выпуклостью поперечного профиля не более 0,06 мм обеспечивается за счет того, что в рамках одной кампании рабочих валков последовательно прокатывают не более 30 полос шириной В1<(В-50) мм для разогрева бочек рабочих валков, не менее 2000 тонн проката шириной В2 мм, при этом В≤В2≤(В+50), и не более 1050 тонн проката заданной ширины В мм в конце кампании рабочих валков.

Изобретение относится к технологии прокатного производства, конкретно к технологии непрерывной прокатки тонких полос, и может быть использовано на многоклетевых широкополосных станах горячей прокатки.

Изобретение относится к области обработки металлов давлением, в частности к технологии горячей прокатки на непрерывном широкополосном стане. Для повышения уровня стабильности механических свойств рулонного горячекатаного проката осуществляют прокатку непрерывнолитой заготовки в черновой и чистовой группах клетей, ламинарное охлаждение проката на отводящем рольганге и его смотку.

Изобретение относится к технологии производства горячеоцинкованного проката повышенной прочности из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки.

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане, и может быть использовано при изготовлении проката для труб с толщиной стенки 11-25 мм.

Изобретение относиться к прокатному производству и может быть использовано при производстве широких горячекатаных полос. Способ включает нагрев слябов и их горячую прокатку в черновых и чистовых клетях.

Изобретение относится к области металлургии и используется для изготовления сварных нефте- и газопроводов, пригодных к эксплуатации в условиях Крайнего Севера. Для повышения коррозионной стойкости, хладостойкости и выхода годного горячекатаного полосового проката прокатку в черновой группе клетей ведут до толщины раската не менее 4,3 от толщины готовой полосы, чистовую прокатку ведут при температуре начала прокатки, равной от Ar3+70°С до Ar3+170°С, а температуру смотки определяют в зависимости от температуры конца прокатки из соотношения: Тк.чист-370°C≤Tcм≤Тк.чис-270°С.

Изобретение относится к области металлургии и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов.

Изобретение относится к металлургии, преимущественно к производству горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями. Cпособ производства горячекатаных листов для строительных стальных конструкций включает получение заготовки из стали, мас. %: 0,12-0,15 С, 0,15-0,30 Si, 1,55-1,70 Μn, не более 0,30 Cr, не более 0,30 Ni, не более 0,30 Cu, не более 0,003 Ti, не более 0,008 Ν, не более 0,05 Al, S не более 0,005, Ρ не более 0,015, Fe и примеси - остальное, при этом углеродный эквивалент Сэ≤0,45%. Нагрев под прокатку непрерывнолитой заготовки производят до 1180-1200°C не более 9 ч. При этом листов конечной толщины до 20 мм черновую прокатку осуществляют до достижения раскатом толщины 90-95 мм, чистовую прокатку начинают при температуре 840-860°С и завершают при температуре 770±10 до конечной толщины до 20 мм, после чего листы подвергают ускоренному охлаждению от температуры не менее 750°С до температуры 655±5°С. Для листов конечной толщины свыше 20 мм до 30 мм черновую прокатку осуществляют до достижения раскатом толщины 115-120 мм, чистовую прокатку начинают при температуре 810-830°С и завершают при температуре 780±10°С до конечной толщины свыше 20 мм до 30 мм, после чего листы подвергают ускоренному охлаждению от температуры не менее 760°С до температуры 600±20°С. Технический результат заключается в получении проката толщиной до 30,0 мм с гарантированным пределом текучести не менее 345 МПа, а также улучшенным комплексом вязкостных и пластических свойств. 2 н.п. ф-лы, 3 табл.

Изобретение относится к производству толстых листов из кремнемарганцовистой стали на реверсивных станах. Для обеспечения относительного сужения при испытании на растяжение в направлении толщины не менее 35% для изготовления сварных металлоконструкций используют непрерывнолитую заготовку толщиной не менее 250 мм из стали, содержащей, мас.%: 0,09-0,12 C, 0,50-0,65 Si, 1,30-1,70 Mn, Cr≤0,10, Ni≤0,30, Cu≤0,10, Ti≤0,03, N≤0,008, Al≤0,05, S≤0,010, P≤0,018, Fe - остальное, при этом аустенизацию непрерывнолитой заготовки производят до температуры 1190-1210°C, чистовую прокатку ведут с суммарным обжатием не менее 30% и единичными обжатиями не менее 7%. Для листов конечной толщины до 90 мм включительно чистовую прокатку начинают при температуре 750-780°C, а для листов конечной толщины более 90 мм - при температуре 720-740°C, а завершают при температуре 700-740°C. 2 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии. Для исключения возникновения дефектов кромки при производстве горячекатаной кремнистой стали и получения горячекатаной кремнистой стали с поверхностью хорошего качества способ изготовления горячекатаной кремнистой стали включает нагрев, черновую прокатку и чистовую прокатку плоской заготовки из кремнистой стали. Операция нагрева включает стадии предварительного нагрева, нагрева и выдержки с помощью нагревательной печи. Стадия предварительного нагрева удовлетворяет следующей формуле (1): где VТр - скорость роста температуры на стадии предварительного нагрева, °C/мин; t - общее время нагрева плоской заготовки в нагревательной печи t=180-240 мин, TС - начальная температура плоской заготовки при поступлении в печь, °C. 5 з.п. ф-лы, 4 табл., 7 ил.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов из низколегированных трубных сталей. Для повышения прочностных свойств листов из стали класса прочности К56 при сохранении пластичности и ударной вязкости листов толщиной 14-24 мм непрерывнолитой сляб нагревают, подвергают черновой и чистовой прокатке, ускоренному охлаждению готового раската до заданной температуры, при этом непрерывнолитой сляб получают из стали, содержащей, мас.%: углерод 0,05-0,07, кремний 0,30-0,55, марганец 1,40-1,55, сера не более 0,005, фосфор не более 0,015, алюминий 0,025-0,045, азот не более 0,008, титан 0,015-0,030, ниобий 0,020-0,035, бор 0,0010-0,0025, железо и примеси остальное, температуру конца прокатки устанавливают 840±15°С, а ускоренное охлаждение производят со скоростью 8,0-16,0°С/сек до температуры, определяемой из соотношения: Тк.о = 4·104·В+560±15°С, где Тк.о - температура конца ускоренного охлаждения, °С; В - содержание в стали бора, мас.%. 2 табл., 1 пр.

Изобретение относится к области горячей прокатки. Экранирующая панель содержит установленный на двух одинаковых цилиндрических стержнях набор одинаковых металлических труб, наполненных теплоизолятором, а также кронштейнов и отбойника, соединяющих указанные стержни с корпусом панели. Повышение работоспособности и надежности устройства обеспечивается за счет того, что длина цилиндрического участка стержня превышает толщину набора труб, кронштейнов и отбойника на величину их теплового расширения. В наборе обеспечена возможность полного охвата зазором одновременно боковых стенок каждой трубы. В местах расположения в наборе кронштейнов и отбойника зазор между боковыми стенками труб увеличен на значение толщины этих деталей. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургии и может быть использовано при производстве горячекатаного и горячекатаного травленого проката толщиной 3,0-6,0 мм, предназначенного для изготовления дисков и ободьев колес автомобилей методом холодной штамповки. Способ включает выплавку стали, внепечную обработку, непрерывную разливку, нагрев сляба под горячую прокатку, прокатку его в черновой и чистовой непрерывной группах клетей широкополосного стана, охлаждение полосы водой на отводящем рольганге с последующей смоткой в рулон. Повышение пластичности и штампуемости проката обеспечивается за счет того, что регламентированы состав стали, режимы прокатки, термообработки и смотки. 3 з.п. ф-лы, 4 табл.

Изобретение относится к черной металлургии, в частности к низколегированным сталям повышенной теплоустойчивости, применяемым при производстве котлов и сосудов, работающих под высоким давлением, в том числе для производства изделий объектов атомной энергетики. Для обеспечения высокого уровня теплоустойчивости и ударной вязкости способ включает нагрев слябов в диапазоне температур 1230-1250°С, последующую многопроходную реверсивную черновую и чистовую прокатку с регламентированными температурами начала и конца прокатки, при этом черновую прокатку завершают при температуре не более 1000°С, чистовую прокатку начинают в диапазоне температур 960-1000°С и заканчивают в диапазоне температур 820-880°С. Чистовую прокатку ведут за 7-9 проходов. Сляб получают из стали, содержащей, мас. %: С=0,22-0,26, Si=0,30-0,40; Mn=0,75-1,10, Al=0,01-0,035, Nb=0,03-0,05, Cr не более 0,3, Ni не более 0,3, Cu не более 0,3, S не более 0,010, P не более 0,015, N не более 0,008, V не более 0,05, Ti не более 0,05, Fe - остальное. Температура конца чистовой прокатки составляет 820-850°С для листов толщиной 8-20 мм и 850-880°С для листов 20,1-50,0 мм. В горячекатаном листе обеспечивается феррито-перлитная структура с размером зерна не крупнее 9 балла. 2 з.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к прокатному производству и может быть использовано при производстве широких полос с поперечной разнотолщинностью не более 0,06 мм на полунепрерывных станах горячей прокатки. Способ включает прокатку в черновой и чистовой группах клетей. Повышение точности геометрических размеров по толщине полос обеспечивается за счет того, что в черновой группе клетей производят не более 3 чистовых проходов, а в чистовой группе клетей в рамках одной кампании рабочих валков в первых двух клетях прокатку производят в рабочих валках с вогнутостью не более 0,30 мм от радиуса исходной цилиндрической бочки, а в последующих клетях - в рабочих валках с вогнутостью не более 0,15 мм, при этом в начале кампании рабочих валков производят разогрев бочек рабочих валков путем прокатки не более 30 полос шириной В1<(В-50), мм, последующую прокатку не менее 900 т проката шириной проката шириной В2, мм, при этом В≤В2≤(В+50), и затем прокатку не более 1500 т проката заданной ширины В, мм, в конце кампании рабочих валков. 1 табл.

Изобретение относится к области прокатного производства и может быть использовано при производстве горячекатаных листов толщиной до 33 мм. Для обеспечения заданных механических свойств готового проката получают непрерывнолитые заготовки из стали, содержащей, мас.%: 0,07-0,10 углерода, 0,20-0,35 кремния, 1,60-1,75 марганца, хрома не более 0,10, никеля не более 0,30, меди не более 0,20, 0,010-0,025 титана, 0,065-0,090 ванадия, 0,040-0,060 ниобия, молибдена не более 0,5, азота не более 0,008, 0,020-0,050 алюминия, серы не более 0,004, фосфора не более 0,015, железа и неизбежные примеси – остальное и имеющей суммарное содержание V+Ti+Nb, не превышающее 0,15%, затем осуществляют нагрев заготовки до 1200±10°С, черновую прокатку с регламентированным обжатием в раскат толщиной, кратной 4-5 толщинам готового листа, подстуживание, чистовую прокатку при температуре начала 740-780°С и - завершения 730-770°С, ускоренное охлаждение до 580-680°С и охлаждение на воздухе с получением структуры, преимущественно состоящей из бейнита и феррита. 3 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии и может быть использовано при горячей прокатке конструкционных низколегированных марок стали на реверсивных станах. Для сохранения эксплуатационных свойств при низких температурах, при производстве толстых листов осуществляют аустенизацию непрерывнолитой заготовки при 1200-1220°С, чистовую прокатку, которую начинают при 780-820°С и заканчивают при 740-760°С с суммарным обжатием не менее 80% до конечной толщины листа не более 15 мм. Сталь имеет химический состав, мас.%: 0,17-0,20 С, 0,15-0,25 Si, 1,25-1,40 Mn, S≤0,006, Р≤0,018, Cu≤0,10, Nb≤0,01, V≤0,01, 0,02-0,05Al, Ti≤0,03, Fe неизбежные примеси - остальное. При производстве листов толщиной 15-25 мм из стали того же состава аустенизацию непрерывнолитой заготовки ведут при 1200-1220°С, чистовую прокатку начинают при 830-860°С и заканчивают при 760-790°С с суммарным обжатием не менее 75%, при этом после чистовой прокатки листы ускоренно охлаждают до температуры 620-670°С. Представлены также варианты производства листов толщиной 40-80 мм, 80-120 мм, 120-160 мм с тем же составом стали. Во всех вариантах способа прокатку на черновой стадии ведут с разовыми обжатиями не менее 7%. 6 н. и 6 з.п. ф-лы, 3 табл.
Наверх