Способ определения температурного распределения вдоль оптоволоконной линии

Изобретение относится к области оптических измерений и касается способа определения температурного распределения вдоль оптоволоконной линии. Способ включает в себя выделение реального сигнала, обусловленного электронным фототоком из измеряемой суперпозиции реального (электронного) и «дырочного» сигналов. При этом измеряют интенсивность комбинационного рассеяния света с помощью фотодиода, выражают передаточную функцию фотодиода как свертку где gm - измеренный отклик в заданном промежутке, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок, и последующими преобразованиями выделяют реальный сигнал, обусловленный электронным фототоком. Технический результат состоит в повышении точности измерений. 5 ил.

 

Область техники

Изобретение относится к технике измерения температурного распределения в протяженных объектах и может быть использовано, в частности, в нефтегазодобывающей промышленности для измерения температуры в добывающих скважинах на всем их протяжении, в энергетике, капитальном и гражданском строительстве в качестве систем противопожарной сигнализации с улучшенным пространственным разрешением и точностью измерения.

Уровень техники

Известен способ определения температурного распределения вдоль оптоволоконной линии, реализуемый при работе волоконно-оптического устройства для измерения температурного распределения (патент RU 2221225) [1]. Устройство содержит импульсный источник оптического излучения, включающий лазер, чувствительный элемент датчика в виде оптического волокна и узел обработки сигналов, включающий таймер, направленный оптический ответвитель, узел спектрального разделения и фотоприемные модули, снабжено фотоприемником синхронизации. Оптическое волокно чувствительного элемента датчика выполнено многомодовым. Лазер импульсного источника оптического излучения является одномодовым волоконным с накачкой от полупроводникового лазера. Направленный оптический ответвитель выполнен связывающим одномодовое и многомодовое оптические волокна, причем импульсный источник оптического излучения связан с одномодовым входом направленного оптического ответвителя, узел спектрального разделения связан с многомодовым входом направленного оптического ответвителя, фотоприемник синхронизации связан с одномодовым выходом оптического ответвителя. Узел обработки сигналов дополнительно содержит аналого-цифровые преобразователи и цифровые накопители сигналов. Фотоприемные модули связаны с выходами узла спектрального разделения и с аналого-цифровыми преобразователями, выходы которых связаны с входами цифровых накопителей сигналов. Таймер связан с аналого-цифровыми преобразователями. Устройство может быть снабжено узлом термостабилизации опорного отрезка многомодового оптического волокна. Одномодовый волоконный лазер выполнен на основе световода, легированного ионами редкоземельных элементов.

Недостатками данного изобретения является то, что при измерении учитывается импульсный отклик фотодиода, включающий две составляющие: отклик электронной проводимости и дырочной. Информацию о реальной температуре несет ток электронной проводимости. Вклад дырочного тока составляет до 5%. Это приводит к уменьшению пространственного разрешения и ошибки измерения температуры при резких изменениях его значения вдоль длины волокна. Данное изобретение является ближайшим аналогом заявляемого изобретения, т.е. прототипом.

Раскрытие изобретения

Задача, решаемая изобретением: создание способа определения температурного распределения вдоль оптоволоконной линии, основанного на выделении реального сигнала, обусловленного электронным фототоком из измеряемой суперпозиции реального (электронного) и «дырочного» сигналов.

Технический результат состоит в повышении точности измерений температурного распределения распределенного оптоволоконного датчика.

Поставленная задача решена созданием способа определения температурного распределения вдоль оптоволоконной линии, состоящего в том, что измеряют интенсивность комбинационного рассеяния света с помощью фотодиода, выражают передаточную функцию фотодиода как свертку где gm - измеренный отклик сигнала вдоль оптоволоконной линии, t - текущее время измерения, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок и последующими преобразованиями выделяют реальный сигнал, обусловленный электронным фототоком.

Обоснование разработанного способа

Известно, что комбинационное рассеяние (КР) света сопровождается появлением дополнительных сдвинутых по частоте спектральных компонент в рассеянном свете. Количество и спектральное положение этих линий зависят от структурных характеристик рассеивающего вещества. В КР происходит обмен энергией между падающим фотоном и молекулой вещества: если молекула переходит из основного состояния в возбужденное, то рассеянный фотон смещается по частоте в красную область спектра и таким образом генерируется стоксова компонента КР (Рис. 1). Возможен также и обратный процесс, когда структурная молекула теряет энергию и перерассеянный фотон с более высокой энергией генерирует антистоксову линию в синей области спектра относительно линии накачки. Очевидно, что заселенность возбужденного уровня напрямую зависит от температуры вещества, а значит, и интенсивность анти-стоксовой компоненты будет проявлять температурную зависимость. Таким образом, регистрируя временную динамику интенсивности антистоксовой компоненты КР при зондировании импульсным излучением, с помощью такого датчика можно проводить измерения температуры вдоль всего волокна. Отношение интенсивностей стоксовой Is и антистоксовой Ias компонент описывается известной формулой:

где λs и λas - длины волн стоксовой и антистоксовой линий, kB - постоянная Больцмана, h - постоянная планка. Коэффициенты затухания стоксовой и антистоксовой волн различны и зависят от температуры, что должно быть принято во внимание для корректного расчета температуры.

На рис. 1 приведен спектр комбинационного рассеяния в оптоволокне, измеренный в обратном направлении по отношению к распространению лазерного импульса. Видно, что интенсивность антистоксовой линии очень мала (на 30 дБ слабее амплитуды упругого рэлеевского рассеяния), и поэтому регистрация отношения интенсивностей стоксовой и антистоксовой компонент является сложной задачей. Кроме этого мощность зондирующего излучения не должна превышать нескольких Ватт, чтобы избежать проявления таких нелинейных эффектов, как вынужденное комбинационное (рамановское) рассеяние и вынужденное рассеяние Мандельштама - Бриллюэна. Все это требует особенно тщательного подхода к выбору метода спектральной фильтрации полезного сигнала и качеству регистрирующей аппаратуры.

В рамановском измерителе температуры (RDTS) значение температуры вычисляется из отношения амплитуд стоксовой и антистоксовой компоненты рассеяния (обратного) от мощного оптического импульса по вышеуказанной формуле. Поэтому любое искажение исходной амплитуды приводит к искажению температурного распределения.

Входной тракт прибора схематически представлен на рис. 2, где TIA - транс-импедансный усилитель, как правило, составляет единую сборку с фотоприемником (ФД модуль); HFA - high frequency amplifier - высокочастотный усилитель, собранный на дискретных элементах для согласования выходного сигнала ФД модуля с оптимальным диапазоном DAQ; DAQ - модуль регистрации данных (АЦП).

На рис. 3 также схематично изображены примеры идеального сигнала (спадающая экспонента с показателем, равным затуханию оптического сигнала в волокне) и реального сигнала. Здесь W(p) и W(p)-1 - это прямая и обратная передаточные функции всего входного тракта. Один из способов вычисления этих функций - подача образцового (прямоугольного) сигнала на вход и аппроксимация выходного сигнала известными функциями. При этом обратная функция вычисляется при помощи преобразования Лапласа. Зная обратную функцию передаточного тракта, можно восстановить исходный сигнал. Для этой процедуры еще встречается определение «обратная свертка».

Таким образом, нам требуется определить минимальный набор функций, по которым можно разложить передаточную функцию входного тракта и реализовать способ восстановления исходного сигнала по произвольному измеренному сигналу. Решение этой задачи даст нам избавление от нелинейностей калибровок, что позволит получить линейное распределение с точностью лучше 1С.

Отклик, приведенный на рис. 3, обусловлен существенным отличием постоянных времени для импульсной характеристики дырочного и электронного фототока (обусловленного различной подвижностью носителей). InGaAs характеризуется очень большой разницей подвижности - два порядка (Т.Р. Pearsall, J.P. Hirtz, The carrier mobilitiesin Ga0,47In0.53 as grown by organo-metallic cvd and liquid-phase epitaxy. Journal of crystal growth, 54, pp. 127-131 (1981) [2], (S. Datta, K.P. Roenker, M.M. Cahay, William E. Stanchina. Implications of hole vs electron transport properties for high speed Pnp heterojunction bipolar transistors. Solid-State Electronics, 43, pp. 73-79 (1999) [3].

Т.е. получается, что сам фотодиод выдает на выход суперпозицию исходного оптического сигнала, пропущенного через два фильтра первого порядка с отличающимися в ~100 раз постоянными времени. Потом сигнал пропускается через общие фильтры (внутренняя схема фотоприемника, усилитель для фотоприемника и т.д.).

Если мы предполагаем, что верхняя полоса среза ФД, обусловленная электронной проводимостью, нам достаточна (50 МГц), и хотим избавиться только от вклада дырок, то передаточную функцию ФД можно записать как свертку следующим образом:

где gm - измеренный отклик, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок.

Если отклик дырок рассматривать как фильтр первого порядка, то его действие на дельта-функцию (импульсный отклик) можно описать обычной экспоненциальной функцией:

где α - параметр затухания, определяемый частотой среза фильтра, а - амплитуда, фактически определяющая вклад отклика дырок в общий сигнал.

Далее, если подставить (2) в (1) и сделать прямое преобразование Лапласа (L(t)), то свертка функций перейдет в умножение изображений, что в силу линейности самого преобразования можно записать как:

где s=c+iω - комплексная переменная, Gm(s) - изображение измеренного отклика ФД, G0 - изображение исходного сигнала. Таким образом, чтобы «вычесть» из исходного сигнала вклад дырок, необходимо из последнего равенства в (4) выделить G0 и выполнить обратное преобразование Лапласа:

В п. 4 §42 Б.К. Чемоданов, «Математические основы теории автоматического регулирования», Том 2, М. 1977 [4] дается связь между преобразованием Фурье и Лапласа. Главное условие состоит в выборе константы с в переменной s, чтобы интеграл преобразования был сходящимся. В нашем случае (рис. 3) сигнал рефлектограммы конечен по времени. Проблемы может доставлять лишь выброс в отрицательные значения после окончания рефлектограммы, вызванный ограничением полосы входного тракта снизу. Чтобы все было корректно с точки зрения преобразования фурье, нужно избавиться от разрыва на краях исследуемого промежутка, домножить весь сигнал на слабую затухающую экпоненту (exp(-β·t), где β - коэффициент затухания, t - текущее время измерения, β·t<1), такую, чтобы разность уровней в начальной и конечной точках не превышала уровня шума. После применения L-1 (s), необходимо домножить получившийся сигнал на обратную экспоненту. Формулы (3) и (4) в этом случае переписывается следующим образом:

Пример использования способа

В качестве примера использования предлагаемого способа рассмотрим эксперимент, демонстрирующий возможность использования датчика для измерения криогенных температур. Измерительная линия состоит из 4-х отрезков. Первый и последний находятся при нормальных условия, второй и третий с длинами 40 и 25 м соответственно помещены с жидкий азот.

На рис. 4 сплошной линией приведена рефлектограмма для антистоксовой компоненты рассеяния (gm). Здесь вклад медленной дырочной проводимости проявляется в слабом возрастании сигнала на участке после 50-ти метров, тогда как максимальная амплитуда оптического импульса приходится строго на фронт, и после монотонно идет на спад. Аналогичное явление происходит на заднем фронте рефлектограммы в районе 300 метров.

Здесь оптической сигнал уже равен нулю, тогда как электрический отклик с фотодиода затухает до 400 метров. Измерения, проведенные по описанному способу, позволяют избавится от этой паразитной составляющей. Восстановленный сигнал приведен на рис. 4 пунктирной линией.

На рис. 5 приведены результаты вычисления температуры по полученным рефлектограммам. В исходном случае видно, что измерения на участке, находящемся в жидком азоте и имеющем заведомо постоянную температуру, отличаются как от температуры жидкого азота, так и имеют некоторую линию тренда, проходящую через оба отрезка. При этом при использовании описанного метода измерения линия тренда отсутствует (рис. 5, пунктирная линия), а поправка к измеренному значению температуры достигает 10-ти градусов.

Использованные источники информации

[1] патент RU 2221225.

[2] Т.Р. Pearsall, J.P. Hirtz, The carrier mobilitiesin Ga0,47In0. 53 as grown by organo-metallic cvd and liquid-phase epitaxy. Journal of crystal growth, 54, pp. 127-131 (1981).

[3] S. Datta, K.P. Roenker, M.M. Cahay, William E. Stanchina. Implications of hole vs electron transport properties for high speed Pnp heterojunction bipolar transistors. Solid-State Electronics, 43, pp. 73-79 (1999).

[4] Б.К. Чемоданов, «Математические основы теории автоматического регулирования», Том 2, М., 1977.

Способ определения температурного распределения вдоль оптоволоконной линии, состоящий в том, что измеряют интенсивность комбинационного рассеяния света с помощью фотодиода и выделяют реальный сигнал, обусловленный электронным фототоком, при этом передаточную функцию фотодиода выражают как свертку

где gm - измеренный отклик сигнала вдоль оптоволоконной линии, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок, t - текущее время измерения,
рассматривают отклик дырок как фильтр первого порядка, и его действие на дельта-функцию (импульсный отклик) описывают экспоненциальной функцией

где α - параметр затухания, определяемый частотой среза фильтра, а - амплитуда, фактически определяющая вклад отклика дырок в общий сигнал,
подставляют (2) в (1) и осуществляют прямое преобразование Лапласа (L(t)), получают умножение изображений, что в силу линейности самого преобразования, записывают как

где s=c+iω - комплексная переменная, Gm(s) - изображение измеренного отклика ФД, G0 - изображение исходного сигнала g0,
выделяют G0 и выполняют обратное преобразование Лапласа:

выбирают константу с в переменной s так, чтобы интеграл преобразования был сходящимся, домножают измеренный сигнал gm на exp(-β·t), где β - коэффициент затухания, t - текущее время измерения, β·t<1, производят обратное преобразование Лапласа L-1 (s) и домножают получившийся сигнал на обратную экпоненту exp(β·t), вычисляют исходный искомый сигнал g0 из формул (3) и (4) следующим образом:



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для контроля температуры компонентов электронного модуля, использующего в качестве коммуникационной среды оптическое излучение, например может быть использовано в составе высокоскоростных оптических каналов микросхем.

Техническое решение относится к устройствам для измерения величины износа и температуры изделий при трении. Устройство для измерения величины износа и температуры изделия при трении содержит последовательно соединенные источник лазерного излучения, светоделитель и как минимум один измерительный волоконно-оптический световод, второй конец которого размещен в изделии на глубине Н, равной или меньшей расстояния R до трущейся поверхности.

Изобретение относится к измерительной технике и может быть использовано для распределенного измерения температуры в нефтяной, газовой промышленности, в электроэнергетике и так далее.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры в расплавах, в особенности в расплавах металла или криолита с точкой плавления выше 600оС с температурным сенсором.

Раскрыт способ обнаружения опасной ситуации при помощи оптоволоконной сенсорной системы. Опросное устройство содержит источник света, спектрометр и устройство обработки данных.

Изобретение относится к области измерительной техники и может быть использовано для мониторинга приборов и элементов мощных систем электроэнергетики. Заявлен волоконно-оптический измеритель температуры, содержащий расположенные по ходу излучения источник света, входное оптическое волокно, датчик, выходное оптическое волокно, фотоприемник, электронную систему индикации выходного оптического сигнала.

Изобретение относится к использованию оптоволоконных систем измерения температуры и может быть использовано в скважинах с водородной средой. Техническим результатом является обеспечение возможности работы волоконно-оптического датчика в условиях с более высокой температурой и повышение надежности его работы в течении всего срока службы.

Изобретение относится к технике оптических измерений и может быть использовано для измерения параметров физических полей (температура) с помощью оптических датчиков.

Изобретение относится к области приборостроения и может быть использовано для создания распределительных систем измерения температуры и деформации. Бриллюэновская система для отслеживания температуры и деформации содержит одно- или двухстороннее волокно с множеством волоконных брэгговских решеток (ВБР) на разных длинах волн и лазерную систему с задающей накачкой, настраиваемую в диапазоне существенно большем, чем бриллюэновский сдвиг.

Изобретение относится к области приборостроения и может быть использовано при измерении параметров в расплавленных массах. Заявленное устройство предназначено для измерения температуры в массах расплавленного металла или расплавленного криолита, имеющих температуру плавления выше 500°С.

Изобретение относится к области термометрии и может применяться для решения широкого круга задач в нефтяной и газовой промышленности. Располагают чувствительное оптическое волокно в тепловом контакте с объектом, организуют рефлектометрическую измерительную схему, содержащую оптический путь обратно рассеянного излучения, Подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного антистоксова рамановского сигнала, к фотоприемнику. Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно. Осуществляют фотоприем, оцифровку и цифровое накопление сигнала обратно рассеянного антистоксова рамановского излучения до достижения заданного отношения сигнал/шум. Затем подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения, к фотоприемнику. Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно. Осуществляют фотоприем, оцифровку и цифровое накопление обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения до достижения заданного отношения сигнал/шум. Температурное распределение в объекте определяют расчетом исходя из отношения обратно рассеянных сигнала антистоксова рамановского излучения и опорного сигнала стоксова рамановского или рэлеевского излучения, после чего осуществляют архивацию полученного результата или передачу его вовне. Также предложено устройство для реализации указанного выше способа определения температурного распределения в объекте. Технический результат - уменьшение влияния на точность измерений различия характеристик двух фотоприемных каналов при достаточном для регистрации уровне мощности двух принимаемых сигналов - измерительного и опорного. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения температуры расплава. Устройство для измерения температуры расплава, в частности расплавленного металла, содержащее оптическое волокно и направляющую трубку, имеющее погружной конец и второй конец, противоположный погружному концу. Оптическое волокно частично располагается в направляющей трубке. Внутренний диаметр направляющей трубки больше наружного диаметра оптического волокна. Причем первая втулка располагается на погружном конце или внутри направляющей трубки близко к погружному концу направляющей трубки. При этом оптическое волокно подается через втулку и причем втулка уменьшает зазор между оптическим волокном и направляющей трубкой. Технический результат - повышение информативности измерений температуры за счет поддержания непрерывности измерений посредством непрерывной подачи оптического волокна. 10 з.п. ф-лы, 9 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры при помощи оптического волокна. Заявлено устройство (100) температурной калибровки оптоволоконного температурного датчика, предназначенное для оборудования оптического волокна (10) оптоволоконного температурного датчика. Устройство (100) содержит корпус (101) устройства, содержащий проход (109) для оптического волокна (10), и средство передачи тепловой энергии. Устройство (100) дополнительно содержит по меньшей мере один участок (160a), называемый первой неподвижной точкой, выполненный из первого материала, имеющего по меньшей мере первую заранее определенную температуру изменения состояния. Первая неподвижная точка (160a) термически связана с оптическим волокном (10), когда устройством (100) оборудуется оптическое волокно (10). В корпусе (101) устройства расположено средство теплопередачи таким образом, чтобы во время приведения его в действие средство теплопередачи обменивалось тепловой энергией с первой неподвижной точкой (160a), с тем чтобы вызвать изменение ее состояния при первой заранее определенной температуре. Технический результат - повышение точности температурных измерений. 3 н. и 10 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области электротехники и может быть использовано для определения места несанкционированного подключения нагрузки к линии электрической передачи. Предложено определение места несанкционированного подключения электрической нагрузки к линии электрической передачи при помощи тепловых карт, что достигается в результате использования датчиков температуры, расположенных на определенных участках линии электрической передачи по всей ее протяженности, при помощи которых формируют информационную базу тепловых карт линии электрической передачи, работающей на холостом ходу на протяжении года, или 365 дней. Каждая тепловая карта учитывает влияние погодной температуры на температуру нагрева линейных проводов протяженной линии электропередачи. Величина температуры погоды позволит активировать тепловую карту, размещенную в информационной базе процессора компьютера, в который будет поступать для сравнения и измеренная действующая тепловая карта. Сравнение содержания тепловых карт в виде температур позволит выявить место несанкционированного подключения электрической нагрузки к линии электрической передачи. Технический результат - повышение оперативности определения места несанкционированного подключения нагрузки к ЛЭП. 8 ил.

Устройство относится к технике оптических измерений, в частности к устройствам для измерения параметров физических полей (температура, давление, натяжение и т.д.) с помощью оптических датчиков. В заявленном устройстве для измерения параметров физических полей последовательно соединены источник четырехчастотного сигнала, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический кабель; а также первый фотоприемник, первый амплитудный детектор, второй амплитудный детектор, контроллер определения параметра физического поля. При этом первый амплитудный детектор подключен к первому входу контроллера определения параметра физического поля, а второй амплитудный детектор подключен к его второму входу. При этом в устройство введены оптический разветвитель сигнала, два оптических избирательных фильтра, второй фотоприемник, два полосовых фильтра, при этом выход второго волоконно-оптического кабеля подключен к оптическому разветвителю сигнала, а первый выход оптического разветвителя сигнала через последовательно соединенные первый оптический избирательный фильтр, первый фотоприемник, первый полосовой фильтр подключен к первому амплитудному детектору, а второй выход оптического разветвителя сигнала через последовательно соединенные второй оптический избирательный фильтр, второй фотоприемник, второй полосовой фильтр подключен ко второму амплитудному детектору. Технический результат - повышение точности измерений и упрощение конструкции. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области термометрии и может быть использовано для измерения температуры для выработанного пространства действующего забоя при добыче угля в угольной шахте. Предложена, выполненная на основе решетки, волоконно-оптическая система текущего контроля и измерения температуры для выработанного пространства действующего забоя при добыче угля в угольной шахте. В выработанном пространстве (12) размещают от 3 до 5 станций (10) текущего контроля. Каждая станция (10) текущего контроля содержит от 10 до 12 выполненных на основе решетки волоконно-оптических датчиков (11) температуры. В каждой станции (10) текущего контроля выполненные на основе решетки волоконно-оптические датчики (11) температуры последовательно соединены между собой посредством отрезков (100) оптоволокна типа "пигтейл". Выводные концевые отрезки (100) оптоволокна типа "пигтейл" для выполненных на основе решетки волоконно-оптических датчиков (11) температуры соединены с волоконными световодами (80 и 81) обеспечения связи. Волоконные световоды (80 и 81) обеспечения связи соединены с оптоволоконным кабелем (6), используемым для передач при производстве горнорудных работ, посредством соединительной коробки (7) для волоконных световодов. Оптоволоконный кабель (6), используемый для передач при производстве горнорудных работ, соединен с вводным концом выполненного на основе решетки волоконно-оптического статического демодулятора (1). Выводной конец выполненного на основе решетки волоконно-оптического статического демодулятора (1) соединен с компьютером текущего контроля (2). Также раскрыт способ текущего контроля и измерения температуры на основе решеток и волоконных световодов для выработанного пространства действующего забоя при добыче угля в угольной шахте. Технический результат - обеспечение высокой точности измерения температуры, повышение оперативности текущего контроля температуры в выработанном пространстве действующего забоя при добыче угля. 2 н.п. ф-лы, 1 ил.

Комплексная система текущего контроля для обеспечения безопасности в подземных угольных шахтах с использованием выполненных на основе решетки волоконно-оптических датчиков, содержащая надземную часть и подземную часть. Надземная часть содержит выполненный на основе решетки волоконно-оптический статический демодулятор, систему обработки компьютерных данных, принтер, сервер и клиента. Подземная часть содержит блок оптических переключателей, подсистему текущего контроля безопасности действующего забоя и подсистему текущего контроля безопасности тоннеля. Обе из подсистем текущего контроля содержат по меньшей мере одну базовую станцию текущего контроля. Каждая базовая станция текущего контроля содержит по меньшей мере одну станцию текущего контроля. Каждой станции текущего контроля соответствует совокупность выполненных на основе решетки волоконно-оптических датчиков. Система текущего контроля использует множество станций текущего контроля, выполняет текущий контроль множества параметров под землей, объединена с выполненными на основе решетки волоконно-оптическими датчиками, использует полностью оптоволоконное измерение и волоконные световоды для передачи сигнала, является безопасной по своей природе, имеет высокую сопротивляемость электромагнитным помехам, позволяет достичь хорошей результативности текущего контроля и реализует совместное использование данных при непрерывном оперативном долгосрочном текущем контроле в режиме реального времени и добыче на больших площадях, благодаря чему улучшается управление безопасной добычей угля, обеспечивается возможность эффективного уменьшения возникновения несчастных случаев в угольной шахте и возможность безопасной и высокоэффективной добычи угля. 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и может применяться в качестве основы системы контроля технического состояния конструкций. Способ включает организацию рефлектометрической оптической схемы. Генерируют последовательность импульсов излучения или частотно-модулированного оптического излучения. Вводят указанное излучение посредством рефлектометрической оптической схемы в оптическое волокно. Перед фотоприемом рассеянного в обратном направлении излучения осуществляют спектральную фильтрацию рассеянного в обратном направлении излучения с выделением комбинационного излучения. Строят рефлектограмму. О величине механической деформации участков оптического волокна судят по интенсивности рассеянного в обратном направлении этими участками комбинационного излучения. Используют оптическое волокно, имеющее локальные участки, заведомо не испытывающие продольных механических деформаций, с известными координатами по длине указанного оптического волокна в качестве реперов. Организуют опорный канал, в качестве которого используют рефлектограмму, построенную на основе дополнительной регистрации интенсивности рэлеевского рассеяния излучения. Помимо распределения механических деформаций по длине оптического волокна дополнительно измеряют температурное распределение по отношению интенсивностей антистоксовой и стоксовой компонент комбинационного рассеяния излучения. Технический результат - упрощение технологии измерения распределения механических деформаций по длине оптического волокна. 4 з.п. ф-лы, 2 ил.

Группа изобретений относится к области оптических измерений одновременно нескольких параметров изделий, в частности к устройствам для измерения величины износа и температуры изделий при трении. Устройство для измерения величины износа и температуры изделия при трении по его первому варианту и второму вариантам содержат, как минимум, два последовательно сформированных внутриволоконных оптических датчика величины износа и температуры изделия при трении на основе брэгговских решеток с участком измерительного волоконно-оптического световода между ними, не занятым брэгговской решеткой, равным по длине, как минимум, одному ее периоду. Кроме того, устройство содержит, например, как минимум, два последовательно расположенных внутриволоконных оптических датчика величины износа и температуры изделия при трении, выполненных на основе брэгговской решетки с фазовым π-сдвигом; интерферометра Фабри-Перо, построенного с использованием брэгговских решеток; брэгговских решеток, настроенных на одну рабочую длину волны; брэгговских решеток, настроенных на разные рабочие длины волн. Устройство для измерения величины износа и температуры изделия при трении по его второму варианту в отличие от его первого варианта содержит дополнительно введенный разветвитель, установленный за циркулятором в разрыв измерительного волоконно-оптического световода. К первому выходу разветвителя последовательно подключены первый отрезок и второй конец измерительного волоконно-оптического световода, а ко второму выходу разветвителя - второй отрезок измерительного волоконно-оптического световода, предназначенные для размещения в изделии, при этом на втором конце измерительного волоконно-оптического световода, предназначенного для размещения в изделии, сформирован, как минимум, один внутриволоконный оптический датчик величины износа и температуры изделия при трении на основе брэгговской решетки. Технический результат – повышение диапазона непрерывного измерения величины износа без существенного усложнения устройства. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры и натяжения оптического волокна. Предложено устройство для волоконно-оптического измерения температуры и/или натяжения на основе рассеяния Бриллюэна, содержащее по меньшей мере один лазерный источник (1) света, выполненный с возможностью испускания лазерного излучения, оптическое волокно (5), в которое вводят лазерное излучение и из которого выводят генерированный на основе рассеяния Бриллюэна бриллюэновский сигнал. Устройство также содержит датчики, детектирующие выведенные бриллюэновские сигналы, средства обработки данных, определяющие на основе детектированных бриллюэновских сигналов локальную температуру и/или натяжение, по меньшей мере, участков оптического волокна (5), по меньшей мере один оптический поляризационный разделитель (10, 11) пучка, разделяющий выведенные бриллюэновские сигналы на две компоненты (12, 13) с отличающейся поляризацией, по меньшей мере один оптический объединитель (16, 17), добавляющий лазерное излучение к бриллюэновскому сигналу. Технический результат – повышение точности получаемых данных. 2 н. и 11 з.п. ф-лы, 3 ил.
Наверх