Способ изготовления фильтра интерференционного



Способ изготовления фильтра интерференционного
Способ изготовления фильтра интерференционного
Способ изготовления фильтра интерференционного

 


Владельцы патента RU 2580179:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") (RU)

Способ изготовления фильтра интерференционного включает в себя оптическое соединение между собой N цилиндрических оптических элементов с образованием многокомпонентного интерференционного фильтра. На боковую поверхность каждого оптического элемента наносят интерференционное покрытие, на входной торец многокомпонентного интерференционного фильтра наносят двухмерный растр, посредством которого формируют набор дифрагированных пучков, падающих под разными углами на входной торец фильтра, представляющий собой набор элементарных торцевых площадок многокомпонентного интерференционного фильтра. При этом каждый из элементарных дифрагированных пучков при прохождении цилиндрического оптического элемента многокомпонентного интерференционного фильтра претерпевает многократные отражения внутри каждого оптического элемента с интерференционным покрытием, производя на выходном торце многокомпонентного интерференционного фильтра селекцию электромагнитных волн различной длины. Технический результат заключается в обеспечении возможности селекции совокупности узких спектральных диапазонов длин волн (частот) при освещении интерференционного фильтра потоком излучения от источника с широким спектром длин волн. 3 ил.

 

Изобретение относится к оптическому приборостроению и может быть использовано при разработке технологии изготовления фильтров интерференционных, применяемых в качестве эффективного преобразующего оптического элемента в спектральных и колориметрических приборах, в лидарах для диагностики прозрачности атмосферы, в мультиплексорах волоконно-оптических устройств и в других приборах, а также как собственно оптического интерференционного элемента для демонстрационных учебных и научных применений.

Известен способ изготовления фильтра интерференционного для ультрафиолетовой области спектра (см. Борисов А.Н. Ультрафиолетовый фильтр с глубоким подавлением фона / Гайнутдинов И.С., Несмелов Е.А. Никитин А.С. Иванов В.А. - Оптический журнал, 2000, т. 67, №10, с. 67-69 - аналог), по которому на обе стороны плоских кварцевых подложек наносят интерференционные слои и затем склеивают их между собой прозрачным клеем.

Наиболее близким техническим решением является способ изготовления фильтра интерференционного (см. Борисов А.Н., Маркин Ю.С. Интерференционный фильтр. Патент RU 117185 U1, МПК G01N 21/00, 20.06.2012 - прототип), по которому на обе стороны плоских кварцевых подложек, имеющих форму параллелограммов, меньшие стороны которых расположены вертикально, наносят интерференционные слои и затем склеивают их между собой прозрачным клеем.

Недостатком известных способов является то, что изготовленные фильтры имеют ограниченные возможности преобразования падающего на них широкого спектра излучения в заданные единичные линии излучения.

Для выделения необходимой той или иной длины волны каждый раз требуется разрабатывать новую технологию производства интерференционных фильтров.

Задачей изобретения является разработка способа изготовления фильтра интерференционного, в котором устранен указанный недостаток прототипа.

Техническим результатом является то, что фильтр интерференционный, изготовленный согласно предлагаемому способу, обеспечивает возможность селекции совокупности узких спектральных диапазонов длин волн (частот) при освещении интерференционного фильтра потоком излучения от источника с широким спектром длин волн.

Технический результат достигается тем, что согласно предлагаемому способу изготовления фильтра интерференционного оптически соединяют между собой N цилиндрических оптических элементов, образуя многокомпонентный интерференционный фильтр, причем на боковую поверхность каждого оптического элемента наносят интерференционное покрытие, на входной торец многокомпонентного интерференционного фильтра наносят двухмерный растр, посредством которого формируют набор дифрагированных пучков, падающих под разными углами на входной торец фильтра, представляющий собой набор элементарных торцевых площадок многокомпонентного интерференционного фильтра, при этом каждый из элементарных дифрагированных пучков при прохождении цилиндрического оптического элемента многокомпонентного интерференционного фильтра претерпевает многократные отражения внутри каждого оптического элемента с интерференционным покрытием, производя на выходном торце многокомпонентного интерференционного фильтра селекцию электромагнитных волн различной длины.

Сущность изобретения поясняется чертежами, где на фиг. 1, фиг. 2, фиг. 3 представлен многокомпонентный интерференционный фильтр, изготовленный согласно предлагаемому способу (на фиг. 1 - общий вид интерференционного фильтра, на фиг. 2 - общий вид интерференционного фильтра, вид со стороны входного торца и вид двухмерного растра, совмещенного с плоскостью входного торца, на фиг. 3 - вид изображения селектируемых световых пучков разных длин волн.

Цифрами на чертежах обозначены:

1 - падающее излучение,

2 - двухмерный растр,

3 - входной торец многокомпонентного интерференционного фильтра,

4 - интерференционное покрытие,

5 - многокомпонентный интерференционный фильтр,

6 - набор цилиндрических оптических элементов,

7 - набор дифрагированных пучков,

8 - набор элементарных торцевых площадок,

9 - углы дифракций элементарных пучков,

10 - выходной торец многокомпонентного интерференционного фильтра.

Отличием предлагаемого способа изготовления фильтра интерференционного является то, что оптически соединяют между собой N цилиндрических оптических элементов 6, образуя многокомпонентный интерференционный фильтр 5, причем на боковую поверхность каждого цилиндрического оптического элемента 6 наносят интерференционное покрытие 4, на входной торец 3 многокомпонентного интерференционного фильтра наносят двухмерный растр 2, посредством которого формируют набор дифрагированных пучков 7, падающих под разными углами на входной торец 3 многокомпонентного интерференционного фильтра, представляющий собой набор элементарных торцевых площадок 8 многокомпонентного интерференционного фильтра, при этом каждый из элементарных дифрагированных пучков при прохождении цилиндрического оптического элемента 6 многокомпонентного интерференционного фильтра претерпевает многократные отражения внутри каждого оптического элемента 6 с интерференционным покрытием, производя на выходном торце 10 многокомпонентного интерференционного фильтра селекцию электромагнитных волн различной длины.

Пример конкретного изготовления фильтра многокомпонентного интерференционного.

Были изготовлены цилиндрические оптические элементы 6. В качестве материала цилиндрических оптических элементов 6 было выбрано кварцевое стекло с показателем преломления 1,45. Световой диаметр цилиндрических оптических элементов 6 составлял в диапазоне от 1 до 5 мм. В процессе изготовления цилиндрических оптических элементов 6 их торцевые поверхности были отполированы по II классу чистоты.

Для изготовления многокомпонентного интерференционного фильтра использовалась вакуумная установка ВУ-1А, обеспечивающая рабочее давление в камере 10-5 мм рт.ст.

Цилиндрические оптические элементы 6 были соединены по методике глубокого оптического контакта, образуя многокомпонентный интерференционный фильтр 5. На боковые поверхности цилиндрических оптических элементов 6 было нанесено напылением в вакууме интерференционное покрытие 4. На входной торец 3 многокомпонентного интерференционного фильтра был нанесен напылением в вакууме двухмерный растр 2. Двухмерный растр 2 характеризуется двумя пространственными частотами νx и νy интерференционных полос или штрихов.

В качестве напыляемого материала был использован алюминий. В результате напыления толщина покрытия составляла в диапазоне 0,8-1,2 мкм.

Экспериментальный образец многокомпонентного интерференционного фильтра позволяет селектировать спектральный интервал длин электромагнитных волн, равный приблизительно 10 нм.

Принцип действия фильтра интерференционного, изготовленного согласно предлагаемому способу, состоит в следующем.

Излучение 1 от источника света поступает на входной торец 3 многокомпонентного интерференционного фильтра 5 (фиг. 1), на который нанесен двухмерный растр 2.

Поток излучения 1 (фиг. 1), падающий на двухмерный растр 2, разделяется на совокупность дифрагированных пучков 7, лежащих в меридиональной и сагиттальной плоскостях (фиг. 3), характеризующихся углами α и β, соответственно.

Дифрагированные пучки под разными углами падения поступают на элементарные торцевые площадки 8 (фиг. 2) многокомпонентного интерференционного фильтра 5. Каждый из элементарных дифрагированных пучков 7 при прохождении оптического элемента 6 претерпевает многократные отражения внутри каждого элементарного оптического элемента с нанесенным на его внешнюю сторону интерференционным покрытием 4.

Таким образом, создана принципиально новая технология изготовления многокомпонентного интерференционного фильтра, позволяющая обеспечить возможность селекции совокупности узких спектральных диапазонов длин волн (частот) при освещении интерференционного фильтра потоком излучения от источника с широким спектром длин волн.

Способ изготовления фильтра интерференционного, характеризующийся тем, что оптически соединяют между собой N цилиндрических оптических элементов, образуя многокомпонентный интерференционный фильтр, причем на боковую поверхность каждого оптического элемента наносят интерференционное покрытие, на входной торец многокомпонентного интерференционного фильтра наносят двухмерный растр, посредством которого формируют набор дифрагированных пучков, падающих под разными углами на входной торец фильтра, представляющий собой набор элементарных торцевых площадок многокомпонентного интерференционного фильтра, при этом каждый из элементарных дифрагированных пучков при прохождении цилиндрического оптического элемента многокомпонентного интерференционного фильтра претерпевает многократные отражения внутри каждого оптического элемента с интерференционным покрытием, производя на выходном торце многокомпонентного интерференционного фильтра селекцию электромагнитных волн различной длины.



 

Похожие патенты:

Изобретение относится к устройству, которое использует явление интерференции световых потоков, а именно к резонатору Фабри-Перо. Устройство содержит скрепленные между собой расположенные с регулируемым воздушным зазором пластины с тонкопленочными проводящими или диэлектрическими зеркалами и проводящими тонкопленочными электродами.
Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит диэлектрическую подложку с нанесенными на нее тонкопленочными слоями диэлектриков с чередующимися высоким показателем преломления nH и низким показателем преломления nL.

Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит полуволновые слои диэлектрика, являющиеся резонаторами, и прилегающие к ним многослойные диэлектрические зеркала, разделяющие один резонатор от другого и от окружающего пространства, все вместе образующие симметричную конструкцию.

Изобретение относится к оптическому приборостроению и касается способа компенсации температурного смещения полосы пропускания интерференционно-поляризационного фильтра.

Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит симметричную конструкцию из чередующихся диэлектрических слоев с высоким и низким показателем преломления, образующую систему однослойных резонаторов, разделенных один от другого и от окружающего пространства прилегающими многослойными зеркалами.

Изобретение может быть использовано в оптических системах для уменьшения ширины полосы пропускания излучения, в том числе излучения мощных диодных лазеров. Интерференционный фильтр содержит прозрачную подложку с расположенной на ней многослойной системой, состоящей из чередующихся прозрачных диэлектрических слоев четвертьволновой оптической толщины из материалов с высоким и низким показателями преломления.

Изобретение относится к оптике и касается способа повышения плотности мощности светового излучения внутри среды. Способ включает в себя формирование среды в виде многослойной периодической структуры, имеющей в спектре пропускания запрещенную зону, а также узкие резонансные пики полного пропускания и направление в эту среду излучения, длина волны которого совпадает с одним из резонансных пиков полного пропускания.

Сканирующее интерференционное устройство содержит подложки с зеркальным покрытием с регулированием положения при помощи пьезоэлемента, подключенного к источнику переменного напряжения.

Изобретение может быть использовано для быстрой перестройки или сканирования спектра пропускания или отражения излучения в сенсорных и спектральных системах. Интерферометр содержит корпус, выполненный в виде двух установленных перпендикулярно к оптической оси фланцев с осевыми сквозными отверстиями, и двухзеркальный резонатор, расположенный в отверстиях фланцев, каждое зеркало которого закреплено на соответствующем фланце с помощью пьезоэлектрического элемента.

Предложен парный оптикопеременный защитный элемент, который включает первое и второе оптикопеременные тонкопленочные многослойные интерференционные устройства, причем первое и второе оптикопеременные интерференционные устройства расположены таким образом, что они могут быть рассмотрены совместно.

Интерференционный фильтр содержит первую отражательную пленку и вторую отражательную пленку, размещенную так, чтобы обращаться к первой отражательной пленке с зазором между ними. В первом варианте первая и вторая отражательные пленки включают пленку сплава Ag-Sm-Cu. Во втором варианте первая и вторая отражательные пленки включают пленку сплава Ag-Bi-Nd. В третьем варианте первая и вторая отражательные пленки включают одну из пленок сплава Ag-Sm-Cu и сплава Ag-Bi-Nd. Первая и вторая пленки сплава имеют толщину менее чем 80 нм. Технический результат - повышение жаропрочности и стойкости к обработке при сохранении отражательной способности, а так же повышение пропускной способности. 7 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к инфракрасной оптоэлектронной технике и предназначено для избирательного поглощения и регистрации теплового излучения. Поглотитель теплового электромагнитного излучения представляет собой трехслойную плоскопараллельную тонкопленочную структуру полуметалл (полупроводник) - диэлектрик - металл. Толщина третьего слоя должна быть достаточной, чтобы практически полностью отразить излучение. Толщины первого и второго слоя подобраны так, чтобы удовлетворять условию самого низкочастотного резонанса поглощения, при котором у волны, отраженной от первой границы структуры, и у волны, прошедшей сквозь структуру, отраженной и вышедшей обратно, фазы сдвинуты на 180°, причем из пар толщин, удовлетворяющих первому условию, должна быть выбрана единственная пара, для которой не только фазы этих волн противоположны, но и амплитуды равны, при этом резонансное отражение равно нулю, а материалы первого и второго слоев структуры должны быть выбраны так, чтобы при нулевом отражении толщина первого слоя была как можно меньшей, обеспечивая максимальную ширину полосы поглощения для данной пары материалов. Технический результат - повышение эффективности приема теплового излучения посредством поглотителя, оптимизированного как по частоте, так и по частотной полосе. 1 табл., 5 ил.
Наверх