Способ количественного определения т-2 токсина методом дифференциальной вольтамперометрии

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля продуктов сельскохозяйственного производства растительного происхождения. Согласно изобретению Т-2 токсин переводят из пробы в раствор и проводят вольтамперометрическое накопление микотоксина в перемешиваемом растворе в течение 30 с при потенциале электролиза (-0,5±0,05) В относительно насыщенного хлоридсеребряного электрода на фоне нитрата калия (KNO3), рН 4,0÷5,0, с последующей регистрацией катодных пиков при скорости развертки 30 мВ/с. Концентрацию Т-2 токсина определяли по высоте пика в диапазоне Еn=(-1,25±0,35) В методом добавок аттестованных смесей. Изобретение обеспечивает расширение диапазона определяемых концентраций Т-2 токсина и разработки экспресс-технологии оценки Т-2 токсина в течение 30-40 мин и возможность использования электродов из нетоксичного материала. 1 ил., 2 табл., 2 пр.

 

Изобретение относится к области аналитической химии, в частности к катодному инверсионно-вольтамперометрическому способу определения микотоксина Т-2 токсина, который представляет собой белое кристаллическое вещество, 8-(3-метилбутирилокси)-4,15-диацетокси-12,13-эпокситрихотец-9-ен-3-ол (известный также, как «Желтый Дождь») - не имеет максимумов поглощения в УФ-спектре при длине волны более 210 нм, не обладает флуоресценцией. Температура плавления Т-2 токсина 151-152°C. Данное изобретение может быть применено в анализе пищевых продуктов и продовольственном сырье и использовано в пищевой, медицинской, фармакологической промышленности и сельском хозяйстве.

Т-2 токсин, брутто-формула (система Хилла) С24Н34О9, молекулярная масса 466,52 г/моль, трихотеценовый микотоксин, который был использован в качестве биологического оружия, продуцируемый плесневым грибом рода фузариум, высокотоксичен для эукариотических организмов. Т-2 токсин относится к семейству химических соединений, получивших название сесквитерпеноидов (sesquiterpenoids). Их отличительной чертой является трихотеценовое кольцо, содержащее олефиновую связь С-9 и эпоксидную группу С-12,13. Т-2 токсин является одним из наиболее токсичных представителей группы трихотеценовых микотоксинов, токсическое действие которых характеризуется поражением кроветворных и иммунокомпетентных органов, запуская стрессовые реакции эндоплазматического ретикулума, развитием геморрагического синдрома, лейкопенией, анемией, поражением функций желудочно-кишечного тракта. Т-2 токсин обладает высокой острой токсичностью (LD для различных видов млекопитающих от 3 до 10 мг/кг массы тела). В связи с этим установлена ПДК на содержание Т-2 токсина в пищевых продуктах на уровне 0,1 мг/кг.

Многие люди предпочитают лечиться фитопрепаратами и травяными сборами, полагая, что они полезнее для здоровья. Некоторые из них могут содержать плесневые грибки, продуцирующие опасные для человека токсины. Для исследования группа ученых Университета Пешавара в Пакистане выбрала 30 образцов наиболее используемых растительных средств, в 90% проб была обнаружена плесень, причем часто содержание микотоксинов превышал допустимые уровни нормы [Bashir Ahmad, Samina Ashiq, Arshad Hussain, Shumaila Bashir, Mubbashir Hussain /Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber Pakhtunkhwa, Paristan // Fungal Biology, Volum 118, Issues 9-10, September-October 2014, Pages 776-784]. Идентификация трихотеценов и, в частности, Т-2 представляет определенные трудности, несмотря на то, что к настоящему времени уже разработана целая система подходов, обеспечивающая контроль за содержанием трихотеценов в продуктах сельскохозяйственного производства растительного происхождения. Официальные методы анализа микотоксинов обычно требуют сложное оборудование, как в случае тонкослойной хроматографии для определения Т-2 токсина, в сочетании с процедурами его извлечения при пробоподготовки проб. В течение примерно последних шестнадцати лет произошел переход к использованию более простых аналитических процедур, основанных на применении аффинных биосенсоров за счет своей простоты и чувствительности. Как правило, использование электрохимических биосенсоров для определения микотоксинов включает использование специфических антител или аптамер в качестве аффинных лигандов, так рекомбенантные антитела и искусстветные рецепторы проявили свою потенциальною значимость в этой области. Таким образом, в связи с высокой токсичностью Т-2 токсина и малыми МДУ к методу определения его в пищевых продуктах питания, кормах сельскохозяйственного производства, БАДах и лекарствах растительного происхождения предъявляются особые требования по чувствительности, селективности и воспроизводимости.

В прототипе описан способ определения Т-2 токсина методом амперометрического обнаружения с использованием электрохимического биосенсора на основе ферментативных продуктов реакции [D. Compagnone, К. Van Velzen, М. Del Carlo, Marcello Mascini, A. Visconti / Chapter 29 Rapid detection of organophosphates, Ochratoxin A, and Fusarium sp. In durum wheat via screen printed based electrochemical sensors // Comprehensive Analytical Chemistry. Volume 49, 2007, Pages 687-718]. В предлагаемом способе определение Т-2 токсина осложнено использованием модифицирующего агента, вследствие чего увеличивается суммарное время анализа.

В аналогичных работах описано определение Т-2 токсина электрохимическим методом с помощью электрохимического иммуносенсора с использованием композиционных материалов, таких как фуллерена С-60, ионной жидкости и ферроцена на хитозановой пленке на стеклоуглеродном электроде [Juan С. Vidal, Laura Bonel, Alba Ezquerra, Susana and others / Electrochemical affinity biosensors for detection of mycotoxins: A review // Biosensors and Bioelectronics. Volum 49, 15 November 2013, Pages 146-158] в продуктах детского питания. Те же авторы провели модифицирование золотого электрода screen-printed с использованием моноклонального антитела для определения Т-2 токсина в диапазоне концентраций от 1 до 1000 нг/мл. В предложенной работе золотой печатный электрод требует обновления и нанесения модификатора, что ограничивает применение данного метода с точки зрения трудоемкости и использования дополнительных химических реагентов.

Задачей заявленного изобретения является применение электродов из нетоксичного материала и определение Т-2 токсина методом дифференциальной вольтамперометрии в присутствии растворенного кислорода без дополнительного введения в фоновый электролит восстановителя, а также расширение диапазона определяемых концентраций и разработки экспресс-технологии оценки Т-2 токсина в течение 30-40 мин.

Поставленная задача достигается тем, что способ количественного определения Т-2 токсина включает перевод Т-2 токсина из пробы в раствор и вольтамперометрическое определение с использованием индикаторного стеклоуглеродного электрода. При этом накопление Т-2 токсина в перемешиваемом растворе проводят в течение 30 с при потенциале электролиза ЕЭ=(-0,5±0,05)В (табл.1) относительного насыщенного хлоридсеребряного электрода на фоне 0,1 М нитрата калия (KNO3) с последующей регистрацией катодных пиков в дифференциальном режиме съемки вольтамперограмм при скорости развертки потенциала 30 мВ/с и концентрацию Т-2 токсина определяют по высоте пика в диапазоне потенциалов Еп=(-1,25±0,35)В методом добавок аттестованных смесей.

В предлагаемом способе установлена способность Т-2 токсина восстанавливаться на углеродных электродах различных типов. Для выбора индикаторного электрода использовали графитовый электрод, пропитанный полиэтиленом с парафином в вакууме, стеклоуглеродный и углеситаловый электроды. Использование таких электродов обусловлено их высокой химической и электрохимической устойчивостью, отсутствием токсической ртути, широкой областью рабочих потенциалов, а также простотой механического обновления поверхности и требованиями техники безопасности. Использование в прототипах модифицированного стеклоуглеродного электрода/графитового печатного электрода с нанесением фермента на рабочую поверхность требует дополнительных химических реактивов и постоянного обновления поверхности электрода перед каждым анализом, что неудобно при проведении серийных анализов. Способность к электровосстановлению Т-2 токсина зависит от материала электрода и состояния его поверхности. Наибольшую величину аналитического сигнала, наименьшее значение остаточного тока и лучшую воспроизводимость сигналов на вольтамперограмме наблюдали на стеклоуглеродном электроде, который и был выбран в качестве рабочего (в аналоге в качестве индикаторного электрода использовали модифицированный СУ электрод с использованием композиционных материалов, таких как фуллерена С-60, ионной жидкости и ферроцена на хитозановой пленке).

Абсолютной новизной является разработка вольтамперометрического определения Т-2 токсина посредством измерения токов аналитического сигнала в приложенном напряжении, экспериментально установленный фоновый электролит - 0,1 М раствора нитрата калия (KNO3) с рН=4-5, который позволяет с хорошей воспроизводимостью проводить ИВ - измерения в присутствии растворенного кислорода без дополнительного введения восстановителя.

Другим отличительным признаком является использование трехэлектродной ячейки: индикаторный электрод - стеклоуглеродный; вспомогательный и сравнения - хлоридсеребряные электроды. Предварительный электролиз при потенциале (-0,5±0,05)В с последующим катодным растворением осадка позволяет регистрировать вольтамперограммы с четко выраженным максимумом при значении потенциала (-1,25±0,35) В.

Установленные условия проведения электродного процесса позволили количественно определять Т-2 токсин на основе реакции электровосстановления. Предлагаемый вольтамперометрический способ позволил сократить количество используемых реактивов, в частности, аптамеров для рекомбинантного моделирования поверхности индикаторных электродов, а также проводить измерения в присутствии растворенного кислорода и существенно улучшить метрологические характеристики анализа Т-2 токсина. Линейный диапазон определяемых концентраций 1-10-5÷6-10-3 мг/мл. Относительное стандартное отклонение (Sr) не более 20%.

Измерения проводили на компьютеризованных вольтамперометрических анализаторах СТА (ООО «ИТМ», г. Томск).

На Фиг. 1 представлено адсорбционное инверсионное вольтамперметрическое определение Т-2 токсина на стеклоуглеродном электроде. Концентрирование 30 сек при -0,5 В (метод добавок): 1-10 мл 0,1 М KNO3; 2-10 мл 0,1 М KNO3+0,02 мл Т-2 токсина; 3-10 мл 0,1 М KNO3+0,04 мл Т-2 токсина.

Пример 1. Определение содержания Т-2 токсина на уровне 0,0002 мг/мл.

В кварцевый стаканчик емкостью 20 мл наливают 10 мл 0,1 М раствора нитрата калия. Стаканчик с раствором помещают в электролитическую ячейку. Опускают в раствор электроды (индикаторный - стеклоуглеродный, вспомагательный и сравнения - хлоридсеребряные). Проводят электронакопление при потенциале (-0,5±0,05) В в течение 30 с при перемешивании раствора. По окончании электролиза начинают регистрацию вольтамперограммы в диапазоне потенциалов от -0,5 до -1,7 В (Фиг. 1, график 1). Отсутствие пиков свидетельствует о чистоте фона. Затем добавляют 0,02 мл стандартного раствора Т-2 токсина концентрации 10 мкг/см3 и проводят электронакопление при потенциале (-0,5±0,05) В в течение 30 с при перемешивании раствора с последующей регистрацией вольтамперограммы в диапазоне (-1,25±0,35) В (отн. ХСЭ) при чувствительности прибора (0,5÷1)·10-9 А/мм (Фиг. 1, график 2). Проводят разметку вольтамперограмм, средняя высота анодного пика составляет 54,45 нА. Далее в стаканчик с анализируемым раствором с помощью дозатора вносят добавку аттестованной смеси Т-2 токсина в объеме 0,02 мл концентрацией 0,01 мг/мл. Электронакопление и регистрацию аналитического сигнала проводят в тех же условиях (Фиг. 1, график 3). Пик регистрируют в диапазоне потенциалов от (-1,25±0,35)В (отн. ХСЭ), средняя высота пика составляет 87,83 нА.

Пример 2. Определение содержание Т-2 токсина в отрубях диетических пшеничных «Дивинка».

При отборе пробы для анализа Т-2 токсина следует руководствоваться требованиями ГОСТа 1243-66 «Сельскохозяйственная продукция. Методы отбора образцов при карантинном досмотре и экспертизе». Пробоподготовку для анализа Т-2 токсина проводят методом жидкостно-жидкостной экстракции с использованием соотношения CH3CN:KCl (9:1) и последующей очисткой гексаном и бензолом. Отобранную пробу измельчают в течение 1-2 минут в кофемолке или лабораторной мельнице. Навеску 20 г измельченного продукта помещают в плоскодонную коническу колбу на 250 мл, добавляют 10 мл 4% раствора хлористого калия и 90 мл ацетонитрила. Встряхивают на аппарате для встряхивания в течение 30 минут. Полученную смесь фильтруют через бумажный складчатый фильтр в мерный цилиндр, отбирают 70 мл фильтрата (аликвота соответствует 14 г исходного образца). В делительную воронку на 250 или 500 мл переносят 70 мл фильтрата, добавляют 50 мл гексана (или гептана). После встряхивания и разделения слоев верхний гексановый слой отбрасывают. Нижний ацетонитрильный слой еще дважды встряхивают с 40 мл гексана, каждый раз отбирая верхний гексановый слой. Ацетонитрильный слой разбавляют 17 мл дистиллированной воды и экстрагируют 50 и 25 мл бензола. Верхние бензольные слои отделяют и сушат безводным сернокислым натрием (10-15 г) в течение 30 минут. Раствор фильтруют через химическую воронку с кусочком ваты в кругло донную колбу на 250 мл. Сернокислый натрий промывают 10 мл бензола и отфильтровывают бензол в ту же круглодонную колбу. Упаривают бензольный раствор на ротационном испарителе при температуре водяной бани не выше 45-50°C досуха. Остаток растворяют в 200-300 мкл ацетонитрила. Полученный раствор является подготовленной пробой для вольтамперометрического измерения. Затем 0,02 мл полученного анализируемого раствора вносят в кварцевый стаканчик с фоновым раствором. Электронакопление и регистрацию аналитического сигнала проводят в тех же условиях. Катодный пик Т-2 токсина фиксируют в диапазоне (-1,25±0,35)В на стеклоуглеродном электроде при чувствительности прибора (1÷5) 10-8 А/мм в дифференциальном режиме съемки вольтамперограмм. Массовую концентрацию Т-2 токсина в пробе оценивают методом добавок аттестованных смесей, измеряя высоту катодных пиков по формуле (1):

где

X1 - содержание Т-2 токсина в анализируемой пробе, мг/мл;

Сд - концентрация аттестованной смеси /АС/ Т-2 токсина, из которой делается добавка к анализируемой пробе, мг/мл;

Vд - объем добавки АС Т-2 токсина, мл;

I1 - величина максимального тока компонента в анализируемой пробе, нА;

I2 - величина максимального тока компонента в пробе с добавкой АС, нА;

Vал - объем навески пробы, взятой для анализа, мл.

Время анализа одной пробы без учета времени пробоподготовки занимает около 20 минут.

Таким образом, впервые установлена способность количественного химического анализа Т-2 токсина по пикам электровостановления его на стеклоуглеродном электроде (в аналогах количественное определение Т-2 токсина проводят на золотом печатном электроде или модифицированном стеклоуглеродном электроде с использованием амперометрических биосенсоров или электрохимических иммунносенсоров).

Предложенный способ прост, не требует большого количества реактивов и трудозатрат и может быть приемлем в любой химической лаборатории, имеющей полярограф, особенно в настоящее время, когда налажен выпуск отечественной и зарубежной электроаппаратуры с контрольным управлением и обработкой данных (анализаторы типа СТА, ТА и др.). Предложенный способ может быть использован в медицине, фармакокинетических и фармацевтических исследованиях, сельскохозяйственной и пищевой промышленности, для разработки методик анализа Т-2 токсина и родственных ему соединений в сложных многокомпонентных биосистемах (кровь, моча). Определение концентраций в диапазоне 1·10-5÷6·10-3 мг/мл важно для пищевой и фармацевтической промышленности, в лекарственных растениях растительного происхождения.

Способ количественного определения Т-2 токсина методом дифференциальной вольтамперометрии

Способ количественного определения Т-2 токсина, включающий перевод Т-2 токсина из пробы в раствор и вольтамперометрическое определение с использованием индикаторного стеклоуглеродного электрода, отличающийся тем, что используют дифференциальную вольтамперометрию, при этом накопление Т-2 токсина в перемешиваемом растворе проводят в течение 30 с при потенциале электролиза Eэ=(-0,5±0,05) В относительно насыщенного хлоридсеребряного электрода на фоне 0,1 М нитрата калия с последующей регистрацией катодных пиков в дифференциальном режиме съемки вольтамперограмм при скорости развертки потенциала 30 мВ/с и концентрацию Т-2 токсина определяют по высоте пика в диапазоне потенциалов Eп=(-1,25±0,35) В методом добавок аттестованных смесей.



 

Похожие патенты:

Изобретение относится к аналитической химии и может быть использовано в исследовательской и производственной практике. Согласно изобретению предлагается определять флуоресцеин натрия вольтамперометрически на стационарном электроде из стеклоуглерода по волне восстановления указанного соединения в кислой среде на фоне 0,1 н.

Изобретение направлено на определение золота (III) в водных растворах методом дифференциально-импульсной вольтамперометрии и может быть использовано в различных отраслях народного хозяйства.

Cпособ определения метионина в комбикормах методом катодной вольтамперометрии согласно изобретению включает следующие операции. Метионин переводят из комбикормового сырья в раствор.

Изобретение относится к технике измерения содержания растворенного газа в жидких и газовых средах, предназначено в основном для применения в океанографической аппаратуре и может быть использовано в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - обеспечение основных метрологических характеристик устройства - чувствительность и долговременная стабильность.

Изобретение относится к медицине и описывает способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение, при этом проводят катодную вольтамперометрию на ртутно-пленочном электроде при потенциале -0.373 В относительно насыщенного хлорид-серебряного электрода на фоне боратного буферного раствора pH 9,18 при постоянно токовой форме развертки потенциала со скоростью 0,06 В/с с областью определяемых содержаний липоевой кислоты от 4.5·106 до 1.1·10-3 моль/л.

Изобретения относятся к технике измерения содержания растворенного газа в жидких и газовых средах, предназначены в основном для применения в океанографической аппаратуре и могут быть использованы в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - упрощение обеспечения основных метрологических характеристик устройства - чувствительности и показателя инерции.

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения RhxIny заключается в том, что родий (III) в растворе переводят в хлоридный комплекс и проводят вольтамперометрическое определение, при этом накопление ионов родия на сажевом электроде в перемешиваемом растворе в присутствии ионов индия (III) проводят в течение 60-120 секунд с последующей регистрацией анодных пиков селективного электроокисления индия из интерметаллического соединения RhxIny при скорости развертки потенциала 60-100 мВ/с при потенциалах электролиза минус 1,2 В на фоновом электролите 1 М HCl, концентрацию ионов родия определяют по высоте анодного пика индия на вольтамперной кривой в диапазоне потенциалов от минус 0,2 до плюс 0,1 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.
Изобретение относится к электроаналитической химии и может быть использовано для анализа питьевой, поверхностной воды и других водных объектов. Способ вольтамперометрического определения фенола в воде и водных объектах с помощью трехэлектродной системы, включающий предварительную модифицирующую электрохимическую обработку стеклоуглеродного индикаторного электрода системы, проведение измерений концентрации фенола в воде, включающих электрохимическое осаждение фенола на модифицированную поверхность индикаторного электрода из анализируемой воды, последующее электроокисление фенола при изменении потенциала индикаторного электрода, регистрацию на вольтамперной кривой аналитического сигнала, идентификацию пика фенола на вольтамперной кривой и определение концентрации фенола по величине пика фенола, характеризующийся тем, что предварительную модифицирующую электрохимическую обработку индикаторного электрода проводят в водном растворе 0,2 М сульфата аммония с добавлением ацетона в соотношении объемных частей 19:1, соответственно.

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др.

Изобретение относится к области аналитической химии и может быть использовано для определения микроконцентраций ртути в водных растворах. Способ определения ртути катодно-анодной вольтамперометрией с использованием электрода и фоновых растворов включает в себя следующую последовательность действий.

Изобретение относится к области аналитической химии. Согласно изобретению предложен способ определения серебра катодной вольтамперометрией из фонового раствора, содержащего 4,5 мл 1 М KNO3 и 0,5 мл 0,1 М этилендиаминтетраацетата натрия (ЭДТА), из образующегося комплексного соединения на стеклоуглеродном электроде. При этом на индикаторный электрод подают потенциал предварительного электролиза (+0,5 В), при котором регистрируется максимальное значение тока пика, и в течение времени накопления от 10 с до 20 с проводят электроконцентрирование определяемого вещества на электроде, регистрируют ток пика при потенциале от +0,04 В до +0,07 В и скорости развертки потенциала 100 мВ/с. Изобретение позволяет на 2-3 порядка снизить нижнюю границу определяемых содержаний до 2,8·10-8 М (Sr=0,20), а также поскольку измерение аналитического сигнала проходит в одну стадию, то это ускоряет процесс определения концентрации серебра. 4 ил, 3 табл.

Изобретение относится к области газового анализа и может быть использовано для решения технологических задач и задач экологического контроля. Концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала. Для этого в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам дисков подают напряжение постоянного тока в пределах 400-500 мВ с подачей положительного полюса на внутренние электроды, посредством которого осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружные электроды - твердые электролиты - внутренние электроды, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления аммиака из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в нее, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление аммиака, определяют концентрацию аммиака в азоте. Изобретение обеспечивает возможность просто и надежно измерять содержание аммиака в азоте. 1 з.п. ф-лы, 3 ил.

Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, включает модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале накопления -1,0 В с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 M раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, и определение концентрации метионина осуществляют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает более чувствительный способ определения метионина в модельных водных растворах методом циклической вольтамперометрии. 2 ил., 1 табл., 2 пр.

Изобретение направлено на определение палладия в руде методом инверсионной вольтамперометрии и может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратах и породах концентраций ионов палладия. Способ определения палладия в руде методом инверсионной вольтамперометрии заключается в том, что палладий (II) переводят в раствор и проводят вольтамперометрическое определение концентрации палладия (II), при этом палладий переводят в растворе в хлоридный комплекс и проводят определение концентрации ионов палладия (II) на графитовом электроде в перемешиваемом растворе, при контролируемом потенциале минус 0,8 В и регистрацией сигнала на фоновом электролите 0,1 М HCl, относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает снижение предела и нижней границы определяемых содержаний палладия (II). 2 ил., 1 табл.

Изобретение относится к аналитической химии и может быть использовано для анализа пищевых продуктов, кормов и кормовых добавок, сельскохозяйственной продукции растительного происхождения, а также в медицине. Способ одновременного количественного определения смеси афлатоксинов В1, В2, G1, G2 методом инверсионной вольтамперометрии включает перевод афлатоксинов из пробы в раствор, использование анодной инверсионной вольтамперометрии в дифференциальном режиме и стеклоуглеродного электрода в качестве индикаторного. Накопление смеси афлатоксинов в перемешиваемом растворе проводят в течение от 30 до 40 с при потенциале электролиза Еэ=(0,0±0,05) В относительно насыщенного хлоридсеребряного электрода на фоне 0,1 M сульфата аммония в диапазоне рН от 4 до 5 с последующей регистрацией анодных пиков в дифференциальном режиме съемки вольтамперограмм при скорости развертки потенциала от 20 до 30 мВ/с. Концентрацию смеси афлатоксинов В1, В2, G1, G2 определяют по высоте пиков в диапазоне потенциалов Εп(G1)=(+0,252±0,001) В, Εп(Β1)=(+0,505±0,002) В, Еп(В2)=(+0,675±0,007) В, Eп(G2)=(+0,902±0,001) В методом добавок аттестованных смесей. Технический результат - одновременное определение смеси афлатоксинов В1, В2, Gl, G2. 4 ил., 3 табл.

Изобретение относится к аналитической химии. Способ заключается в том, что в течение 150 с проводят электрохимическое концентрирование глицирризиновой кислоты на поверхности ртутно-пленочного электрода при потенциале электролиза (-1,8) В на фоне 0,01 М калия хлорида с последующей регистрацией вольтамперных кривых при линейной скорости развертки потенциала 50 В/с, а концентрацию глицирризиновой кислоты определяют по высоте пика в диапазоне потенциалов (-0,2) до (-0,3) В относительно хлорид-серебряного электрода. Способ характеризуется высокой чувствительностью (1 пг/мл) и экспрессностью (время единичного анализа не превышает 10-15 мин). 1 пр., 4 табл.

Изобретение относится к аналитической химии и касается способа определения молочной кислоты на платиновом электроде. Сущность способа заключается в том, что определяют молочную кислоту на платиновом электроде в фоновом электролите - боратный буфер (рН 9.18), при потенциале предельного тока восстановления Е=-0,7 В с помощью хлоридсеребряного электрода сравнения. Способ определения молочной кислоты включает перевод молочной кислоты из пробы в раствор с последующим титрованием раствора щелочью (0.01-0,1М KOH) и одновременной регистрацией предельного тока восстановления молочной кислоты, построением кривой амперометрического титрования, из которой находят объем щелочи в точке эквивалентности, затраченный на титрование молочной кислоты. Использование способа позволяет определять молочную кислоту в диапазоне концентраций 3,0⋅10-5-1⋅10-1 моль/дм3. 6 ил., 3 табл., 3 пр.

Изобретение относится к области аналитической химии и может быть использовано в медицине, сельском хозяйстве, мониторинге окружающей среды. Способ определения тиолов согласно изобретению проводят инверсионной вольтамперометрией в 3М растворе NaOH в присутствии ионов серебра с концентрацией в растворе 4⋅10-5…8⋅10-5 М, вводят пробу, содержащую от 3⋅10-8 до n⋅10-5 М тиолов, перемешивают раствор в течение 10-30 с, подают потенциал электролиза +0,05 В в течение 60 с на серебряный электрод. Тиолы концентрируются на поверхности серебряного электрода в виде комплексного малорастворимого соединения, затем регистрируют вольтамперограмму при линейной развертке потенциала 5 мВ/с. Пик растворения тиолятов серебра наблюдается при потенциале -0,98 В и линейно зависит от концентрации тиолов в водных растворах. Способ согласно изобретению позволяет снизить нижнюю границу определяемых содержаний и использовать экологически чистый серебряный электрод. 4 ил.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть использовано в фармацевтической промышленности для контроля технологических процессов и качества фармпрепаратов, сточных вод и воздушной зоны химико-фармацевтических предприятий, в лабораториях фармацевтического контроля для определения действующих веществ лекарственных средств. Сущность изобретения основана на способности триазавирина восстанавливаться на различных типах графитовых электродов и заключается в переводе триазавирина из пробы в водный раствор и прямом (без предварительного накопления на электроде) вольтамперометрическом определении в ней триазавирина на фоне 0,1 моль/л азотной кислоты с регистрацией катодных пиков в квадратно-волновом режиме съемки вольтамперограмм в интервале от 0,2 до (-0,6) В при скорости развертки потенциала 160 мВ/с. Концентрацию триазавирина определяют по высоте пика в диапазоне потенциалов от 0,10 до (-0,40) В относительно хлоридсеребряного электрода методом добавки стандартного раствора триазавирина. Изобретение обеспечивает возможность создания чувствительного и экспрессного способа количественного определения триазавирина методом вольтамперометрии в субстанции и лекарственной форме для обеспечения контроля качества лекарственного средства. 2 н.п. ф-лы, 1 ил., 3 табл., 2 пр.

Изобретение относится к области измерения значений гидрохимикофизических параметров водной среды и может быть использовано отдельно или в составе многоканального преобразователя гидрохимикофизических параметров водной среды, для измерения содержания растворенного кислорода в водной среде, в частности пресной и морской воды при проведении экологических исследований. Согласно изобретению в полярографическом датчике кислорода, содержащем наполненный электролитом корпус с отверстием в верхней части, мембрану, выполненную по меньшей мере из двух слоев газопроницаемого материала, герметично закрывающую указанное отверстие, два электрода - катод, прилегающий к мембране, и анод, размещенные в объеме электролита, нижний опорный слой мембраны выполнен из материала, обеспечивающего возможность беспрепятственного прохождения молекул растворенного в воде кислорода к катоду с прочностными характеристиками, обеспечивающими возможность сопротивления разрыву при динамических и статических нагрузках, возникающих в процессе эксплуатации, а верхний селективный слой выполнен в виде нанесенного на опорный слой полимерного покрытия. Техническим результатом изобретения является снижение постоянной времени при обеспечении необходимого ресурса работы датчика. 1 з.п. ф-лы, 1 ил.
Наверх